Matching Schur Complement Approximations for Certain Saddle-Point Systems

Citation for published version:

Digital Object Identifier (DOI):
10.1007/978-3-319-72456-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Fast interior point solvers for H^1-regularized PDE-constrained optimization problems

John W. Pearson$^{1, *}$ and Jacek Gondzio2

1 School of Mathematics, Statistics and Actuarial Science, University of Kent, Cornwallis Building (East), Canterbury, CT2 7NF, UK
2 School of Mathematics, University of Edinburgh, James Clerk Maxwell Building, The King’s Buildings, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK

We consider Newton systems arising from the interior point solution of PDE-constrained optimization problems. In particular, we examine problems where the control variable is regularized by an H^1-norm within the cost functional. We present preconditioned iterative methods for the resulting matrix systems, and justify the potency of our approach through numerical experiments.

1 Problem statement

We consider linear, time-independent PDE-constrained optimization problems with additional bound constraints, of the form:

$$
\begin{align*}
\min_{y, u} & \quad \frac{1}{2} \left\| y - \hat{y} \right\|_{L_2(\Omega)}^2 + \frac{\beta}{2} \left\| u \right\|_{H^1(\Omega)}^2 \\
\text{s.t.} & \quad Dy = u, \quad \text{in } \Omega, \\
& \quad y = f, \quad \text{on } \partial\Omega, \\
& \quad y_a \leq y \leq y_b, \quad \text{a.e. in } \Omega, \\
& \quad u_a \leq u \leq u_b, \quad \text{a.e. in } \Omega,
\end{align*}
$$

where y and u denote state and control variables which we wish to determine, $\beta > 0$ a regularization parameter, D some differential operator, and y_a, y_b, u_a, u_b prescribed bound constraints on the state and control variables. The problem is solved in a domain $\Omega \subset \mathbb{R}^d$, $d \in \{2, 3\}$, with boundary $\partial\Omega$. We highlight that the regularization term corresponding to the control is $\left\| u \right\|_{H^1(\Omega)}^2 = \left\| u \right\|_{L_2(\Omega)}^2 + \left\| \nabla u \right\|_{L_2(\Omega)}^2$ – problems with an L_2-norm regularization term for the control are considered in [2], as are time-dependent variants of such problems.

Applying an interior point method and a discretize-then-optimize approach, as in [2], leads to a discrete Lagrangian of the following form:

$$
L(\bar{y}, \bar{u}, \bar{p}) = \frac{1}{2} \bar{y}^T M \bar{y} - \bar{y}^T \bar{g} + \frac{\beta}{2} \bar{u}^T (M + K) \bar{u} + \bar{p}^T (A \bar{y} - M \bar{u} - \bar{f})
- \mu \sum_j \log (y_j - y_{a,j}) - \mu \sum_j \log (u_j - y_{a,j}) - \mu \sum_j \log (u_j - u_{a,j}) - \mu \sum_j \log (u_{b,j} - u_j),
$$

of which we wish to find the stationary point. Here \bar{p} and \bar{g}_d correspond to the discretized adjoint variable and desired state, $y_j, y_{a,j}, y_{b,j}, u_j, u_{a,j}$ and $u_{b,j}$ represent the values of y, y_a, y_b, u, u_a and u_b at the j-th finite element node, K and M are finite element stiffness and mass matrices, A is the finite element matrix related to the PDE operator D, and μ is the chosen barrier parameter within the interior point method.

Applying Newton iteration (with Newton steps $\bar{s}_y, \bar{s}_u, \bar{s}_p$, and previous iterates $\bar{y}^*, \bar{u}^*, \bar{p}^*$) to the resulting first-order optimality conditions leads to matrix systems of the form

$$
\begin{bmatrix}
M + D_y \\
0 \\
A
\end{bmatrix}
\begin{bmatrix}
\bar{s}_y \\
\bar{s}_u \\
\bar{s}_p
\end{bmatrix}
= \begin{bmatrix}
\mu(Y - Y_a)^{-1} \bar{e} - \mu(Y_b - Y)^{-1} \bar{e} + \bar{y}_d - M \bar{y}^* - A^T \bar{p}^* \\
\mu(U - U_a)^{-1} \bar{e} - \mu(U_b - U)^{-1} \bar{e} - \beta(M + K) \bar{u}^* + M \bar{p}^* \\
0
\end{bmatrix},
$$

where

$$
D_y = (Y - Y_a)^{-1} Z_{y,a} + (Y_b - Y)^{-1} Z_{y,b}, \quad D_u = (U - U_a)^{-1} Z_{u,a} + (U_b - U)^{-1} Z_{u,b}.
$$

Here, Y, U, Y_a, Y_b, U_a, U_b are diagonal matrices containing the entries of y, u (from the previous Newton iteration), y_a, y_b, u_a, u_b at each finite element node, and $Z_{y,a}, Z_{y,b}, Z_{u,a}, Z_{u,b}$ contain entries of the form $\frac{\mu}{y - y_a}, \frac{\mu}{y_b - y}, \frac{\mu}{u_b - u_a}, \frac{\mu}{u_b - u}$, respectively.

* Corresponding author: e-mail j.w.pearson@kent.ac.uk,
2 Preconditioning

We now note that the Newton system is of saddle point form (see [1] for a survey of such systems). Using the justification provided in [3, 4], we consider the block triangular preconditioners

\[\mathcal{P}_1 = \begin{bmatrix} M + D_u & 0 & 0 \\ 0 & \beta(M + K) + D_u & 0 \\ A & -M & -\hat{S}_1 \end{bmatrix}, \quad \mathcal{P}_2 = \begin{bmatrix} -\hat{S}_2 & 0 & A^T \\ 0 & \beta(M + K) + D_u & -M \\ 0 & -M & 0 \end{bmatrix}, \]

where \(\hat{S}_1 \) and \(\hat{S}_2 \) are derived using ‘matching strategies’, as follows:

\[\hat{S}_1 = (A + \tilde{M}) (M + D_u)^{-1} (A + \tilde{M})^\top, \]
\[\hat{S}_2 = -(A + \tilde{M})^\top M^{-1} (\beta(M + K) + D_u) M^{-1} (A + \tilde{M}), \]

with \(\tilde{M} = M [\text{diag}(\beta(M + K) + D_u)]^{-1/2} [\text{diag}(M + D_u)]^{1/2} \). Eigenvalue analysis concerning similar preconditioners for interior point methods can be found in [2].

In practice it is sensible to use multigrid methods to apply the inverse of the \((1,1)\)-block, and the approximate Schur complement inverses \(\hat{S}_1^{-1} \) and \(\hat{S}_2^{-1} \). We apply both preconditioners \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \) within the GMRES algorithm.

3 Numerical results

We now implement an interior point method, coupled with our GMRES solver (with preconditioners \(\mathcal{P}_1 \) and \(\mathcal{P}_2 \)), for a particular test problem. In more detail, we set \(D = -\nabla^2 \), \(\bar{u} = e^{-64(x_1-0.5)^2 + (x_2-0.5)^2} \), where \(x = [x_1, x_2]^\top \in \Omega = [0, 1]^2 \), with state and control constraints prescribed based on the physical properties of the problem. The iterative solvers are run to a tolerance of \(10^{-8} \), with the outer (interior point) solver set to a tolerance of \(10^{-6} \). We solve for a range of step-sizes \(h \) and values of \(\beta \), using \textsc{Matlab} R2015a, on a quad-core 3.2 GHz processor. We observe that the number of interior point iterations, as well as the GMRES iteration count, behave robustly for a wide range of parameters. We therefore conclude that our preconditioning strategies are highly effective for practical consideration.

Table 1: Number of interior point (Newton) iterations required to achieve convergence (blue, left), and average number of GMRES steps per interior point iteration before a relative preconditioned residual norm of \(10^{-8} \) is achieved (black, right), for the test problem considered.

<table>
<thead>
<tr>
<th>(h)</th>
<th>(\beta = 1)</th>
<th>(\beta = 10^{-1})</th>
<th>(\beta = 10^{-2})</th>
<th>(\beta = 10^{-3})</th>
<th>(\beta = 10^{-4})</th>
<th>(\beta = 10^{-5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(^{-2})</td>
<td>5</td>
<td>7.0</td>
<td>6.1</td>
<td>9</td>
<td>5.5</td>
<td>11</td>
</tr>
<tr>
<td>2(^{-3})</td>
<td>5</td>
<td>10.7</td>
<td>8.8</td>
<td>10</td>
<td>8.2</td>
<td>11</td>
</tr>
<tr>
<td>2(^{-4})</td>
<td>5</td>
<td>11.0</td>
<td>10.0</td>
<td>10</td>
<td>9.2</td>
<td>12</td>
</tr>
<tr>
<td>2(^{-5})</td>
<td>7</td>
<td>10.8</td>
<td>10.9</td>
<td>11</td>
<td>9.3</td>
<td>13</td>
</tr>
<tr>
<td>2(^{-6})</td>
<td>8</td>
<td>12.4</td>
<td>10.7</td>
<td>12</td>
<td>9.5</td>
<td>14</td>
</tr>
<tr>
<td>2(^{-7})</td>
<td>9</td>
<td>12.2</td>
<td>12.0</td>
<td>13</td>
<td>10.6</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\mathcal{P}_2)</th>
<th>(\beta = 1)</th>
<th>(\beta = 10^{-1})</th>
<th>(\beta = 10^{-2})</th>
<th>(\beta = 10^{-3})</th>
<th>(\beta = 10^{-4})</th>
<th>(\beta = 10^{-5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(^{-2})</td>
<td>5</td>
<td>14.2</td>
<td>12.0</td>
<td>9</td>
<td>7.8</td>
<td>11</td>
</tr>
<tr>
<td>2(^{-3})</td>
<td>5</td>
<td>12.8</td>
<td>11.1</td>
<td>10</td>
<td>10.2</td>
<td>11</td>
</tr>
<tr>
<td>2(^{-4})</td>
<td>6</td>
<td>13.2</td>
<td>14.4</td>
<td>10</td>
<td>10.7</td>
<td>12</td>
</tr>
<tr>
<td>2(^{-5})</td>
<td>7</td>
<td>13.0</td>
<td>14.4</td>
<td>11</td>
<td>13.5</td>
<td>13</td>
</tr>
<tr>
<td>2(^{-6})</td>
<td>8</td>
<td>11.8</td>
<td>13.2</td>
<td>12</td>
<td>14.9</td>
<td>14</td>
</tr>
<tr>
<td>2(^{-7})</td>
<td>9</td>
<td>11.6</td>
<td>13.4</td>
<td>13</td>
<td>15.0</td>
<td>15</td>
</tr>
</tbody>
</table>

References