Human brain-derived A oligomers bind to synapses and disrupt synaptic activity in a manner that requires APP

Citation for published version:

Digital Object Identifier (DOI):
10.1523/JNEUROSCI.2009-17.2017

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Neuroscience

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Human brain-derived Aβ oligomers bind to synapses and disrupt synaptic activity in a manner that requires APP

Dominic Walsh, Harvard Institutes of Medicine
Zemin Wang, Brigham and Women's Hospital and Harvard Medical School
Rosemary Jackson, University of Edinburgh
Wei Hong, Brigham and Women's Hospital and Harvard Medical School
Walter Taylor, Brigham and Women's Hospital and Harvard Medical School
Grant Corbett, Brigham and Women's Hospital, Harvard Medical School
Arturo Moreno, UCSF
Wen Liu, Brigham and Women's Hospital and Harvard Medical School
Shaomin Li, Brigham and Women's Hospital and Harvard Medical School
Matthew Frosch, Massachusetts General Hospital
Tracy Young-Pearse, Brigham and Women's Hospital, Harvard Medical School
and Ann Romney Center for Neurologic Diseases
Inna Slutsky, Tel Aviv University
Tara Spires-Jones, University of Edinburgh

Commercial Interest:
Human brain-derived Aβ oligomers bind to synapses and disrupt synaptic activity in a manner that requires APP

Zemin Wang¹, Rosemary J. Jackson², Wei Hong¹, Walter M. Taylor¹, Grant T. Corbett¹, Arturo Moreno¹, Wen Liu¹, Shaomin Li¹, Matthew P. Frosch³, Inna Slutsky⁴, Tracy Young-Pearse¹, Tara L. Spires-Jones², and Dominic M. Walsh¹*

¹Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; ²The University of Edinburgh, UK Dementia Research Institute, 1 George Square, Edinburgh, UK; ³Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; and ⁴Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University; 69978 Tel Aviv, Israel.

*Correspondence to dwalsh3@bwh.harvard.edu

Running title: Aβ-mediated disruption of synaptic activity requires APP.

Number of Pages: 63
Number of Figures: 11
Number of Tables: 1
Number of words for Abstract: 161
Number of words for Introduction: 652
Number of words for Discussion: 1387
Acknowledgments

We thank Dr. Tiernan T. O'Malley for useful discussions and technical advice. This work was supported by grants to DMW from the National Institutes of Health (AG046275), Bright Focus, and the United States-Israel Binational Science Foundation (2013244, DMW and IS); grants to TSJ from Alzheimer's Research UK and the Scottish Government (ARUK-SPG2013-1), Wellcome Trust-University of Edinburgh Institutional Strategic Support funds, and the H2020 European Research Council (ALZSYN); and to the Massachusetts Alzheimer's Disease Research Center (AG05134). TSJ is a member of the FENS Kavli Network of Excellence.
Abstract

Compelling genetic evidence links the amyloid precursor protein (APP) to Alzheimer’s disease (AD), and several theories have been advanced to explain the involvement of APP in AD. A leading hypothesis proposes that a small amphipathic fragment of APP, the amyloid β-protein (Aβ), self-associates to form soluble aggregates which impair synaptic and network activity. Here, we employed the most disease-relevant form of Aβ, protein isolated from AD brain. Using this material, we show that the synaptotoxic effects of Aβ depend on expression of APP and that the Aβ-mediated impairment of synaptic plasticity is accompanied by pre-synaptic effects which disrupt the excitatory/inhibitory (E/I) balance. The net increase in the E/I ratio, and inhibition of plasticity are associated with Aβ localizing to synapses and binding of soluble Aβ aggregates to synapses requires the expression of APP. Taken together, our findings indicate a role for APP in AD pathogenesis beyond the generation of Aβ and suggest modulation of APP expression as a therapy for AD.
Significance Statement

Here, we report on the plasticity-disrupting effects of Aβ isolated from AD brain and the requirement of APP for these effects. We show that Aβ-containing AD brain extracts block hippocampal long-term potentiation (LTP), augment glutamate release probability and disrupt the excitation/inhibition balance. Notably, these effects are associated with Aβ localizing to synapses, and genetic ablation of APP prevents both Aβ binding and Aβ-mediated synaptic dysfunctions. Our results emphasize the importance of APP in AD and should stimulate new studies to elucidate APP-related targets suitable for pharmacological manipulation.
Introduction

Mutation, over-expression or altered processing of the amyloid precursor protein (APP) underlie all known monogenic cases of familial Alzheimer's disease (fAD) (Tanzi, 2012; Guerreiro and Hardy, 2014). Although the physiological roles of APP are not fully understood, a myriad of studies indicate that APP plays a role in synaptic plasticity, dendritic morphogenesis, and neuroprotection (Muller and Zheng, 2012). Membrane-tethered APP can act as a cell-adhesion molecule linking the pre-and post-synapse (Soba et al., 2005) and APP has been shown to regulate synaptic vesicle proteins, synaptic transmission and plasticity (Dawson et al., 1999; Lassek et al., 2013; Fanutza et al., 2015; Lassek et al., 2016). In the rat dentate gyrus (DG), APP expression is known to change during memory consolidation (Conboy et al., 2005) and intraventricular administration of anti-APP antibodies or antisense oligonucleotides results in profound amnesia (Doyle et al., 1990; Huber et al., 1993; Mileusnic et al., 2000). Notably, APP is a component of the presynaptic GABA-B1a receptor (GABA$_{B1a}$-R) complex (Bai et al., 2008; Schwenk et al., 2016) and neuron-type specific knock-out of APP indicates an important role for APP in GABAergic transmission and maintenance of the excitatory–inhibitory balance (Wang et al., 2014).

APP is a complex molecule that undergoes substantial post-translational modification and processing as more than 10 different proteolytic fragments of APP have been identified. Several of these are suggested to be pathogenic (Neve and McPhie, 2007; Yankner and Lu, 2009; Tamayev et al., 2012; Welzel et al., 2014; Willem et al., 2015), whereas others are neuroprotective (Mockett et al., 2017). The fragment from which the
precursor protein derives its name, the amyloid β-protein (Aβ), is found in the tell-tale amyloid plaques which populate brains of individuals who die with AD. Aβ comprises a family of APP-derived peptides that share a common core of ~30 amino acids (Walsh and Teplow, 2012) which are produced by the concerted action of two aspartyl proteases, β-secretase and γ-secretase (De Strooper, 2010). Aβ peptides are prone to self-associate and multiple studies indicate that certain forms of Aβ adversely affect synaptic form and function (Li et al., 2009).

The synaptotoxic activity of Aβ and the involvement of APP in synapse formation and activity are particularly relevant to AD since in vivo and postmortem studies indicate that synapse dysfunction and loss are prominent early features of AD (Scheff et al., 2006; Scheff et al., 2007; Johnson et al., 2012). Acute studies in wild-type rodents show that non-fibrillar, water-soluble Aβ from a variety of sources are potent synaptotoxins (Lambert et al., 1998; Walsh et al., 2002; Cleary et al., 2005; Lesne et al., 2006; Klyubin et al., 2008; Minkeviciene et al., 2009; Kurudenkandy et al., 2014). Furthermore, in vitro and in vivo studies demonstrate that the most disease-relevant form of non-fibrillar Aβ, Aβ extracted from the water-soluble phase of AD brain, inhibits long-term potentiation (LTP), facilitates long-term depression (LTD), reduces synaptic remodeling, and impairs memory consolidation (Shankar et al., 2008; Barry et al., 2011; Freir et al., 2011; Borlikova et al., 2013; Jo et al., 2014; Yang et al., 2017). Here, we show that the block of LTP mediated by Aβ-containing AD brain extracts is accompanied by opposing changes in excitatory and inhibitory pre-synaptic release probabilities and consequent disruption of the excitation/inhibition (E/I) balance. The net increase in the E/I ratio and inhibition of LTP require expression of APP and are associated with Aβ localizing to
synapses. These findings suggest a link between Aβ toxicity and perturbation of the normal regulatory role of APP, and are consistent with prior studies which have imputed a role for APP in Aβ toxicity (White et al., 1998; Lorenzo et al., 2000; Shaked et al., 2006; Sola Vigo et al., 2009; Fogel et al., 2014; Kirouac et al., 2017). In light of these results we suggest that down-regulation of APP expression or modulation of its interaction with synaptotoxic Aβ species should be investigated as an approach to treat AD.
Materials and Methods

Reagents

All chemicals and reagents were purchased from Sigma-Aldrich unless otherwise noted. Synthetic Aβ1–42 was synthesized and purified using reverse-phase HPLC by Dr. James I. Elliott at the ERI Amyloid laboratory (Oxford, CT, USA). Peptide mass and purity (>99%) were confirmed by reverse-phase HPLC and electrospray/ion trap mass spectrometry. N-terminally extended (NTE) -31Aβ-40 was prepared and purified as described previously (McDonald et al., 2015) and recombinant Aeta-alpha (Aη–α, APP505-611) was a gift from Drs. Willem and Haass (Ludwig-Maximillian University, Munich).

Antibodies

The antibodies used and their source are described in Table 1.

Preparation of human brain extracts

All human specimens were obtained and used in accordance with the Partner's Institutional Review Board (Protocol: Walsh BWH 2011). Brain tissue was obtained from 2 of individuals (referred to as AD1 and AD2) who died with AD and one individual who died free of AD (designated NC). AD1 was an 87-year-old man who 9 months prior to death had scored 23 on the MMSE and designated Braak stage 4 at postmortem had
pathological changes consistent with mild AD. AD2 was a 68-year-old female with end-stage AD. Three years prior to death AD2 scored 23 on the MMSE, but in her last weeks she was unable to answer questions other than to provide her first name. Upon postmortem examination there was evidence of fulminant amyloid and neurofibrillary tangle pathology which was designated Braak stage V/VI. Neither AD1 nor AD2 had a family history of AD. NC was a 58-year-old female who died free of AD symptoms and pathology. AD1 and NC had post-mortem intervals (PMI) of 18 hours, and AD had a PMI of 12 hours. Aqueous extracts of brain were prepared by homogenizing cortical tissue in a buffer which we refer to as artificial cerebrospinal fluid base buffer (aCSF-B) (124 mM NaCl, 2.8 mM KCl, 1.25 mM NaH$_2$PO$_4$, 26 mM NaHCO$_3$, pH 7.4). aCSF-B is the core buffer used in subsequent electrophysiology experiments. Whole frozen temporal cortex was left at 4°C until the tissue was sufficiently soft to cut. Meninges and large blood vessels were removed and gray matter dissected from white matter. The total amount of gray matter obtained was between 12-14 g. Two gram lots of tissue were diced using a razor blade and then homogenized in 10 ml of ice-cold aCSF-B (containing 5 mM Ethylenediaminetetraacetic acid, 1 mM Ethyleneglycoltetraacetic acid, 5 μg/ml Leupeptin, 5 μg/ml Aprotinin, 2 μg/ml Pepstatin, 120 μg/ml Pefabloc and 5 mM NaF) with 25 strokes of a Dounce homogenizer (Fisher, Ottawa, Canada). Homogenates from 6, 2 g lots were pooled and centrifuged at 198,000 g and 4°C for 110 minutes in a SW 41-Ti rotor (Beckman Coulter, Fullerton, CA). The upper 90% of supernatant was dialyzed (using Slide-A-Lyzer™ G2 Dialysis Cassettes, 2K MWCO, Fisher Scientific) against fresh aCSF-B to remove bioactive small molecules and drugs. Dialysis was performed at 4°C against a 100-fold excess of buffer with buffer changed 3
times over a 36 hour period. Thereafter, extracts were divided into 2 parts: 1 portion
was immunodepleted (ID) of Aβ by 3 rounds of 12 hour incubations with the anti-Aβ
antibody, AW7, plus Protein A sepharose (PAS) beads at 4 °C (Freir et al., 2011). The
second portion was treated in an identical manner, but this time incubated with pre-
immune serum plus PAS beads. Samples were cleared of beads and 0.5 ml aliquots
stored at -80°C until used for biochemical or electrophysiological experiments. Samples
were thawed only once prior to use.

Preparation of amyloid-derived diffusible ligands (ADDLs)

Amyloid-derived diffusible ligands (ADDLs) were prepared essentially as described
previously (Freir et al., 2011). Hexafluoro-2-propanol (HFIP; 222 μl) was added to 1 mg
of Aβ(1–42) in a 2 ml low-binding microcentrifuge tube to produce a peptide
concentration of 1 mM. The solution was split into two tubes, incubated at 37°C for 1
hour and mixed by vortexing every 10 minutes. The HFIP was gently evaporated under
a nitrogen stream with rotation of the tube to ensure formation of an even film of peptide
on the lower walls of the tube. Dried peptide films were stored over desiccant at 20°C
for a minimum of 14 hours. The peptide film from each tube was then dissolved in 20 μl
of anhydrous DMSO (Life Technologies, Woburn, MA) and 5 μl lots of the DMSO
mixture was added stepwise to 980 μl of F-12 medium (Life Technologies), with
vortexing between each addition. The resulting solution was incubated at 4°C for 48
hours and then centrifuged at 16,000 g for 10 minutes. The upper 95% of the
supernatant was transferred to a new microcentrifuge tube and the protein
concentration determined using the extinction coefficient, $\varepsilon_{275} = 1361 \text{ M}^{-1} \text{cm}^{-1}$ (O’Malley et al., 2014). Aliquots were then immediately frozen on dry ice and stored at -80°C.

Characterization of ADDLs

The size and morphology of structures present in the ADDLs preparation were investigated using negative contrast electron microscopy and analytical size exclusion chromatography (SEC). Samples were stained and visualized essentially as described previously (Betts et al., 2008). An aliquot of the ADDL preparation (50 μl) was diluted 1:1 with F12 media and then adsorbed (10 μl) onto formvar-coated copper grids (Electron Microscopy Sciences). After 1 minute, 10 μl 0.25% glutaraldehyde was added and incubated for 1 minute. Thereafter, grids were wicked dry using filter paper, washed twice with MilliQ water and then stained with 1% uranyl-acetate for 2 minutes. Grids were allowed to air dry for at least 10 minutes, stored at room temperature and then examined using a 1200EX microscope (JEOL).

A separate aliquot of ADDLs (50 μl) was thawed and loaded on to a Superdex 75 3.2/300 PE column (GE Healthcare) eluted in PBS pH 7.4 at 0.8 ml/min using a Shimadzu HPLC system.

Preparation of synthetic peptides used for Western blotting

Aηα peptide was dissolved in 50 mM ammonium bicarbonate, pH 8.5, diluted to 10 ng/μl, aliquoted and stored frozen at -80°C. Aβ1-42 and -31Aβ40 which are prone to aggregate were treated to depolymerize any pre-existing aggregates. Briefly, peptides were dissolved in 50 mM Tris-HCl, pH 8.5, containing 7 M guanidium-HCl (GuHCl) and
5 mM ethylenediaminetetraacetic acid (EDTA) at a concentration of 1 mg/ml and incubated at room temperature (RT) overnight. Samples were then centrifuged for 30 minutes at 16,000 g and chromatographed on a Superdex 75 10/300 column eluted at 0.5 ml/min with 50 mM ammonium bicarbonate, pH 8.5. The concentration of the peak fraction for each sample was determined by absorbance at 275 nm. The peptide was then diluted to 10 ng/μl, aliquoted and stored frozen at -80°C.

Immunoprecipitation/Western blotting (IP/WB) of Aβ in brain extracts

Extracts were first pre-cleared with PAS beads to minimize non-specific interactions in the subsequent IP. One ml aliquots of extracts were incubated with 15 μl PAS beads for 1 hour at 4°C with gentle shaking. PAS beads were removed by centrifugation (4000 g for 5 minutes) and the supernatant divided into 0.5 ml aliquots. Each aliquot was incubated with 10 μl of AW7 and 15 μl PAS beads overnight at 4°C with gentle shaking. Aβ-antibody-PAS complexes were collected by centrifugation and washed as previously described (Shankar et al., 2011). The immunoprecipitated (IP’d) Aβ was eluted by boiling in 18 μl of 1 × sample buffer (50 mM Tris, 2% w/v SDS, 12% v/v glycerol with 0.01% phenol red) and electrophoresed on hand poured, 15 well 16% polyacrylamide tris-tricine gels. Aη–α, Aβ1-42 and -31Aβ40 were run as loading controls and protein transferred onto 0.2 μM nitrocellulose at 400 mA and 4°C for 2 hour. Blots were microwaved in PBS and Aβ detected using the anti-Aβ40 and anti-Aβ42 antibodies, 2G3 and 21F12, and bands visualized using a Li-COR Odyssey infrared imaging system (Li-COR, Lincoln, NE). To determine if AW7 IP’d other APP
metabolites (e.g. APPs\[alpha\], N-terminally extended A\[beta\] or A\[eta\] peptides) from AD brain extracts, certain blots were developed with 6E10 (Table 1).

MSD A\[beta\] immunoassays

Samples were analyzed for A\[beta\] content using 2 distinct assay formats: the A\[beta\]x-42 assay that preferentially detects A\[beta\]42 monomers and the oAssay that preferentially detects A\[beta\] oligomers and aggregates (Mably et al., 2015; Yang et al., 2015). Immunoassays were performed using the Meso Scale Discovery (MSD) platform and reagents from Meso Scale (Rockville, MD). The A\[beta\]x-42 assay uses mAb m266 (3 \(\mu\)g/ml) for capture and biotinylated 21F12 (1 \(\mu\)g/ml) for detection, and the oAssay uses mAb 1C22 (3 \(\mu\)g/ml) for capture and biotinylated 3D6 (1 \(\mu\)g/ml) for detection. Samples, standards and blanks were loaded in duplicate and analyzed as described previously (Mably et al., 2015).

Since Guanidine Hydrochloride (GuHCl) effectively disaggregates high molecular weight A\[beta\] species (Mably et al., 2015), samples were analyzed both with and without incubation in 5 M GuHCl. Analysis of samples in the absence of GuHCl allows the measurement of native A\[beta\]42 monomer using the A\[beta\]x-42 assay, and native A\[beta\] aggregates using the oAssay. Analysis of samples treated with GuHCl allows detection of disassembled aggregates with A\[beta\]x-42 assay. To dissociate aggregates, 20 \(\mu\)l of extract was incubated overnight with 50 \(\mu\)l of 7 M GuHCl at 4°C. Thereafter samples were diluted 1:10 with assay diluents so that the final GuHCl concentration was 0.5 M. A\[beta\] standards were prepared in tris-buffered saline (TBS), pH 7.4 containing 0.5 M...
GuHCl, 0.05% Tween 20 and 1% Blocker A so that both standards and samples contained the same final concentration of GuHCl.

Mice

All animal procedures were performed in accordance with the National Institutes of Health Policy on the Use of Animals in Research and were approved by the Harvard Medical School Standing Committee on Animals. Wild-type (WT) C57BL/6 mice were purchased from the Jackson Laboratory (Bar Harbor, ME). APP KO mice on a C57BL/6 background and littermate WT controls were obtained from the Young-Pearse lab (Callahan et al., 2017). A second line of APP KO mice were purchased from the Jackson Laboratory (APP^{tm1Dbo}/J, The Jackson Laboratory, Bar Harbor, ME) (Zheng et al., 1995) and for certain experiments these animals were bred with WT C57BL/6 mice to generate APP (+/-) hemizygotes. Animals were housed in a room with a 12 hour light/dark circadian cycle with *ad libitum* access to food and water. Mice were genotyped by PCR prior to use, and both male and female mice were used. In certain experiments, upon completion of electrophysiological recordings, brain slices were used for Western blotting or array tomography.

Brain slice preparation

Two to three months old male and female animals were anaesthetized with isoflurane and decapitated. Brains were rapidly removed and immediately immersed in ice-cold
(0-4°C) artificial cerebrospinal fluid (aCSF). The aCSF contained (in mM): 124 NaCl, 3 KCl, 2.4 CaCl₂, 2 MgSO₄·7H₂O, 1.25 NaH₂PO₄, 26 NaHCO₃ and 10 D-glucose, and was equilibrated with 95% O₂ and 5% CO₂, pH 7.4, 310 mOsm. Coronal brain slices (350 µm), including hippocampus (Wang et al., 2008), were prepared using a Leica VT1000 S vibratome (Leica Biosystems Inc, Buffalo Grove, IL), transferred to an interface chamber and incubated at 34 ± 5°C for 20 minutes and then kept at room temperature for 1 hour before recording.

Long-term potentiation (LTP) recording

Brain slices were transferred to a submerged recording chamber and perfused (10 ml/min) with oxygenated (95% O₂ and 5% CO₂) aCSF 10 minutes before electrophysiological recordings. Brian slices were visualized using an infrared and differential interference contrast camera (IR-DIC camera, Hitachi, Japan) mounted on an upright Olympus microscope (Olympus, Tokyo, Japan). Recording electrodes were pulled from borosilicate glass capillaries (Sutter Instruments, Novato, CA) using a micropipette puller (Model P-97; Sutter Instruments, Novato, CA) with resistance ~2 MΩ when filled with aCSF. To induce field excitatory post-synaptic potentials (fEPSPs) in the hippocampal CA1, a tungsten wire stimulating electrode (FHC, Inc., Bowdoin, ME) was placed on the Schaffer collaterals of the CA3 and a recording electrode was placed at least 300 µm away on the striatum radiatum of the CA1. The initial 10-40% slope of fEPSPs were calculated. Test stimuli were delivered once every 20 seconds (0.05 Hz) and the stimulus intensity was adjusted to produce a baseline fEPSP of 30–40% of the maximal response. A stable baseline was recorded for at least 10 minutes prior to
addition of sample. Thirty minutes following application of sample, LTP was induced by theta burst stimulation (TBS). This involved 3 trains, each of 4 pulses delivered at 100 Hz, 10 times, with an interburst interval of 200 milli-second with a 20 second interval between each train. Field potentials were recorded using a Multiclamp amplifier (Multiclamp 700B; Molecular Devices, Sunnyvale, CA) coupled to a Digidata 1440A digitizer. Signal was sampled at 10 kHz and filtered at 2 kHz and data were analyzed using Clampex 10 software (Molecular Devices, Sunnyvale, CA).

Whole-cell patch clamp recording

Brain slices were prepared from male and female WT and APP KO mice (1-2 months old) as described above for LTP experiments but using a cutting solution that contained sucrose (in mM: 72 sucrose, 83 NaCl, 2.5 KCl, 1 NaH₂PO₄, 3.3 MgSO₄·7H₂O, 26.2 NaHCO₃, 22 dextrose, and 0.5 CaCl₂) saturated with 95% O₂ and 5% CO₂, pH 7.4, 310 mOsm (Wang et al., 2015). Slices were incubated in oxygenated slicing solution for 20 minute, and held at room temperature for a further 40 minute prior to recording. Slices were transferred to a submerged recording chamber and perfused (10 ml/min) with oxygenated (95% O₂ and 5% CO₂) aCSF for 30 minute at room temperature. Whole-cell recordings were made from the somata of CA1 pyramidal neurons visualized using an IR-DIC camera mounted on an upright Olympus microscope (Olympus, Tokyo, Japan). Patch pipettes (4–7MΩ) were filled with an internal solution containing (in mM): 120 CsGluconate, 5 MgCl₂, 0.6 EGTA, 30 HEPES, 4 MgATP, 0.4 Na₂GTP, 10 phosphocreatine-Tris, 5 N-(2,6-Dimethylphenylcarbamoylmethyl)triethylammonium bromide (QX-314); 290 mOsm; pH was adjusted to 7.2 with CsOH. Signal was
acquired using a Multiclamp amplifier (Multiclamp 700B; Molecular Devices, Sunnyvale, CA) with Clampex 10 software (Molecular Devices, Sunnyvale, CA), sampled at 10 kHz and filtered at 2 kHz. Data were stored on a PC after digitization by an A/D converter (Digidata 1440A, Molecular Devices, Sunnyvale, CA) for offline analysis. Membrane potential was corrected for the liquid junction potential of 13.7 mV. Neurons with negative resting membrane potential less than -60 mV were not analyzed. Input resistance and patching access resistance were continuously monitored during the experiment and cells which exhibited more than 15–20% changes in these parameters were excluded from analysis.

In order to preserve a relatively intact neuronal circuit, no receptor antagonists were used. Spontaneous excitatory post-synaptic currents (sEPSCs) were collected at a membrane holding potential of -70 mV, which is close to the calculated reverse potential of GABA. In order to measure the excitatory and inhibitory input on the same neuron, the spontaneous inhibitory post-synaptic currents (sIPSCs) were also measured on the same neuron but this time the holding potential was increased to 5-10 mV, a potential close to the reverse potential of excitatory input, without visual negative deflection. Recorded neuronal activities were detected as described previously (Lillis et al., 2015) by custom software (DClamp: available at www.ieeg.org/?q=node/34). Integrated excitatory conductance (sEPSCs, \(G_E\)) and integrated inhibitory conductance (sIPSCs, \(G_I\)) were calculated as previously reported

\[
G_E = \int_0^t \frac{sEPSCs}{t(V_M - V_{Erev})} dt \\
G_I = \int_0^t \frac{sIPSCs}{t(V_M - V_{Irev})} dt
\]

(Slomowitz et al., 2015).
Preparation of mouse brain homogenates and detection of APP

Certain brain slices from wild-type and APP knock-out mice were frozen immediately after completion of electrophysiological recording (Figures 4, 5 and 6) and stored at -80°C until analyzed. Tissue (~0.1 mg) was homogenized in 5 volumes (w/v) of ice-cold 20 mM Tris-HCl, containing 150 mM NaCl and 1%TX-100 (TBS-Tx), pH 7.4 containing protease inhibitors and centrifuged at 100,000 g and 4°C for 78 minutes in a TLA-55 rotor (Beckman Coulter, Fullerton, CA). The upper 90% of the supernatant was removed, aliquoted and stored at -80°C pending analysis. Ten μg of total protein was boiled in 1× sample buffer (62.5 mM Tris, 1% w/v SDS, 10% v/v glycerol, 0.01% phenol red and 2% β-mercaptoethanol) for 5 minutes and electrophoresed on hand poured, 15 well 10% polyacrylamide tris-glycine gels. Gels were rinsed in transfer buffer (10% methanol, 192 mM Glycine and 25 mM Tris) and proteins electroblotted onto 0.2 μM nitrocellulose membranes at 400 mA and 4°C for 2.5 hours. Membranes were developed using the anti-APP antibody, 22C11, and bands visualized using a Li-COR Odyssey infrared imaging system (Li-COR, Lincoln, NE).

Array tomography (AT) imaging of mouse brain slices

Upon completion of electrophysiology recordings certain brain slices from wild-type and APP knock mice (Figures 4, 5 and 6) were processed for array tomography (Koffie et al., 2009; Pickett et al., 2016). Slices were fixed in PBS containing 4% paraformaldehyde and 2.5% sucrose at 4°C overnight. Samples were then washed three times (10
minutes each) in cold wash buffer (PBS containing 3.5% sucrose and 50 mM glycine), and the hippocampus dissected out under a Leica Wild M3Z Stereozoom Microscope (Heerbrugg, Switzerland). Thereafter hippocampi were dehydrated using an ethanol gradient of: 50%, 70%, 95% and 100%. Tissue was then placed into a solution of 1:1 ethanol: LR White resin (Electron Microscopy Sciences) for 5 minutes and then washed 3 times with LR White. Tissue was incubated overnight at 4°C in LR White, embedded in a gelatin capsule and polymerized overnight at 53°C. Three embedded blocks per condition were cut into ribbons of 70 nm sections on an ultracut microtome (Leica) using a Jumbo Histo Diamond Knife (Diatome). Ribbons were collected on gelatin-coated glass coverslips, stained with antibodies and imaged along the ribbon. Two ribbons per slice were collected and one was stained for PSD95 and 1C22 and the other for synapsin-1 and 1C22. Primary antibodies were 1C22 (1:50), rabbit anti-PSD95 (3450P, Cell Signaling, at 1:50), and rabbit anti-synapsin-1 (AB1543P, Millipore, at 1:100). Secondary antibodies donkey anti-mouse 488 (A21202) and donkey anti-rabbit 594 (A21207) were from Invitrogen and used at 1:50.

Two image stacks per ribbon were collected from the stratum radiatum using a Zeiss axio Imager Z2 epifluorescent microscope with a 63X 1.4NA Plan Apochromat objective. Images were acquired with a CoolSnap digital camera and AxioImager software with array tomography macros (Carl Zeiss, Ltd, Cambridge UK). Images from each set of serial sections were compiled to create a 3D stack and aligned using ImageJ multistackreg macros (Kay et al., 2013). Regions of interest (10 μm x 10 μm) were selected, cropped and thresholded in Image J (Schindelin et al., 2012; Ollion et al., 2013) (Figure 1). Custom MATLAB macros were used to remove single slice punctuate,
count synaptic punctuate and assess co-localization with 1C22 (a minimum of 50% overlap between 1C22 and synaptic punctuate was required to be designated as co-localization). All custom analysis macros will be freely available on http://datashare.is.ed.ac.uk after publication.

Data analysis and Statistical test

Figures showing IP/WB and MSD Aβ immunoassay data are representative of at least 2 independent experiments. For electrophysiological experiments, the AD, ID-AD and aCSF samples were coded and tested in an interleaved manner to avoid variances in animals or slice quality influencing results. Slices in each group came from different animals unless otherwise noted. Electrophysiological data were analyzed offline by pclamp 10.2 (Molecular Devices, Sunnyvale, CA) and tested with One-way or Two-way analysis of variance (ANOVA) with Bonferroni *post-hoc* tests or student’s *t*-tests (# *p*<0.05, ## *p*< 0.01, and ### *p*< 0.001). A Kolmogorov–Smirnov (K–S) test was used to compute differences in distributions of sEPSCs and sIPSCs. Array tomography was analyzed using SPSS Version 22. A single percent co-localization for each parameter was calculated for each slice from approximately 41 regions of interest and ≈7,500 synapses (~3,500 pre-synapses and ~3,500 post-synapses) were analyzed per slice and tested with a Kruskal-Wallis with Dunns *post-hoc* test. Electrophysiology data are shown as means ± SEM. Array tomography data is shown as medians ± the interquartile range, each point representing all synapses measured within 1 slice.
Analyses of the same sample using different slices are considered technical replicates and analysis of extracts from different AD brains are considered biological replicates.
Results

We previously reported that aqueous extracts of certain end-stage AD brains block hippocampal LTP in vivo and in vitro (Shankar et al., 2008; Barry et al., 2011; Freir et al., 2011; Jo et al., 2014). Here we further investigated the mechanism of this effect and the requirement of endogenous APP.

The water-soluble extract from AD brain contains both Aβ monomers and oligomers and blocks LTP in a manner dependent on Aβ

Brain extracts were prepared as described and a portion was immunodepleted (ID) of Aβ or mock-ID with pre-immune rabbit serum. Here, the mock-ID extract is referred to as the AD sample, and the material depleted of Aβ as ID-AD. ID and AD samples from AD1 were analyzed using IP/WB, and MSD immunoassays that preferentially recognize either Aβ oligomers (oAssay) or Aβ42 monomers (Mc Donald et al., 2015). IP/WB analysis allows the capture of Aβ structures under native conditions and their detection following denaturing SDS-PAGE. We were careful to also determine if AW7 altered APP metabolites present in AD brain extracts that contained all or part of the Aβ sequence i.e. APPsα, N-terminally extended Aβ (-31Aβ40), or so-called Aη peptides. To this end AW7 IPs were used for Western blotting with (i) the C-terminal anti-Aβ antibodies, 2G3 and 21F12, and (ii) the N-terminal anti-Aβ antibody, 6E10. The latter, but not the former, reacts with APPsα and Aη–α peptides (Portelius et al., 2013; Welzel et al., 2014; Willem et al., 2015). 6E10 readily detected ~4 kDa Aβ, but it did not detect...
any bands consistent with APPs\(\alpha\) or A\(\eta-\alpha\). Furthermore, direct Western blot analysis of AD brain extract demonstrated highly similar levels of APPs in both AW7 and mock immunodepleted extracts. Thus, it appears that AW7 does not deplete AD extracts of non-A\(\beta\) APP metabolites that contain the N-terminal portion of A\(\beta\) (Figure 2A). The \(\sim 7\) kDa A\(\beta\) species detected with 2G3 and 21F12 was not detected with 6E10, consistent with our prior observation that most \(\sim 7\) kDa A\(\beta\) is N-terminally truncated - a pattern we have seen in aqueous extracts of more than 100 AD brains analyzed in our laboratory (Mc Donald et al., 2015). Since SDS-PAGE is highly denaturing, the \(\sim 4\) and \(\sim 7\) kDa species do not necessarily reflect native A\(\beta\) species. Rather, these simply indicate that at least two different A\(\beta\) species are present. The same samples were treated with or without 5 M GuHCl and then analyzed using MSD assays. In prior studies we found that GuHCl effectively disaggregates high molecular weight A\(\beta\) species such that the signal detected by our oAssay is greatly decreased, whereas the signal detected by the monomer-preferring A\(\beta\)x-42 immunoassay is proportionately increased (Mably et al., 2015). A similar outcome was evident when the extract of AD1 was treated with GuHCl (Figure 2B). Specifically, GuHCl treatment caused a \(\sim 70\%\) decrease in the oligomer signal and a more than 8-fold increase in the monomer signal. Together these immunoassay and IP/WB results indicate that the majority of A\(\beta\) in the AD1 extract exist as labile aggregates made up of \(\sim 4\) kDa A\(\beta\) and \(\sim 7\) kDa A\(\beta\). Importantly, AW7 ID effectively removed the large majority of the various A\(\beta\) species detected (Figure 2A and B). For instance, AW7 ID reduced the oligomer signal from \(5.1 \pm 0.03\) ng/ml to \(0.32 \pm 0.12\) ng/ml (Figure 2B, left panel) and monomer from \(3.42 \pm 0.03\) ng/ml to \(0.12 \pm 0.04\) ng/ml (Figure 2B, right panel).
For slices that received vehicle aCSF-B (Control), TBS induced strong potentiation which lasted the whole recording period (Figure 2C, black circles, 181.1 \pm 10.7 \%, n = 17), and ID-AD1 allowed a similar response (green downward triangles, 173.6 \pm 8.7 \%, n = 11, p=0.12, One-Way ANOVA) (Figure 2C and D). Consistent with prior reports (Shankar et al., 2008; Freir et al., 2011), application of the AD1 (magenta diamonds) extract significantly decreased LTP compared to both the control and ID-AD1 treatment (136 \pm 4.2 \%, n = 18, F=4.26, p=6.98E-9 AD1 vs. Control; F=4.14, p=3.56E-12 AD1 vs. ID-AD1, One-Way ANOVA). The fact that the ID-AD1 and AD1 samples are identical except that the latter contains more A\beta than the former, is evidence that some form of A\beta is responsible for the block of LTP induced by the AD1 extract. To further test the A\beta dependency of the block of LTP mediated by AD1, we examined whether an extract from a non-AD brain (NC), could impair LTP. As anticipated, the NC extract lacked appreciable levels of A\beta (not shown) and did not impair LTP (Figure 2E and F, 159.54 \pm 10.6 \% in NC, n = 8; 160.36 \pm 6.26 \% in Control, n = 8; F=4.6, p=0.95 One-Way ANOVA).

A\beta-containing AD brain extract affects pre-synaptic release probabilities

Accumulating evidence indicates that soluble A\beta species may interact with excitatory and inhibitory pre-synaptic terminals, modulate neurotransmitter release and cause synaptic dysfunction in the very early stages of AD (Nimmrich et al., 2008; Abramov et al., 2009; Kabogo et al., 2010; Parodi et al., 2010; Russell et al., 2012; Sokolow et al., 2012; Huang et al., 2013; Ripoli et al., 2013; Kurudenkandy et al., 2014). Although the
effects of Aβ on LTP are well established (Klyubin et al., 2012), little is known about whether and how Aβ-containing AD extracts affect pre- and post-synaptic elements. To investigate effects on pre-synaptic release, we measured short-term synaptic facilitation (Zucker and Regehr, 2002) in slices before and 30 minutes after treatment with AD1 extract. As synapse release probability is inversely correlated to synaptic facilitation (Zucker and Regehr, 2002), we employed high-frequency burst stimulation (5 pulses with 20 millisecond intra-burst stimulus interval). Application of AD1 extract induced a reduction in the short-term facilitation during burst stimulation (Figure 3A and B). When responses were normalized based on the ratio of each fEPSP to the first response, we found that treatment with AD1 extract had no effect on the 2nd response, but significantly decreased the 3rd, 4th, and 5th response (magenta circles, \(p=0.02 \) at 3rd stimulation, \(p=0.004 \) at 4th stimulation and \(p=0.004 \) at 5th stimulation, \(n = 6 \), student’s t-test, and also by group and time with Two-way ANOVA, \(F_{(4,7)}=6.39, p=0.006 \) (Figure 3B). In contrast, the slices treated with ID-AD1 yielded a pattern highly similar to that obtained with aCSF-B control (\(n = 7, F=5.32, p=0.91 \), Two-Way ANOVA, Figure 3C and D). Thus, Aβ in the AD extract caused a reduction in short-term synaptic plasticity associated with increased pre-synaptic glutamate release.

Aβ-containing AD brain extract disrupts the excitation-to-inhibition balance

To estimate the effect of Aβ on the total synaptic input at the single-neuron level, we used whole-cell voltage clamp recordings to measure spontaneous excitatory postsynaptic currents (sEPSCs) on CA1 pyramidal neurons before and 30 minutes after
addition of AD extract. The holding potential was kept constant at -70 mV and sEPSCs measured before and 30 minutes after addition of AD1 extract – this 30 minutes interval was chosen to match the pre-incubation time used in our LTP and short-term facilitation experiments. Application of the AD1 extract significantly decreased the inter-event interval ($p=1.65E-6$, K-S test) and increased the mean frequency of sEPSCs (from 1.8 ± 0.2 Hz to 2.7 ± 0.3 Hz, $p=0.02$, $n=7$, student's t-test) (Figure 4A and B), but did not alter the sEPSCs amplitude (mean amplitude from 11.7 ± 1.8 pA to 10.1 ± 1.6 pA, $p=0.65$, $n=7$, student's t-test) (Figure 4A and C). In contrast, the ID-AD1 sample had no effect on the frequency or the amplitude of sEPSCs (mean frequency: from 2.2 ± 0.5 Hz to 2.3 ± 0.7 Hz, mean amplitude: from 9.7 ± 1.7 pA to 10.2 ± 1.4 pA, $p=0.45$, $n=6$, student's t-test) (Figure 4D–F). These results indicate that the AD brain-derived Aβ significantly augments excitatory synaptic input on CA1 pyramidal neurons.

Pyramidal neurons receive both excitatory (sEPSCs) and inhibitory (sIPSCs) inputs, GABAergic axon terminals more easily form synapses with perisomatic regions of pyramidal cells and strongly influence the output of neurons (DeFelipe, 2002; Garcia-Marin et al., 2009). To record sIPSCs on the same neurons, we adjusted the holding potential to 5 mV, a voltage close to the calculated sEPSCs reverse potential. As shown in Figure 4G–I, the AD1 sample significantly increased inter-event intervals ($p=6.19E-6$, K-S test) and decreased the frequency of sIPSCs (from 4.7 ± 0.7 Hz to 3.1 ± 0.7 Hz, $p=0.008$, $n=7$, student's t-test), without altering sIPSCs amplitude (from 14.8 ± 1.4 pA to 14.2 ± 0.9 pA, $p=0.75$, $n=7$, student's t-test). In contrast, the ID-AD1 sample had no effect on sIPSCs (frequency: from 5.3 ± 0.4 Hz to 4.8 ± 0.7 Hz, amplitude: from 13.6 ± 1.6 pA to 13.2 ± 2.1 pA, $p=0.21$, $n=6$, student's t-test) (Figure
These results revealed that brain-derived Aβ significantly reduces GABAergic input on CA1 pyramidal cells.

To assess whether the changes of excitatory input (E) and inhibitory input (I) to the same neuron affect the E/I balance of that neuron, we calculated the integrated conductance of sEPSCs and sIPSCs over a 5 minutes period (Figure 4M). Comparison of the integrated conductance before and 30 minutes after AD1 sample application revealed E was increased ~3 fold and I was decreased ~50%, consequently, the E/I balance was increased ~6 fold ($n = 7$) (Figure 4N). These results show that AD brain-derived Aβ oppositely affects excitatory and inhibitory synaptic transmission, causing an increase in the E/I ratio. These changes, especially the reduction of GABAergic tone on individual neurons, may contribute to neuronal hyperactivity and disturb network homeostasis, thereby perturbing LTP (Wang et al., 2014; Gillespie et al., 2016).

Genetic ablation of APP occludes the effects of Aβ on LTP and pre-synaptic activity and normalizes the E/I balance

Multiple lines of evidence suggest that the APP may play a role in both GABAergic and glutamatergic neurotransmission (Bai et al., 2008; Kabogo et al., 2010; Pliassova et al., 2016; Schwenk et al., 2016) and separate studies impute a link between Aβ and APP (Lorenzo et al., 2000; Fogel et al., 2014; Kirouac et al., 2017). Thus, having found that brain-derived Aβ acts on pre-synapses and modulates both GABA and glutamate transmission, we investigated if APP was required for these effects. For this, we employed mice null for APP (Figure 5A). In agreement with prior reports, brain slices
from APP KO and WT littermate mice exhibited similar levels of basal activity ($p=0.19$, One-Way ANOVA) and LTP (Figure 5B and C) (Dawson et al., 1999; Jedlicka et al., 2012). In both WT and APP KO slices treated with the aCSF-B control, TBS induced strong potentiation which lasted the whole recording period ($158.1 \pm 6.3\%$ in WT, $n=11$, black circles; $151.2 \pm 8.5\%$ in APP KO, $n=9$, gray hexagons; $F=4.4$, $p=0.79$, comparison of the last 10 minutes of recording using One-Way ANOVA) (Figure 5C and D). In agreement with experiments shown in Figure 2, addition of AD1 extract to WT slices significantly decreased LTP compared to addition of aCSF-B ($121.8 \pm 5.4\%$ in WT + AD1, magenta diamonds, $n=7$, $F=4.5$, $p=0.0005$, WT Ctr vs. WT + AD1, One-Way ANOVA). However, application of the same extract to slices from APP KO mice had no effect on LTP, with the level of LTP in APP KOs indistinguishable from that of WT or APP KO treated with aCSF-B ($145.4 \pm 4.2\%$ in APP KO + AD1, pink upward triangles, $F=4.5$, $p=0.41$, APP KO Ctr vs. APP KO + AD1; One-Way ANOVA).

Similarly, when applied to APP KO brain slices, AD1 extract had no effect on short-term facilitation (Figure 5E and F).

To assess the generalizability of the rescue of LTP by APP ablation, we tested the effect of an extract from a second AD brain (AD2) on another APP KO mouse line (Zheng et al., 1995). As with the AD1 extract (Figure 2), the AD2 and ID-AD2 extracts were characterized by IP/WB and ELISA. The profiles obtained for AD2 (Figure 6A) were similar to those of AD1 (Figure 2A), except AD2 contained relatively more ~7 kDa species than AD1 (Figure 6A and B). As seen with the first APP KO line tested (Figure 5), brain slices from the second APP KO line (which we refer to as Zheng APP KOs) (Zheng et al., 1995) exhibited similar levels of basal activity as slices from wild type
mice (F=4.6, p=0.91, One-Way ANOVA) (Figure 6E and F). When AD2 extract was applied to slices from WT mice it blocked LTP in an Aβ-dependent fashion (184.1 ± 7.7 % in WT Ctr, black circles, n = 12; 137.1 ± 7.2 % in WT + AD2, magenta diamonds, n = 12; F=4.96, p=0.0001, One-Way ANOVA), but had no effect on LTP elicited from APP KO mice (175.8 ± 9 % in APP KO Ctr, gray hexagons, n = 11; 169.9 ± 4 % in APP KO + AD2, pink upward triangles, n = 12; F=5.12, p=0.56, One-Way ANOVA) (Figure 7A and B).

To further examine whether the APP-dependent block of LTP by AD brain extracts was indeed mediated by Aβ and not some other AW7-reactive material, we tested if the well-established block of LTP mediated by ADDLs (Lambert et al., 1998; Wang et al., 2002; Lauren et al., 2009; Freir et al., 2011) also required expression of APP. ADDLs were prepared as described previously and then assessed using SEC and EM (Figure 6C and D). The ADDL preparation contained a mixture of Aβ aggregates and a small amount of monomer (Figure 6C and D). When applied to brain slices from WT mice, ADDLs (200 nM) blocked LTP (188.9 ± 11.5 % in WT Ctr, black circles, n = 8; 123.8 ± 6 % in WT + ADDLs, magenta diamonds, n = 6; F=4.75, p=0.0007, One-Way ANOVA), but had no effect on LTP elicited from APP KO slices (181.5 ± 15 % in APP KO Ctr, gray hexagons, n = 7; 168.1 ± 10 % in APP KO + ADDLs, pink upward triangles, n = 7; F=4.85, p=0.07, One-Way ANOVA) (Figure 7C and D). Thus, it appears that the well-documented plasticity-disrupting activity of both Aβ extracted from AD brains (Klyubin et al., 2008; Shankar et al., 2008; Barry et al., 2011; Freir et al., 2011; Klyubin et al., 2012)
and synthetic Aβ (Lambert et al., 1998; Wang et al., 2002; Lauren et al., 2009; Freir et al., 2011) require expression of APP.

To investigate whether APP is necessary for the effect of Aβ on the E/I balance (Figure 3), we studied the effects of Aβ on sEPSCs and sIPSCs in brains of Zheng APP KO and WT littermate mice (Figure 8). When applied to WT slices, AD1 extract again increased mean sEPSC frequency (from 2.2 ± 0.1 Hz to 3.4 ± 0.2 Hz, \(p=0.003 \), \(n = 5 \), student’s \(t \)-test) and decreased inter-event intervals (\(p=6.34E-15 \), K-S test), without altering the amplitude of sEPSCs (mean amplitude: 17.8 ± 0.4 pA vs. 18 ± 1.5 pA, \(p=0.32 \), \(n = 5 \), student’s \(t \)-test) (Figure 8A-C); and on the same neuron decreased mean sIPSCs frequency (from 4.2 ± 0.8 Hz to 2.7 ± 0.4 Hz, \(p=0.006 \), \(n = 5 \), student’s \(t \)-test) and increased inter-event intervals (\(p=9.44E-20 \), K-S test), but not amplitude (mean amplitude from 20 ± 3 pA to 19.3 ± 1.3 pA, \(p=0.34 \), \(n = 5 \), student’s \(t \)-test) (Figure 8D-F).

These results, which were obtained with WT mice from an entirely different colony as those used in Figure 2, nicely demonstrate the robustness of the Aβ effect (See Figure 4 vs. Figure 8). Most importantly, when AD1 extract was applied to Zheng APP KO slices there was no change in the frequency or amplitude of sEPSCs (mean frequency: from 2.6 ± 0.1 Hz to 2.7 ± 0.4 Hz, mean amplitude: from 15 ± 1.4 pA to 14.6 ± 0.5 pA, \(p=0.14 \), K-S test; \(p=0.26 \), \(n = 6 \), student’s \(t \)-test) (Figure 8G-I). Similarly, sIPSCs were also unchanged (mean frequency: from 3.5 ± 0.5 Hz to 3.5 ± 0.3 Hz, mean amplitude: from 16.7 ± 1 pA to 16.4 ± 1.6 pA, \(p=0.58 \), K-S test; \(p=0.25 \), \(n = 6 \), student’s \(t \)-test) (Figure 8J-L). Thus, as with our LTP experiments (Figures 5 and 7), ablation of APP completely rescued the effects of Aβ on excitatory and inhibitory input on CA1 pyramidal neurons. Further, since APP KO occluded Aβ alterations on the E and I input at...
individual neurons, it also prevented Aβ-mediated changes in the integrated conductance of sEPSCs and sIPSCs (Figure 8M). When AD1 extract was applied to WT slices, E increased ~3-fold and I decreased ~44%, resulting in ~5.8-fold increase in the E/I ratio. However, APP KO significantly prevented those E/I ratio changes ($p=0.001$, E/I in WT vs. E/I in APP KO, One-Way ANOVA) (Figure 8M). These results indicate that APP plays an important role in regulating the acute effects of Aβ on excitatory and inhibitory pre-synaptic release, and consequent maintenance of network homeostasis.

Aβ binding to synapses requires APP

To further investigate the targeting of synaptic elements by Aβ and how this might be influenced by APP we used a powerful high-resolution microscopic technique, array tomography (AT), to search for evidence of Aβ binding to synapses in the same brain slices used in our electrophysiology experiments. Upon completion of LTP recording, certain slices from the treatment groups used in Figures 2C and 5C were immediately fixed, processed and used for AT. Sections were stained with 1C22 – the same aggregate-preferring antibody (Mably et al., 2015; Pickett et al., 2016) used in our oAssay, anti-synapsin-1 (for pre-synapses) and anti-PSD95 (for post-synapses). Approximately 7,000 synapses (~3,500 pre-synapses and ~3,500 post-synapses) per slice were analyzed for a total of 100,359 pre-synapses and 99,075 post-synapses. AT revealed, significant anti-Aβ staining at synapse of slices incubated with AD1 extract, with only background staining in samples incubated with aCSF controls and ID-AD1
(Figure 9A-C; Kruskal Wallis test for synapsin-1 ($\chi^2_{(4)}=10.844$, $p=0.028$), Kruskal Wallis test for PSD95 ($\chi^2_{(4)}=11.583$, $p=0.021$)). In slices incubated with AD1 extract 1.27 ± 0.47% of pre-synapses and 0.58 ± 0.19% of post-synapses stained with 1C22, whereas in slices that had been incubated with aCSF, only 0.0076 ± 0.013% of pre-synapses and 0.0184 ± 0.087% of post-synapses were 1C22 positive (Dunns post-hoc between AD and control for pre-synapses $p=0.024$ and for post-synapses $p=0.010$). Slices incubated with extracts immunodepleted of Aβ exhibited similar background staining with 1C22 as the aCSF control (Figure 9A-C). Thus, the same treatment with AD1 extract that disrupts synaptic plasticity in an Aβ-dependent fashion (Figures 2 and 4) also leads to Aβ binding to synapses (Figure 9A-C). Moreover, the finding that Aβ is present at more pre-synapses than post-synapses (Mann-Whitney U between AD pre-synapses and AD post-synapses $U=0$, $p=0.004$) is consistent with our results that suggest a pre-synaptic effect of Aβ (Figures 4 and 8), and with preliminary experiments using an antibody to another pre-synaptic marker, synaptophysin.

The number of Aβ positive synapses detected here is much lower than the amount of Aβ observed at synapses when synthetic oligomers are applied to cultured hippocampal neurons (Lacor et al., 2004; Lacor et al., 2007). However, the current paradigm, of applying soluble AD brain extract to intact mouse brain slices is more relevant to the in vivo situation than model systems in which Aβ is applied directly and at high concentrations to dissociated neurons (Lacor et al., 2004; Lacor et al., 2007). Indeed, it is noteworthy that the percentage of synapses positive for Aβ in the current study are consistent with our findings in APP transgenic mouse brain where we observed approximately 1% of postsynaptic densities (PSDs) positive for Aβ distant from plaques.
Similarly, in human AD brain at sites distant from plaques, we detected Aβ at 0.6% of PSDs and 0.5% of pre-synaptic terminals (Koffie et al., 2012). Thus, at disease relevant concentrations sufficient to disrupt plasticity, synaptic Aβ binding occurs at levels similar to that observed in human AD brain.

Importantly, when brain slices from APP KO mice were incubated with AD1 extract, little or no synaptic 1C22 staining was detected (Figure 9A-C). These results are notable since expression of APP was found to be required for Aβ-mediated disruption of both long-term plasticity (Figures 5 and 7) and neurotransmitter release (Figure 8). In sum, our AT data are completely congruent with the results of our electrophysiological experiments and indicate that expression of APP is required for the binding and subsequent plasticity-disrupting effects of Aβ, and that these effects are largely mediated on the pre-synapse.

APP mediates binding of synaptotoxic Aβ to brain cells

We reasoned that if synaptotoxic forms of Aβ bound to APP or to an APP containing complex then it should be possible to pre-treat bioactive extracts with a source of APP to deplete the extract of activity. One possible approach would be to add exogenous recombinant APP, but APP is a transmembrane protein and its expression outside of a membrane environment in the absence of proper post-translational modifications precludes its use. Instead, we pre-incubated AD2 extract with either APP-containing (WT) or APP lacking (KO) brain slices (Figure 10A). When AD2 was pre-incubated with
WT brain slices and then applied to a fresh WT brain slice it was no longer capable of blocking LTP (216.4 ± 26 % in WT slices + AD2, green upward triangles, \(n = 6 \); \(F=4.96, p=0.82 \), One-Way ANOVA) (Figure 10B and C). In contrast, when AD2 extract was pre-incubated with APP KO slices and then applied to a fresh WT brain slice, the AD2 extract retained its ability to block LTP (210.3 ± 15 % in WT Ctr, black circles, \(n = 6 \); 146.8 ± 5.4 % in APP KO +AD2, magenta diamonds, \(n = 6 \); \(F=4.96, p=0.003 \), One-Way ANOVA, Figure 10B and C). These results are entirely consistent with our array tomography experiments and provide further evidence that APP enables synaptotoxic forms of Aβ to bind to and perturb neurons.

Aβ-containing AD brain extract partially blocks LTP in APP hemizygous brain slices

To further investigate the requirement of APP for Aβ synaptotoxicity, we tested the effect of AD2 extract on brain slices from APP hemizygous mice. APP expressing wild type C57BL/6 were bred with Zheng APP KO mice and the hemizygous progeny used for LTP experiments. Hemizygous mice express 50% as much APP as WT mice (Figure 11A) and exhibit similar levels of basal activity relative to slices from wild type mice (\(F=4.6, p=0.75 \), One-Way ANOVA) (Figure 11B). The control level of LTP was also similar in WT and hemizygous brain slices (187.85 ± 5.63 % in WT Ctr, black circles, \(n = 9 \); 189.69 ± 7.19 % in hemizygous brain slices, gray hexagons, \(n = 9 \); \(F=4.45, p=0.84 \), One-Way ANOVA) (Figure 11C and D). When AD2 extract was applied to slices from WT mice it blocked LTP to an extent comparable to that seen in
previous experiments (compare Figure 11C and D versus Figure 7A and B) (187.85 ± 5.63 % in WT Ctr, black circles, n = 9; 136.93 ± 3.14 % in WT + AD2, magenta diamonds, n = 10; F=4.5, p=2.67E-007, One-Way ANOVA). Similarly, AD2 extract impaired LTP in APP hemizygous mice (189.69 ± 7.19 % in APP +/- Ctr, gray hexagons, n = 9; 154.83 ± 6 % in APP +/- AD2, pink upward triangles, n = 10; F=4.49, p=0.003, One-Way ANOVA) (Figure 11C and D). Although the extent of the block in hemizygous slices was somewhat reduced compared WT slices (F=4.45, p=0.84, Control in WT mice vs. Control in APP +/- mice; F=4.5, p=2.67E-007, Control vs. AD2 in WT mice; F=4.49, p=0.003, Control vs. AD2 in WT mice; One-Way ANOVA), the effect of AD2 extract on hemizygous brain slices stands in contrast to its lack of effect on APP KO slices (Figure 7A and B). The partial attenuation of Aβ synaptotoxicity in APP hemizygous brain indicates a gene-dose effect, such that 50% of the normal level of APP is sufficient to mediate some block of LTP, but not the full block of LTP seen in APP WT mice. Further studies will be required to determine the minimal reduction in APP levels that allows full protection against the plasticity disrupting effects of Aβ.
To better understand how Aβ disrupts synaptic plasticity we combined the use of the most disease relevant form of Aβ, material extracted from human AD brain, with electrophysiological approaches and high-resolution microscopy. Consistent with prior studies, we show that extracts from the brains of individuals who died with AD block LTP (Shankar et al., 2008; Barry et al., 2011; Freir et al., 2011; Yang et al., 2017). We further show that, concomitant with the block of LTP, there is an increase in pre-synaptic release and disruption of E/I balance. In accord with these synaptic effects of Aβ, we demonstrate that exogenously applied AD brain-derived Aβ binds to synapses, with more Aβ oligomers detected on pre-synapses than on the post-synapses. Our finding that treatment with brain-derived Aβ enhances excitatory drive agrees well with studies showing that aggregated forms of synthetic Aβ increase EPSPs, action potentials, and membrane depolarizations (Hartley et al., 1999; Minkeviciene et al., 2009; Kurudenkandy et al., 2014). Our study is unique in that we employed brain-derived Aβ, and that the concentration of this material was much lower than the synthetic Aβ used in prior studies. In support of the strength of this experimental paradigm, the levels of synaptic Aβ we observe in this study are very similar to those observed with array tomography in our studies of human AD brain (Koffie et al., 2012). The apparent paradox that ectopic application of Aβ causes a net increase in excitation, yet impairs LTP may result because of glutamate spillover and activation of extra- or perisynaptic NR2B-enriched NMDARs, which play a major role in LTD induction (Li et al., 2011; Zhang et al., 2016). In such a scenario, synaptic depression may result from an initial increase in synaptic activation of NMDARs by glutamate, followed by synaptic
NMDAR desensitization, NMDAR/AMPAR internalization, and activation of extrasynaptic NMDARs and mGluRs (Born et al., 2014). However, it is unclear why ablation of APP could recover such effects.

An alternative explanation that accounts for a role for APP in the impairment of postsynaptic efficacy is that exogenous AD brain-derived soluble aggregates and endogenously produced monomer have differential effects. Aβ is known to be released in an activity-dependent manner (Kamenetz et al., 2003; Cirrito et al., 2005), whereas elevated Aβ levels result in depressed glutamatergic synaptic transmission and glutamate receptor endocytosis (Kamenetz et al., 2003; Hsieh et al., 2006). Thus, it is plausible that the increase in glutamate release induced by soluble Aβ aggregates may also lead to an increase in de novo Aβ monomer production and this in turn may depress post-synaptic activity. Such a scenario would necessarily require expression of endogenous APP and explain why ablation of APP can obviate the block of LTP caused by brain-derived soluble Aβ aggregates. The fact that Aβ treated APP hemizygous slices exhibited an attenuated block is consistent with a partial reduction in the amount of endogenous Aβ. With regard to the protection of LTP upon ablation of APP, it is important to emphasize the robust nature and generalizability of this phenomenon. We observed the same protection using two different APP KO mouse lines (Zheng et al., 1995; Callahan et al., 2017), extracts from 2 different AD brains, and synthetic Aβ oligomers. Both AD extracts blocked LTP in an Aβ-dependent manner when applied to wild type mouse brain slices, but the same AD extracts had no effect on LTP elicited from APP KO slices. Moreover, the extent of Aβ binding to synapses was similar in two
different sources of wild type mice (Figure 7B and C), and the pattern observed was reminiscent of that seen in AD brain (Pickett et al., 2016).

There is evidence that APP can act as a receptor for Aβ (Melchor and Van Nostrand, 2000; Van Nostrand et al., 2002; Yankner and Lu, 2009; Fogel et al., 2014; Kirouac et al., 2017) and that APP may mediate increased excitatory drive (Fogel et al., 2014). Specifically, Aβ was unable to promote aberrant neurotransmitter release in the absence of APP (Fogel et al., 2014). Our findings that binding of soluble Aβ aggregates to synapses requires expression of APP and that synaptotoxic Aβ can be bound by APP expressing, but not APP lacking brain tissue, are consistent, but not proof, that APP may act as a receptor for Aβ. In this regard, it is worth noting that APP is known to both regulate L-type calcium channels in GABAergic neurons, interact with the pore-forming subunit Cav1.2 (Yang et al., 2009), and is a member of the GABAER receptor complex (Schwenk et al., 2016). In addition, there is evidence from proteomic studies indicating that APP interacts with more than 30 different proteins including proteins key to synaptic vesicle turnover (Kohli et al., 2012; Del Prete et al., 2014; Lassek et al., 2014; Wilhelm et al., 2014), and proteins (such as the prion protein) implicated in binding Aβ (Bai et al., 2008; Lauren et al., 2009). Thus, Aβ could exert an APP-dependent effect either by directly binding to APP or binding to protein complexes of which APP is a component and stabilizing member. The APP gene-dose dependent response to Aβ that we observed is equally compatible with direct or indirect binding to APP.

So far we have considered the effects of Aβ on synapses and a single hippocampal pathway (the Schaffer Collateral), but Aβ is also thought to have network-wide effects (Palop and Mucke, 2010). For instance, Aβ-induced increases in excitatory network
activity could lead to synaptic depression through homeostatic mechanisms. It is well
established that acute treatment of primary neurons with bicuculline (a GABA_A
antagonist) increases overall neuronal activity and firing rates (Vertkin et al., 2015).
However, after a few days, neuronal activity returns to control levels. By analogy, it is
reasonable that the disruption of E/I balance seen with our acute Aβ treatment may also
cause both short-term local and long-lasting network effects. Given the fact that Aβ
treatment increases excitatory drive and decreases inhibitory drive, and that GABA-
ergic interneurons express high levels of APP in DG (Wang et al., 2014; Del Turco et al.,
2016) it is tempting to speculate that Aβ-mediated disruption of GABA-ergic
interneurons may play a critical role in the cognitive impairment that occurs early in AD
(Gillespie et al., 2016). Clearly, further studies will be required to delineate the influence
of APP on both network regulation and other forms of synaptic plasticity, such as LTD.
Considerable data from the study of APP transgenics implicate impairment of
GABAergic interneurons as central to the network disturbances evident in these models
(Busche and Konnerth, 2015; Palop and Mucke, 2016). However, the unphysiological
expression of high levels of APP and the concomitant release of Aβ from the expressed
transgene make it difficult to differentiate between effects mediated by Aβ versus APP,
or non-Aβ APP metabolites (Melnikova et al., 2013; Born et al., 2014; Fowler et al.,
2014). Nonetheless, growing evidence suggests that GABAergic interneurons play a
prominent role in homeostatic regulation of hippocampal networks, and there is
compelling proteomic and physiological data that link APP and GABA_B1a-R (Wang et al.,
2014; Gillespie et al., 2016; Schwenk et al., 2016). Consequently, further investigations
on how Aβ effects GABA_B-R expression, GABA_B-R-APP interactions and whether
GABA$_B$-R KOs are resistant to Aβ are merited and may lead to a pharmacological means to attenuate Aβ synaptotoxicity. Similarly, modulation of APP expression may also offer therapeutic potential. However, while our results demonstrate that ablation of APP in brain slices from young (2-3 months) mice protects against the acute synaptotoxicity of Aβ, widespread knock-out of APP is not recommended. APP appears to be involved in many physiological processes (Yang et al., 2009; Muller and Zheng, 2012; Del Prete et al., 2014; Lassek et al., 2014; Wang et al., 2014) and aged APP null mice exhibit hypersensitivity to kainate-induced seizures (Steinbach et al., 1998), altered exploratory behavior, deficits in spatial memory, and impairment of LTP (Dawson et al., 1999; Seabrook et al., 1999; Ring et al., 2007). No such deficits have been reported in APP hemizygous mice. Thus, it may be possible to down regulate APP expression so as to maintain normal function, yet attenuate Aβ synaptotoxicity. However, hemizygous reduction of APP allows only partial protection against the plasticity disrupting effects of Aβ, and further studies will be required to determine the minimal reduction in APP levels that allows a more fulsome protection.
Figure Legends

Figure 1. Processing of array tomography images.

Fields of 10 μm by 10 μm are cropped from an image stack, these are then made into binary stacks in image J and processed in MATLAB to remove objects not found in serial slices. Scale bar is 2 μm.
Figure 2. The water-soluble extract of AD brain, but not normal control, contains both Aβ monomers and oligomers and perturbs long-term synaptic plasticity.

(A) Aqueous extract of AD1 was treated with either pre-immune rabbit serum or with AW7 antiserum. Portions of the mock immunodepleted sample (AD1, magenta) and the AW7 immunodepleted sample (ID-AD1, green) were then analyzed by IP/WB, using AW7 for IP and a combination of 2G3 and 21F12 (left panel), or 6E10 (right panel) for WB. M denotes Aβ monomer and • indicates a broad smear ~7–8 kDa. Synthetic Aβ1-42, -31Aβ40 and Aη–α each at 2 ng/lane were used as controls. As expected 6E10 detected all 3 synthetic peptides, whereas 2G3/21F12 detected Aβ1-42, -31Aβ40 but not Aη–α. Only non-specific (NS) bands were detected above 16kDa marker. (B) AD1 (magenta) and ID-AD1 (green) samples were incubated +/- 5 M GuHCl and analyzed using immunoassays that preferentially recognize Aβ oligomers (1C22-3D6b, left panel) or Aβ42 monomer (266-21F12b, right panel). Values shown are the mean ± SEM of duplicate measurements and are representative of 2 separate experiments. (C) Time course plots show that the AD sample but not the ID-AD sample blocked hippocampal LTP. The gray horizontal bar indicates the time period when sample was present in the bath. 1, 2, indicate example traces from time points just prior to the theta burst stimulation (↑↑↑TBS) (1) and 60 minutes after TBS (2), respectively. The aCSF control is shown in black circles; AD treatment is shown in magenta diamonds and ID-AD with green downward triangles. Each slice used for each treatment was from a different animal. Scale bar 0.2 mV, 10 milliseconds. (D) Histogram plots of the average
potentiation for the last 10 minutes of traces shown in C. Treatment of slices with AD1 sample significantly inhibited LTP compared to the aCSF vehicle control (F=4.26, p=6.98E-9) and ID-AD1 treatment (F=4.14, p=3.56E-12); in contrast ID-AD1 had no effect on LTP relative to the vehicle control (F=4.23, p=0.12, One-Way ANOVA). Symbols are the same as in panel C. (E) Time course plots show that the brain extract from a cognitively intact non-AD control (NC) did not blocked hippocampal LTP. The gray horizontal bar indicates the time period when sample was present in the bath. 1, 2, indicate example traces from time points just prior to the theta burst stimulation (↑↑↑TBS) (1) and 60 minutes after TBS (2), respectively. The aCSF control is shown in black circles; NC treatment is shown in gray hexagons. Each slice used for each treatment was from a different animal. Scale bar 0.5 mV, 10 milliseconds. (F) Histogram plots of the average potentiation for the last 10 minutes of traces shown in E and average of last 10 minutes from individual experiment in every group. Treatment of slices with NC sample did not inhibited LTP compared to the aCSF vehicle control (F=4.6, p=0.95, One-Way ANOVA). Symbols are the same as in panel E. Values shown are the mean ± SEM. ### p<0.001
Figure 3. The Aβ-containing water-soluble extract of AD1 perturbs short-term facilitation.

(A) Representative traces of averaged field recordings were collected after 5 stimulation bursts (inter-stimulation interval 20 milliseconds, inter-burst interval 30 seconds) before (black, aCSF) and 30 minutes after perfusion with the AD1 sample (magenta). The trace shown for the AD1 samples are scaled so that the first response matches that of the aCSF control. Scale bars: 0.5 mV, 10 milliseconds. (B) fEPSPs amplitude after 2 to 5 stimulations were normalized to the value obtained after the first stimulation. Compared to vehicle control, AD1 treatment induced a small but significant decrease in short-term synaptic facilitation, \(p=0.02 \) after the 3\(^{rd} \), \(p=0.004 \) the 4\(^{th} \) stimulation and 5\(^{th} \) stimulation \(p=0.004 \); \(n=6 \), student’s \(t \)-test. Values shown are the mean ± SEM. \# \(p<0.05 \); ## \(p<0.01 \). (C) Representative traces of averaged field recordings were collected after 5 stimulation bursts (inter-stimulation interval 20 milliseconds, inter-burst interval 30 seconds) before (black, aCSF) and 30 minutes after perfusion with the ID-AD1 sample (green). Scale bars: 0.4 mV, 10 milliseconds. ID-AD1 treatment did not affect short-term synaptic facilitation \(n=5, F=5.32, p=0.91, \) One-Way ANOVA.)
Figure 4. AD brain-derived Aβ affects both excitatory and inhibitory synaptic inputs, causing disruption of the excitatory/inhibitory ratio at individual CA1 neurons.

(A, D) Example traces of spontaneous excitatory post-synaptic currents (sEPSCs) before (aCSF, black) and 30 minutes after addition of sample (AD1, magenta; ID-AD1, green) recorded from individual pyramidal neurons in the hippocampal CA1 area of brain slices with the holding potential fixed at -70 mV. Scale bars: 20 pA, 700 millisecond. (B) 30 minutes of AD1 treatment decreased cumulative distributions of inter-event intervals and increased mean frequency (insert) (p=1.65E-6, K-S test; p<0.02, student’s t-test; n = 7), but (C) did not change the cumulative distributions or the mean value (insert) of the amplitude of sEPSCs (n = 7). (E, F) The ID-AD1 sample had no effect on either frequency or amplitude of sEPSCs (n = 6). (G, J) Example traces of spontaneous inhibitory post-synaptic currents (sIPSCs) before (aCSF, black) and 30 minutes after treatment (AD1, magenta; ID-AD1, green) were recorded on the same individual pyramidal neurons upon increasing the holding potential to 5 mV. Scale bars: 20 pA, 700 milliseconds. (H) 30 minutes of treatment with the AD1 sample increased inter-event intervals and decreased mean frequency (insert) of sIPSCs (magenta) versus aCSF (black) (p=6.19E-6, K-S test; p=0.008, student’s t-test; n = 7). (I) Treatment with the AD1 sample did not affect the amplitude of sIPSCs (n = 7) and the ID-AD1 sample had no effect on frequency (K) or the amplitude (L) of sIPSCs versus aCSF control (n = 7). (M) Representative traces of sIPSCs and sEPSCs from the same pyramidal neuron show charge transfer measured as the area of events above threshold in the aCSF control. Scale bars: 10 pA, 200 milliseconds. (N) Integrated
conductances measured between 30 - 35 minutes after addition of AD1 application were normalized to the value of 5 minutes before addition of AD1. Mean excitatory integrated conductance increased and mean inhibitory integrated conductance decreased upon treatment of AD1 (E: excitatory input/sEPSCs; I: inhibitory input/sIPSCs). Each slice used for each treatment was from a different animal. # $p< 0.05$, ## $p< 0.01$.
Figure 5. Expression of APP is required for the plasticity-disrupting activity of Aβ-containing AD brain extract.

(A) Detergent extracts of mouse brain slices used for electrophysiology were analyzed for APP by Western blotting with 22C11. Full-length APP was readily detected in extracts from wild type littermate mice (WT) but not APP knockout mice (APP KO). Slices from 2 APP KO mice (KO1 and KO2) and 2 WT mice (WT1 and WT2) are shown. (B) Input/output curves recorded in the hippocampal CA1 area are highly similar for both WT and APP KO mouse brain slices (p=0.19, One-Way ANOVA). Values are mean ± SEM. (C) LTP recorded in hippocampal CA1 was similar in brain slices from WT and APP KO mice (WT Ctr, black circles vs. APP KO Ctr, gray hexagons, p=0.79, comparison of the last 10 minutes recording using One-Way ANOVA). However, the extract from AD1 brain blocked LTP in WT but not in APP KO mice brain slices. Horizontal gray bar indicates the duration in which sample was present. 1 and 2 indicate example traces from time points just prior to the theta burst stimulation (↑↑↑TBS) (1) and 60 minutes after TBS (2), respectively. The aCSF control in WT mice is shown with black circles; AD1 treatment in WT mice is shown in magenta diamonds; the aCSF control in APP KO mice is shown in gray hexagons and AD1 treatment in APP KO mice is shown using pink upward triangles. WT slices for each treatment came from different animals; the APP KO slices came from a total of 4 APP KO mice. Scale bars: 0.5 mV, 15 milliseconds. (D) Comparison of average potentiation from last 10 minutes of LTP recording (F=4.5, p=0.0005, Control vs. AD1 in WT mice; F=4.5, p=0.41, Control vs. AD1 in APP KO mice; One-Way ANOVA). Symbols correspond to those in panel C. (E) Representative traces of averaged field recordings were collected after 5 stimulation
bursts (inter-stimulation interval 20 millisecond, inter-burst interval 30 seconds) before (gray, aCSF) and 30 minutes after perfusion with the AD1 sample (pink) on brain slices from APP KO mouse. Scale bars: 0.5 mV, 10 millisecond. (F) fEPSPs amplitude after 2 to 5 stimulations were normalized to the value obtained after the first stimulation. There is no significant difference between aCSF control and the presence of AD1 brain extract application ($n=5$, $F=5.32$, $p=0.7$, One-Way ANOVA). Values are mean ± SEM. Each slice used for each treatment was from a different animal. ### $p<0.001$.
Figure 6. Characterization of the aqueous extract from AD2 brain, synthetic Aβ oligomers, and second APP KO mouse line. (A) Aqueous extract of AD2 was treated with either pre-immune serum or with AW7 antiserum. Portions of the mock immunodepleted sample (AD2, magenta) and the AW7 immunodepleted sample (ID-AD2, green) were then analyzed by IP/WB, using AW7 for IP and a combination of 2G3 and 21F12 (left panel), or 6E10 (right panel) for WB. As expected, recombinant Aη–α was detected by 6E10, but not 2G3/21F12. M denotes Aβ monomer and * indicates a broad smear ~7–8 kDa. Only non-specific (NS) bands were detected above 16 kDa marker. (B) AD2 (magenta) and ID-AD2 (green) samples were incubated +/- 5 M GuHCl and analyzed using an immunoassay that preferentially recognizes Aβ42 monomer (266-21F12b). AW7 ID reduced monomer from 6.65 ± 0.01 ng/ml to undetectable level without GuHCl treatment. Upon treatment with GuHCl, the amount of Aβ42 increased to 46.94 ± 0.2 ng/ml in AD2 and this was reduced to 8.62 ± 0.1 ng/ml by immunodepletion. (C) Size-exclusion chromatography of ADDLs revealed a prominent high molecular weight peak, a trail of intermediate molecular weight species and a small Aβ monomer peak. (D) Negative contrast electron micrograph shows mostly protofibril-like structures. Scale bar is 50 nm. (E) Brain slices from wild type (WT) and a second line of APP knock-outs (KO) were analyzed for APP by Western blotting with 22C11. Full-length APP was readily detected in extracts from WT but not APP KO. Slices from 2 KO (KO1 and KO2) and 2 WT (WT1 and WT2) mice are shown. (F) Input/output curves recorded in the hippocampal CA1 area are highly similar for WT and APP KO mouse brain slices (F=4.6, p=0.91, One-Way ANOVA). Values are mean ± SEM. Each slice used for each treatment was from a different animal.
Figure 7. A second APP KO mouse line confirms that APP is required for the synaptic-disrupting activity of both AD brain and synthetic Aβ oligomers. (A) LTP recorded in hippocampal CA1 was similar in brain slices from WT and Zheng APP KO mice. Notably, the extract from AD2 blocked LTP in brain slices from WT but not APP KO mice. Horizontal gray bar indicates the duration during when sample was present. 1 and 2 indicate example traces from time points just prior to the theta burst stimulation (↑↑↑TBS) (1) and 60 minutes after TBS (2), respectively. The aCSF control in WT mice is shown with black circles; AD2 treatment in WT mice is shown in magenta diamonds; ID-AD2 treatment in WT slices in green downward triangles. The aCSF control in APP KO mice is shown in gray hexagons and AD2 treatment in APP KO mice is shown using pink upward triangles. WT slices for each treatment came from different animals; the APP KO slices came from a total of 6 APP KO mice. Scale bars: 0.5 mV, 15 millisecond. (B) Comparison of average potentiation from last 10 minutes of LTP recording (F=4.96, p=0.0001, Control vs. AD2 in WT mice; F=5.12, p=0.56, Control vs. AD2 in APP KO mice; One-Way ANOVA). Symbols correspond to those in panel A. (C) ADDLs blocked LTP in WT, but not in APP KO, brain slices. Horizontal gray bar indicates the duration during when sample was present. 1 and 2 indicate example traces from time points just prior to the theta burst stimulation (↑↑↑TBS) (1) and 60 minutes after TBS (2), respectively. The aCSF WT slices control is shown with black circles; WT slices treated with ADDLs is in magenta diamonds; and vehicle in green downward triangles. The aCSF control in APP KO mice is shown in gray hexagons and ADDLs treatment in APP KO mice is shown using pink upward triangles. WT slices for
each treatment came from different animals; the APP KO slices came from a total of 6
APP KO mice. Scale bars: 0.7 mV, 15 millisecond. **(D)** Comparison of average
potentiation from last 10 minutes of LTP recording (*F*=4.75, *p*=0.0006, Control vs.
ADDLs in WT mice; *F*=4.75, *p*=0.93, Control vs. vehicle in WT mice; *F*=4.84, *p*=0.07,
Control vs. ADDLs in APP KO mice; One-Way ANOVA). Symbols correspond to those
in panel C. Each slice used for each treatment was from a different animal. ### *p*<
0.001.
Figure 8. APP knock out occludes the effects of Aβ-containing AD brain extract on both excitatory and inhibitory post-synaptic currents and rescues the disruption of E/I balance.

(A, D) Example traces of sEPSCs (A) and sIPSCs (D) before (aCSF, black) and 30 minutes after addition of AD1 extract (magenta) on WT hippocampal brain slices. Scale bars: 20 pA, 700 millisecond. (B) Treatment with AD1 extract decreased inter-event intervals and increased mean frequency (insert) of sEPSCs ($p=6.34E-15$, K-S test; $p=0.003$, student’s t-test; $n=5$), but (C) did not significantly change the cumulative distributions or the mean value (insert) of the amplitude of sEPSCs ($n=5$) on WT slices.

(E) 30 minutes of AD1 treatment increased inter-event intervals and decreased mean frequency (insert) of sIPSCs ($p=9.44E-20$, K-S test; $p=0.006$, student’s t-test; $n=5$), but (F) did not affect the cumulative distributions or the mean value (insert) of the amplitude of sIPSCs ($n=5$) on WT slices.

(G, J) Example traces of spontaneous post-synaptic currents (sEPSCs, G; sIPSCs, J) before (aCSF, gray) and 30-40 minutes following addition of AD1 extract (pink) on APP KO mice hippocampal brain slices. Scale bars: 20 pA, 700 millisecond. (H) Treatment with AD1 sample affected neither frequency nor amplitude (I) of sEPSCs ($p=0.14$, K-S test; $p=0.26$, student’s t-test; $n=6$) on APP KO mice. Similarly, treatment of APP KO neurons with AD1 did not change frequency (K) or the amplitude (L, $p=0.58$, K-S test; $p=0.25$ student’s t-test; $n=6$) of sIPSCs.

(M) Application of Aβ-containing AD brain extract significantly changed the integrated conductance of both excitatory (E) and inhibitory (I) input to neurons and disrupted the E/I balance in WT animals, but not in APP KO mice ($p=0.001$, E/I in WT vs. E/I in APP KO, One-Way ANOVA).
Figure 9: Aβ binding to synaptic terminals requires expression of APP.

(A) Array tomography of hippocampi stained for synapsin-1 (pre-synapses), Aβ (1C22), and PSD95 (post-synapses) reveal co-localization of Aβ at synapses in slices incubated with AD1 brain extract. Images have been processed for analysis as described in the methods and Figure 1. (B and C) The amount of synaptic 1C22 staining was significantly greater in slices incubated with AD1 extract than in slices incubated with aCSF or ID-AD1 extract based on (B) co-localization of 1C22 and synapsin 1 staining (Kruskal Wallis test \(\chi^2(4)=10.844, p=0.028 \) Dunns post-hoc vs. control \(p=0.021 \)), and (C) 1C22 and PSD95 co-localization (Kruskal Wallis test for PSD95 \(\chi^2(4)=11.583, p=0.021 \); Dunns post-hoc vs. control, \(p=0.01 \)). Importantly, when slices from APP KO mice were incubated with AD1 extract there was no significant co-localization of 1C22 staining with either synapsin 1 (B) (Dunns post-hoc vs. control, \(p=1.000 \)) or PSD-95 (C) (Dunns post-hoc vs. control, \(p=1.000 \)). Graphs represent the medians ± the interquartile range per treatment. Each data point is derived from the analysis of ~3,500 synapses imaged per brain slice. Within each treatment group the 3 slices used were from 3 different mice (B and C). Arrows indicate specific examples of 1C22 staining co-localizing with pre- or post-synapses. Scale bar is 2 \(\mu \)m in (A). # \(p<0.05 \).
Figure 10. APP expressing, but not APP lacking, brain slices bind synaptotoxic Aβ.

(A) AD2 brain extract was pre-incubated with either 4 WT or 4 APP KO brain slices for 2 hours and the resultant solutions were used to perfuse WT brain slices. (B) Time course plots of LTP recorded in WT brain hippocampal CA1 show that AD2 brain extract pre-incubated with APP KO brains slices blocked LTP, whereas AD2 pre-incubated with WT brain slices allow normal LTP. Horizontal gray bar indicates the duration during when sample was present. 1 and 2 indicate example traces from time points just prior to the theta burst stimulation (↑↑↑ TBS) (1) and 60 minutes after TBS (2), respectively. The aCSF control in WT mice is shown with black circles; AD2 incubated with APP KO brain slices in WT mice is shown in magenta diamonds; AD2 pre-incubated with WT brain slices is in green downward triangles. Scale bars: 0.5 mV, 15 millisecond. (C) Comparison of average potentiation from last 10 minutes of LTP recording (F=4.96, p=0.003, Control vs. APP KO slices with AD2; F=4.96, p=0.82, Control vs. WT slices with AD2; One-Way ANOVA). Symbols correspond to those in panel B. Each slice used for recording for each treatment was from a different animal. ## p<0.005.
Figure 11. The level of APP expression influences the plasticity-disrupting activity of Aβ-containing AD brain extract.

(A) Detergent extracts of from WT, APP +/- and APP -/- mouse brain slices used for electrophysiology were analyzed for APP by Western blotting with 22C11. Full-length APP was readily detected in extracts from wild type mice (WT) and APP +/- mice, but not APP -/- mice. Ten μg total protein from APP +/- slices contained a similar amount of APP as 5 μg total protein from WT slices. (B) Input/output curves recorded in the hippocampal CA1 area are highly similar for both WT and APP +/- mouse brain slices (F=4.6, p=0.75, One-Way ANOVA). (C) LTP recorded in hippocampal CA1 was similar in brain slices from WT and APP +/- mice. However, AD2 caused a stronger block of LTP in WT slices compared with APP +/- slices. Horizontal gray bar indicates the duration during when sample was present. 1 and 2 indicate example traces from time points just prior to the theta burst stimulation (↑↑↑ TBS) (1) and 60 minutes after TBS (2), respectively. The aCSF control in WT mice is shown with black circles; AD2 treatment in WT mice is shown in magenta diamonds; the aCSF control in APP +/- mice is shown in gray hexagons and AD2 treatment in APP +/- mice is shown using pink upward triangles. Scale bars: 0.5 mV, 15 milliseconds. Each slice used for each treatment was from a different animal. (D) Comparison of average potentiation from the last 10 minutes of LTP recording (F=4.45, p=0.84, Control in WT mice vs. Control in APP +/- mice; F=4.5, p=2.67E-007, Control vs. AD2 in WT mice; F=4.49, p=0.003, Control vs. AD2 in WT mice; One-Way ANOVA). Symbols correspond to those in panel
C. Values are mean ± SEM. Each slice used for each treatment was from a different animal. ## $p<0.005$, ### $p<0.0001$.
References

Table 1. Primary and secondary antibodies.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Type</th>
<th>Antigen/epitope</th>
<th>Dilution for IP</th>
<th>Conc. For WB</th>
<th>Conc. For ELISA</th>
<th>Dilution for AT</th>
<th>Source/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D6</td>
<td>Monoclonal</td>
<td>Aβ1–5</td>
<td>–</td>
<td>-</td>
<td>1 µg/ml</td>
<td>–</td>
<td>Elan/(Johnson-Wood et al., 1997)</td>
</tr>
<tr>
<td>6E10</td>
<td>Monoclonal</td>
<td>Aβ3-8</td>
<td>-</td>
<td>1 µg/ml</td>
<td>-</td>
<td>-</td>
<td>Biolegend/(Kim et al. 1988)</td>
</tr>
<tr>
<td>266</td>
<td>Monoclonal</td>
<td>Aβ16-23</td>
<td>–</td>
<td>-</td>
<td>3 µg/ml</td>
<td>–</td>
<td>Elan/(Seubert et al., 1992)</td>
</tr>
<tr>
<td>2G3</td>
<td>Monoclonal</td>
<td>Aβ terminating at Val40</td>
<td>–</td>
<td>1 µg/ml</td>
<td>–</td>
<td>–</td>
<td>Elan/(Johnson-Wood et al., 1997)</td>
</tr>
<tr>
<td>21F12</td>
<td>Monoclonal</td>
<td>Aβ terminating at Ile42</td>
<td>–</td>
<td>1 µg/ml</td>
<td>1 µg/ml</td>
<td>–</td>
<td>Elan/(Johnson-Wood et al., 1997)</td>
</tr>
<tr>
<td>1C22</td>
<td>Monoclonal</td>
<td>Aβ aggregates</td>
<td>–</td>
<td>–</td>
<td>3 µg/ml</td>
<td>1:50</td>
<td>Walsh lab/(Mably et al., 2015)</td>
</tr>
<tr>
<td>AW7</td>
<td>Polyclonal</td>
<td>Pan anti-Aβ</td>
<td>1:80</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>Walsh lab/(Mc Donald et al., 2012)</td>
</tr>
<tr>
<td>22C11</td>
<td>Monoclonal</td>
<td>APP66-81</td>
<td>–</td>
<td>1 µg/ml</td>
<td>–</td>
<td>1:50</td>
<td>Millipore/(Austin et al., 2009)</td>
</tr>
<tr>
<td>AB1543P</td>
<td>Polyclonal</td>
<td>Rabbit anti-synapsin-1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1:100</td>
<td>Millipore/(Kay et al., 2013)</td>
</tr>
<tr>
<td>3450P</td>
<td>Polyclonal</td>
<td>Rabbit anti-PSD95</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1:50</td>
<td>Cell Signaling/(Kay et al., 2013)</td>
</tr>
<tr>
<td>A21202</td>
<td>Polyclonal</td>
<td>Donkey anti-mouse 488</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1:50</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>A21207</td>
<td>Polyclonal</td>
<td>Donkey anti-rabbit 594</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1:50</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>T6074</td>
<td>Monoclonal</td>
<td>Anti-α-Tubulin</td>
<td>–</td>
<td>1 µg/ml</td>
<td>–</td>
<td>–</td>
<td>Sigma</td>
</tr>
</tbody>
</table>
Figure 1: Processing of array tomography images.

Raw crop from image stack → Image made binary by Image J macros → Single slice objects removed by MATLAB
Figure 2: The water-soluble extract of AD brain, but not normal control, contains both Aβ monomers and oligomers and perturbs long-term synaptic plasticity.
Figure 3: The Aβ-containing water-soluble extract of AD1 perturbs short-term facilitation.
Figure 4: AD brain-derived Aβ affects both excitatory and inhibitory synaptic inputs, causing disruption of the excitatory/inhibitory ratio at individual CA1 neurons.
Figure 5: Expression of APP is required for the plasticity-disrupting activity of Aβ-containing AD brain extract.

A

B

C

D

E

F

Wang et al., Figure 5
Figure 6: Characterization of the aqueous extract from AD2 brain, synthetic Aβ oligomers and a second APP KO mouse line.

A

B

C

D

E

F

- 2G3+21F12

- 6E10

Aβ x-42

- No GuHCl

- + 5 M GuHCl

- AD2

- ID - AD2

- Absorbance (mAU_{245 nm})

- Elution volume (ml)

- Vo 44 17

- APP KO n=18

- WT n=7

- fEPSP slope (mV/m)

- Stimulus (V)
Figure 7: A second APP KO mouse line confirms that APP is required for the synaptic-disrupting activity of both AD brain and synthetic Aβ oligomers.
Figure 8: APP knock out occludes the effects of Aβ-containing AD brain extract on both excitatory and inhibitory postsynaptic currents and rescues the disruption of E/I balance.
Figure 9: Aβ binding to synaptic terminals requires expression of APP.
Figure 10: APP expressing, but not APP lacking brain slices bind synaptotoxic Aβ.
Figure 11: The level of APP expression influences the plasticity-disrupting activity of Aβ-containing AD brain extract.

A

Wang et al., Figure 11

B

C

D