The pursuit of interdisciplinary whole systems energy research

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.erss.2017.09.012

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Energy Research & Social Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Original research article

The pursuit of interdisciplinary whole systems energy research: Insights from the UK Energy Research Centre

Mark Winskel

Science, Technology and Innovation Studies Group, School of Social and Political Science, University of Edinburgh, Chisholm House, High School Yards, Edinburgh EH1 1LZ, United Kingdom

1. Introduction

1.1. Background

Interdisciplinary research is often seen as a promising way to respond to urgent and complex societal challenges such as sustainable energy (e.g. [1–3]). The proponents of interdisciplinary responses to complex socio-technical problems tend to have in mind research which reaches across the physical, social and environmental sciences – sometimes referred to as ‘radical’ interdisciplinarity [4] – and which develops an integrated ‘whole systems’ perspective [5–7]. This is found, for example, in a number of recent energy research and policy initiatives aimed at ‘whole systems integration’ [8,9]. WSR approaches may also feature the strong involvement of non-academic stakeholders (policymakers, businesses and civil society groups) in research design and production – referred to a ‘transdisciplinary’ research [10]. Interdisciplinary WSR can therefore be defined as having distinctive radical, integrative and transdisciplinary elements, in various combinations.

Alongside the many advocates and enthusiasts for interdisciplinary WSR research are a few questioning or sceptical voices. Daniel Sarewitz has suggested that such research has very little actual capacity to solve complex problems, and often constitutes little more than hubris [11]. Jerry Jacobs has also questioned the value of integrated interdisciplinary solutions to complex societal problems [12]. Other cautionary voices include senior researchers who have led or reviewed WSR programmes, and who report-back on the difficulties encountered (e.g. [1,13,4,14]).

This mix of enthusiasm and advocacy alongside scepticism and caution suggests the need for empirical studies of WSR experiences. Drawing on the interdisciplinary studies literature, this paper considers the experiences of the UK Energy Research Centre (UKERC) over its first decade (2004–14), within wider WSR efforts on energy in the UK. In analysing the UKERC case, the aim here is to open-up the ‘black box’ of interdisciplinary research strategies and practices [15].

1.2. Design and method

The analytical focus here is the development of interdisciplinary WSR strategy and practice within UKERC (Fig. 1). The paper does not attempt to comprehensively assess UKERC’s research themes, projects and researchers. However, UKERC’s pursuit of WSR was greatly shaped by ‘external’ influences – funders, advisors and stakeholders – and these are also part of the analysis. The wider context for energy research – though an important backdrop – is outside the scope of the study, as are...
UKERC’s ‘non-research’ activities.

The case study is based in-part on empirical fieldwork carried out towards the end of UKERC’s first decade. (UKERC is continuing in revised form until 2019, but this ‘Third Phase’ is not studied here). Fieldwork included a residential workshop of interdisciplinary energy researchers (n = 49), a facilitated group discussion of UKERC researchers and stakeholders (n = 15), a survey of the UKERC research community (n = 90) and a series of semi-structured interviews with UKERC researchers, advisors and stakeholders (n = 18). (Fieldwork details are available from the UKERC website). The following codes are used for fieldwork participants:

- EC1, EC2 etc.: Early Career Researchers (PhD Students and postdocs with less than c.5 years’ experience)
- MC1, MC2 etc.: Mid-Career Researchers (with at least several years of research experience)
- SR1, SR2, etc.: Senior Researchers (with senior roles and at least 10–15 years of experience)
- AA1, AA2, etc.: Academic Advisor (external academics with an advisory role in UKERC)
- EA1, EA2, etc.: External Academic (interdisciplinary academics with no role in UKERC)
- SA1, SA2, etc.: Stakeholder Advisors (senior figures from industry, policy etc.).

The fieldwork was aimed at soliciting both an inside and external view of UKERC’s WSR strategy and practice. Although the fieldwork sample included many participants in the UKERC research programme, it also included many external academics and non-academic stakeholders (policymakers, business and third sector organisations) not directly involved: two-thirds of the interviewees, one-third of group discussion participants and three-quarters workshop attendees were not directly involved with UKERC. (Among those directly involved, most were only part-time and temporary UKERC members, alongside other academic responsibilities).

The case study has also involved a review of relevant internal, grey and public papers, and the personal experiences of the author, who was closely involved in UKERC’s research strategy for most of its first decade. While this close involvement has enabled access to documents and a close working knowledge of the case, it may raise concerns about impartiality and objectivity. There are a number of responses: firstly, the paper is not aimed at assessing UKERC’s specific research outputs and impacts (a number of independent assessments of these were carried out over the period analysed here). The concern here is rather research strategies and practices, drawing on the views of a wide range of UKERC participants, advisors and observers, as well as the personal insight of the author, so as to contribute to a body of such research in interdisciplinary studies.

While the case study selection is partly based on pragmatism, UKERC is also a compelling case for a study of WSR strategy and practice: a relatively longstanding part of interdisciplinary energy research in the UK, with a particular remit and experiences across two distinct phases set against a changing context. While a number of other comparable interdisciplinary initiatives have published accounts of their interdisciplinary experiences (e.g. [1,13,16,17]), this is the first account of the UKERC experience, and interdisciplinary WSR remains a relatively under-researched topic in interdisciplinary studies.

Any single case inevitably reflects many specifics [18]. For example, UKERC may be expected to reflect a UK ‘style’ of energy research, involving a relatively fragmented and fluid set of organisations [19,20]. The energy sector also presents a distinctive setting for interdisciplinarity, with a set of pressing policy drivers and statutory commitments, (especially, for this case, the UK Climate Change Act; [21]). In terms of expertise, energy research has a traditional orientation to physical sciences, engineering and economics [22], although more diverse research efforts have developed recently, as UKERC itself exemplifies.

To help discriminate between case specifics and wider patterns (i.e. the ‘generalisability’ of case findings) the paper includes a review of the relevant interdisciplinary research literature, organised around the challenges of WSR (radicalness, integratedness, transdisciplinarity and institutional contexts) (Section 3). The paper also includes a structured comparison of UKERC and similar UK interdisciplinary initiatives (Section 5). While there are many forms of interdisciplinary energy research, the comparison in Section 5 is restricted to particular UK-based centres and programmes which, like UKERC, were funded by the UK Research Councils as coherent WSR programmes or centres, and which have a body of supporting documentary and empirical evidence, including fieldwork carried out as part of the UKERC case.

The next section (Section 2) presents a narrative, chronological account of UKERC’s pursuit of WSR across two five-year phases, based on document analysis and fieldwork. Section 4 is an interpretative analysis of the case study based on themes identified in the interdisciplinary studies literature in Section 3. Section 6 concludes and offers recommendations regarding publicly funded efforts at WSR.
2. Case study: the UK Energy Research Centre (UKERC)

2.1. UKERC Phase 1 (2004–09)

UKERC was formed in the early 2000s as UK public spending on energy research was starting to increase from a very low base in the wake of energy industry liberalisation (Fig. 2). The main driver for this (at first) modest recovery was growing awareness of the need to decarbonise energy systems in the face of climate change [24]. UKERC’s specific genesis was an Energy Research Review Group (ERRG) made up of senior figures from business, academic, policy and the third sector. The ERRG fed into the UK’s first major review of energy policy and research since privatisation [25]. Although it had a mainly technoeconomic and supply side orientation, the ERRG called for the creation of a multidisciplinary national energy research centre:

The research challenges … cross the boundaries of physical science, engineering, environmental science, socio-economic and socio-political sciences and life sciences … A multidisciplinary approach is essential … in the development of technological solutions to future energy supply ([26,p. 24]).

In accepting the ERRG’s call, Research Councils UK (RCUK) (the Research Councils’ umbrella body) emphasised the need for the new centre to focus its limited resources on WSR: ‘the research challenges and opportunities required to underpin UK energy policy development demand whole systems integrated approaches’ ([27,p. 1]).

Rather than a single-site centre, as the ERRG had envisaged, UKERC was created as a dispersed collaboration between eight partner universities and research institutes assembled from three rival consortia, with a small secretariat headquartered at Imperial College, London [28]. It was awarded a significantly smaller annual budget (around £2–3m) than ERRG’s recommended £10m, provided roughly equally from three Councils: the Natural Environment Research Council (NERC), Engineering and Physical Sciences Research Council (EPSRC) and Economic and Social Research Council (ESRC) [29]. Like other relatively large awards (a number of technology-specific energy research centres had already been established by this time) UKERC was initially funded for 5 years.

UKERC was given a dual remit: running its own WSR programme and providing ‘coherence, co-ordination and connectivity’ for the UK’s wider energy research activities [27]. This latter role involved, for example, establishing a National Energy Research Network, an energy research data repository, a workshop facilitation capacity and an interdisciplinary doctoral studentship programme. The Research Councils suggested that UKERC should direct its resources equally between research and capacity-building activities, so that its annual research budget, to be shared among its eight academic partners, was only around £1.5m. Though often seen as the flagship part of the Research Councils Energy Programme (RCEP), UKERC was in practice a marginal addition (Fig. 2).

In setting out the new Centre’s role, its Research Director highlighted the need to provide ‘independent, authoritative guidance to government and other stakeholders’ ([28,p. 25]) by developing a programme of whole systems, policy-oriented research: ‘The Centre will address the energy system as a whole … it will take a long-term perspective on the steps required to give effect to the ambitious goals of UK energy policy’ ([28,p. 1]).

UKERC’s research programme was organised around six themes, each led by a senior academic from a partner institute (Fig. 3) (an additional ‘Technology and Policy Assessment’ theme undertook systematic evidence reviews) [28]. Working under the Research Director (who had a policy and modelling background) and an Executive Director (who had an industrial engineering background) the theme leaders formed the UKERC ‘co-directorship’. The Centre’s theme leaders and many of its researchers worked part-time for UKERC alongside other research and teaching responsibilities.

The envisaged mechanism for research integration was informal, bottom-up collaboration, along with ‘procedural’ measures such as regular meetings of theme leaders and researchers (interview, EA2). Early Centre-wide meetings provided a forum for debate about what WSR might involve and how it could be pursued. They revealed a mix of enthusiasm about the potential to deliver distinctive insights, and concerns about the risks involved, such as the low status of integrative research in prestigious journals [30,31].

By 2006 concerns within UKERC were also being expressed about the lack of interaction between technical and social research in the Centre, and between UKERC and the wider energy research community [31]. Some researchers now called for stronger top-down efforts at research integration, with a firmer emphasis on balanced disciplinary contributions and ‘forced marriages’ between disciplines [31].
Research Director was also becoming aware that the informal and bottom-up approach to integration was failing to overcome disciplinary silos [32].

At the same time, UK energy policy became increasingly concerned about the challenges of reconciling decarbonisation with energy security and affordability, in a context of increased fuel import dependency and escalating global carbon emissions [33]. These internal and contextual drivers prompted the inception of a Centre-wide ‘integration project’, later called the Energy 2050 project. The rationale was set out in an internal review:

One major challenge for UKERC has been to realise the ‘whole systems integrated approach’ … A cross-Centre Integration Project … will draw all the Centre’s themes and functions together … Progress towards a ‘whole systems’ approach to energy research needs to be accelerated’ [31, pp. 1, 4].

Energy 2050 was devised as a ‘social engineering’ initiative to create interdependencies between the Centre’s themes, disciplines and partner institutes (Fig. 4). The project involved changing ways of working for most researchers. Research activities (and all of the Centre’s regular meetings) were now designed around Energy 2050 cross-theme ‘working groups’, with input from non-academic stakeholders via advisory groups and workshops.

The Energy 2050 project involved devising multiple pathways consistent with UK energy policy goals for decarbonisation, security and affordability. Pathway development involved a combination of qualitative narratives and quantitative data assumptions for variables such as lifestyle and behaviour, technological innovation, public attitudes and environmental sensitivities. After several interim and component working papers, Energy 2050 culminated in two integrated outputs: a ‘synthesis report’ [34] and an edited book [35]. The synthesis report was co-authored by over 40 UKERC researchers – around two-thirds of the Phase 1 research community.

While it realised many of its integrative aims, the Energy 2050 project was seen ambivalently by those closely involved. One senior UKERC researcher concluded that ‘Energy 2050 was arguably the furthest … that UKERC has gone; as an interdisciplinary exercise it was far from perfect, but it did force some useful interactions’ (interview, SR2). A particular concern was that pathway development became preoccupied with devising inputs for the systems models used in the project: ‘the Energy 2050 project … ended up being very “Markal” [system model] focused, and there were some tensions’ (interview, EC1).

The central role of whole systems modelling also meant that Energy 2050 was orientated to a UK national scale and mainly techno-economic variables, with less focus on more disruptive and difficult to model aspects such as governance, decentralisation and investment risks. A number of these ‘blind-spots’ were pursued in UKERC’s Phase 2 research programme.

2.2. UKERC Phase 2 (2009–14)

Towards the end of Phase 1 the Research Councils indicated their intention to support a UKERC second phase. The context for energy research was changing: UK policy was formalised with the Climate Change Act [21], but the UK economy was experiencing a sharp decline in the wake of the financial crisis. In late-2008 UKERC issued a new mission statement to reflect the changes, replacing: ‘what are the options for and implications of achieving a secure low-carbon energy system?’ with: ‘how do we make the transition … given a deeply uncertain world which will not develop along smooth trajectories?’ ([36, p. 1]).

The recommissioning process involved a lengthy period of consultation and iteration between the Research Councils, senior UKERC researchers and stakeholder groups. A recurring issue was the need for both continuity and change. At the outset, the Research Councils emphasised continuity: ‘The existing UKERC structure and management has resulted in very good progress in fully interdisciplinary research in energy … an open competition would be counterproductive, given … the urgency of addressing … energy challenges’ [37, p. 5]).

UKERC’s Directors were therefore invited to submit a second phase five year proposal with a broadly unchanged remit: to conduct a strongly visionary and integrating whole-systems work programme focused on inter-disciplinary research, while also continuing to capacity-build for the wider research community ([37, p. 5]). Although the RCEP was now expanding rapidly (Fig. 2), Phase 2 was funded at around the same level as Phase 1 (c.£3.5m p.a.). NERC requested that around 40% of UKERC’s budget be dedicated to networking and capacity building, leaving an annual research budget of around £2m.

The Councils also stipulated that around half of the Centre’s research budget be allocated through a series of open and competitive research calls. The aims of the new ‘Research Fund’ were to involve a wider range of researchers and disciplines and respond to emerging policy and research concerns [37]. In the course of recommissioning, independent academic and stakeholder advisors requested that the Fund enable the greater involvement of social and environmental researchers, reflecting perceptions that Phase 1 was dominated by a techno-economic perspective (interview, EA2; [38]).

At the outset of Phase 2 the UKERC research programme reverted to a broadly similar structure to the first half of Phase 1, with themes on Supply, Demand, Systems, Environment and Technology & Policy Assessment. However, two of Phase 1’s more technically-oriented themes (Future Sources of Energy and Materials) were discontinued, given concerns that monodisciplinary, ‘underpinning’ research had struggled to engage with the Centre’s WSR remit [31,39,40], and also, that the halving of the Centre’s core research budget to accommodate the Research Fund meant that such work would now be better funded elsewhere [36].

The Research Fund was allocated over four open calls for proposals, each based on topics specified by UKERC after wider consultation. The call specifications identified the interdisciplinary dimensions of the research, likely participating disciplines and the intended contribution of the research to the Centre’s WSR programme. After independent review, each selected project was allocated to one of UKERC’s research themes. Anticipating the managerial challenge involved, UKERC set-up a small co-ordination team to enable ‘sustained commitment and effort’
3. Interdisciplinary studies and WSR

Interdisciplinary research carries significant intellectual assumptions, amounting to a ‘philosophy of knowledge’ [43]. While the term ‘interdisciplinarity’ tends to be used to describe any research which crosses traditional disciplines, many different types of exchange are identified in the literature [44]. Within this, WSR has received little attention as a conceptually distinctive form. However, its characteristic elements: radicalness, integratedness and transdisciplinarity, have received significant attention, and this section is organised around these three themes, with an additional section on institutional contexts for WSR.

3.1. Radical interdisciplinarity

A distinction is often made between ‘cognate’ interdisciplinarity, operating within macro disciplines (e.g. physical, environmental and social sciences) and ‘radical’ interdisciplinarity between macro disciplines [4]. Radical interdisciplinarity raises a number of conceptual and practical concerns. Rouse (in Hannon et al., [47]) described it as a meeting of physical science’s positivist laws and determinisms and social science’s interpretivist hermeneutics. Others have detailed the many differences involved: problem definition; data, evidence and proof; research methods; unit and scale of analysis; the role of non-academic stakeholders; and funding and reward structures (e.g. [4,45]).

Given these differences, the imposition of a single research design is likely to lead to antagonism and marginalisation. In practice, radical interdisciplinarity may be preframed in mainly technical terms, with social scientists expected to embrace positivism [4]. On the other hand, engineers and physical scientists may be reticent participants in research framed in ‘post-positivist’, constructivist terms [46].

A number of interdisciplinary energy-related research initiatives have encountered these tensions. Petts et al. [4] concluded that although it was widely seen as virtuous, radical interdisciplinarity was rarely seen in practice, as disciplinary boundaries were often quickly reinstated. Hargreaves and Burgess [14] found ‘an almost total divide’ between natural and social scientists’ expectations of radical interdisciplinarity, with physical scientists tending to be more enthusiastic, but on rather unreflexive terms. Longhurst and Chilvers [16] and Rouse (in Hannon et al., [47]) both also reported greater scepticism among social scientists.

Alongside these concerns is recognition of the possibility of more
amenable and productive exchange. Rouse (in Hannon et al. [47]) noted that within a long-term collaborative context it is possible to overcome many of the divides and establish common grounds, such as a shared commitment to empirical evidence.

3.2. Integrative interdisciplinarity

As Jacobs [12] pointed out, much interdisciplinary research is not aimed at integration, and equally, integrative research can be narrowly pursued within disciplines. Even so, interdisciplinary knowledge integration is an underpinning tenet of much interdisciplinary effort [6,44]. Brewer [46] argued that academic specialisation and reductivism, though it had brought impressive results, had incurred costs (including environmental damage), suggesting the need for integrative interdisciplinarity.

Some view knowledge integration more sceptically. Barry et al. [48] argued that although integration and synthesis was the dominant mode of interdisciplinarity in climate and environmental research, other modes were possible, including subordination-service exchange (seen, for example, when social science plays a subservient or ‘gap-filling’ role); and agonistic-antagonistic exchange (with an explicit attempt at oppositional exchange, possibly leading to disciplinary transcendence). Others have considered different integrative research methods, including model-, product-, and dialogue-based forms [68].

In an explicit critique of integrative interdisciplinarity, Sarewitz [11] contended that reductive monodisciplinary research was a far more important engine of social transformation than interdisciplinary holism: while the former generated powerful context-independent knowledge and artefacts, the latter vainly sought to explain complex systems.

In a similar vein, Jacobs [12,p. 128] argued that the assumption that complex problems required integrated interdisciplinary solutions ‘melts under closer inspection’. Instead, he suggested, such problems can often be tackled through partial and specialised solutions that are only later assembled into a larger whole. Jacobs also noted the different contexts for knowledge integration across policy and research communities: while policy solutions may require an integrative approach, research programmes may not.

3.3. Transdisciplinarity

Transdisciplinarity is a distinctive form of interdisciplinarity, with an active role for non-academic stakeholders and/or wider publics as co-designers and perhaps co-producers. As such, it transcends expert, stakeholder and lay divides [49] and confounds knowledge production and exchange [44,17,45].

There has been a notable turn to transdisciplinary research in the UK and internationally [10], with some accompanying conceptual and practical concerns. For example, Jacobs [12] argued that a ‘vogue’ for transdisciplinary research institutions designed to respond to particular social problems threatened academic independence, as instituted in more linear forms of production and exchange, and also the pursuit of long-term research with uncertain payoffs, as enshrined in disciplinary-based departments.

Transdisciplinary research is more likely to be funded by non-traditional and perhaps overtly political organisations [43]. It may also challenge the primacy of academic peer review [49]. Hulme [13] positioned transdisciplinarity as occupying a middle-ground between ‘curiosity-driven’ and ‘call-down’ research, but with concerns about co-production sliding into consultancy.

Lyall et al. [10] found that genuinely transdisciplinary research remained rare in practice. Hulme [13] concluded that co-production was much harder to realise than its rhetoric suggested, with a gulf between stakeholder expectations and researchers’ ability to respond. Harris and Lyon [45] noted the cognitive and practical challenges of managing diverse transdisciplinary consortia. Within this, there is a risk of privileging stakeholder views: just like academics, stakeholders have partial and limited understandings of the ‘real world’ [10].

3.4. Institutional contexts

Interdisciplinary initiatives tend to be institutionally fragile and lack means for their reproduction [50,51]. Their initial appeal is often replaced by growing awareness of their challenges, with funding and researchers migrating back into established disciplinary structures [52]. Within academia, interdisciplinary research may be seen as superficial and undisciplined [10], and having a ‘real world’ orientation may also be viewed negatively [53].

Researchers need manageable research objects [18] and a secure home disciplinary base [54], but interdisciplinary researchers are confronted with a complex landscape across research, funding and stakeholder groups [4,14]; there are particular risks for less established early career researchers [52,45,55]. In addition, universities now face a competitive market for research, spanning consultancy firms, think-tanks, industry associations, civil society organisations and pressure groups [43].

In responding to these challenges, a degree of organisational detachment may be beneficial [50,51]. Brewer [46] argued that interdisciplinarity was best suited to organisational ‘interstices and marginal spaces’ rather than the academic mainstream. Harris and Lyon [45] concluded that there was an optimal size for transdisciplinary consortia, with larger and more dispersed initiatives tending to perform less well than smaller, bounded networks.

Another recommendation is to link together strategic aims, financial means and management methods (Nowotny, 2006, cited in [10, see also 14]), and to generate discrete, recognisable outputs for different funders and stakeholders [45]. There is also a need to provide dedicated time and space (and co-ordinating roles) for interaction and mediation, although academic research is often conducted in a context of competition rather than collaboration [50,56,4,16].

Funding and assessment procedures exert a powerful influence on research practice [49,53,15]. Interdisciplinary proposals may face inconsistent assessment processes and criteria, and judgement by assembled disciplinary experts rather than experienced interdisciplinary professionals [56,1,15]. Hulme [13] concluded that research funders were ‘instinctively disciplinary’, and Petts et al. [4] noted that even in pooled-funding initiatives each funder seeks a distinctive imprint.

4. Case study analysis and discussion

4.1. UKERC and radical interdisciplinarity

Different forms of exchange between physical, social and environmental sciences were evident in UKERC at different times, with a broad orientation to techno-economic positivism and mainly quantitative methods in Phase 1, and more diverse epistemologies and methods in Phase 2. This pattern was largely imposed by funders and commissioning panels rather than internal strategic choices.

By the later stages of Phase 2, a view had emerged that UKERC had become dominated by social science: ‘One thing missing in Phase 2, and that has been lost, is a strong dialogue between social science and engineering; the engineering aspects have become very narrow.’ [FGD, SA1]. One suggested barrier to more balanced radical interdisciplinarity in Phase 2 was the dispersal of limited funds across a much expanded energy research community: ‘For engineering, the limited size of UKERC grants is a barrier; engineers would rather spend
valuable time preparing grants for larger awards [FGD, SR1] ... and you
don’t have the transaction costs of interdisciplinarity ... it’s not so
surprising that it’s been more difficult to engage engineers in Phase 2’
[FGD, MC5].

While UKERC’s initial commitment to techno-economics may sug-
gest a subservient role for social sciences, the Centre’s declared mode of
interaction was integration and synthesis. In practice, different modes of
exchange were interwoven, and while social sciences tended to play a
‘service’ role in Phase 1, Phase 2 saw some instances of engineering
subordination to social science. There were also some (undocumented)
agonistic/agonistic exchanges. For example, in the course of Energy
2050, tensions arose between two different energy system models.
While it had been hoped that these differences would be a source of
productive analytical tension, they proved difficult to reconcile and
only one of the models was ultimately used for project integration.
There were also occasional tensions between positivist and con-
structivist epistemologies, and qualitative and quantitative methods.
These antagonisms were played out by circumvention and disengage-
ment, rather than the more constructive learning anticipated by Barry
et al. [48].

Beyond a tacit commitment to techno-economics, disciplinary
identity in Phase 1 was left largely unexamined — the emphasis was on
‘working with people who have the passion and drive to work in in-
terdisciplinary research’ [interview, SR1]. The Phase 2 Research Fund
provoked more explicit attention on disciplinary identity, with a ten-
dency to ‘gap-fill’ by creating new projects for specific disciplines,
especially (previously underrepresented) social sciences. Research Fund
calls for proposals explicitly sought participation from psychologists,
political scientists, geographers, management scientists, risk studies
experts and media studies researchers [67].

The tension between transgressing and upholding disciplinary
identities was recognised in the group discussion: ‘It’s great ... [that]
there are single people who span the disciplines [FGD, MC5]; ... [But]
doesn’t the policymaker want to be assured about where they get their
advice from, their credentials? ... Belonging to a particular discipline
gives you credibility [FGD, SA2]; ... Academia is based on expertise, so
we expect to be disciplinary [FGD, MC3].

Some survey respondents saw interdisciplinary researchers in
UKERC as lacking disciplinary credibility: ‘although many people and
projects involve aspects of social science ..., most people have a hard
science or engineering background’ [survey, Q.12]; ‘although there are
lots of “engineers” within UKERC, I think their research is often at a
higher systems level ... [rather than being involved in the application
of technologies’ [survey, Q.12].

4.2. UKERC and integrative interdisciplinarity

UKERC’s creation in the early 2000s was shaped mainly by tech-
nocrats, with an essentially instrumental approach to interdisciplinary
integration i.e. designed with specific types of benefit in mind –
especially, enabling the smoother progress of energy supply technolo-
gies, rather than a more tentative and reflexive approach.

However, there was initially little consideration of integrative
means and methods. This deficit provoked discussion of research
practice and design in early UKERC meetings, as the Centre gradually
built up its activities. These discussions showed support for the pursuit
of WSR, but also concern for the difficulties involved. More recent
fieldwork suggests continuing ambivalence; some described the value
of a WSR framing in terms of ‘understanding interconnectedness’ [in-
terview, SR2] and ‘ensuring one does not simply look at one sector in
isolation ... to make sure [some] policy goals are not set at the expense
of others’ [interview, SA3].

Others were more sceptical, seeing WSR as an ‘imported’ term from
environmental science, with little relevance for interdisciplinary energy
research [interview, EA2], or as difficult to operationalise: ‘the problem
is drawing the boundary — you need to think about “systems of
systems” to understand how interactions propagate’ [interview, AA3].

For another interviewee, WSR was an inherently limited, technocratic
framing: ‘There is more to “whole systems” than people normally
mention ... all sorts of social phenomena as well as physical kit ...
Interdisciplinarity goes beyond whole systems ... [to ask] what counts
as a system?’ [interview, EA1].

Mid-way through Phase 1 a more strongly integrative research form
was devised, reflecting growing concerns about the limits of an organic
and bottom-up approach. The ability of the Centre to reinvent itself
mid-phase was predicated on the strategic discretion awarded to the
Research Director. The ambivalent judgement on the resulting Energy
2050 project reflects the strengths and weaknesses of this more ‘forced’
type of WSR, and the use of whole system modelling as an integrative
tool. While Energy 2050’s more general insights have endured (such as
the trade-offs and synergies between different aspects of system change)
many of its more specific findings, such as the anticipated contribution
different of supply technologies, soon proved to be erroneous.

Although Phase 2 was established with the same high-level com-
mitment to integrative WSR as Phase 1, research programme integra-
tion was in practice given reduced priority alongside variety and flex-
bility. The Research Fund required significant strategic and
management effort, and UKERC’s co-Directors were left with reduced
strategic authority and discretion. One senior UKERC researcher high-
lighted the different balances struck in different phases: ‘Phase 1 was
quite integrated, but it was seen as an “exclusive club”; Phase 2 tried to
be more inclusive, but ended up with a not particularly well integrated
programme’ [interview, SR2]. One senior advisor highlighted the trade-
off: ‘UKERC needs to decide whether to focus and concentrate on a few
institutions or be very open; if it’s being asked to be very open, it needs
more funding’ [interview, SA4].

4.3. UKERC and transdisciplinarity

UKERC was established to offer an independent and authoritative
research voice, and although its research was shaped by ongoing con-
sultations with funders, business, policy and civil society repre-
sentatives, it placed less emphasis on co-design and co-production
than some other initiatives; rather than transdisciplinarity, the Centre
sought a balance between engagement and autonomy.

In Phase 1, the ‘independent and authoritative’ pursuit of inter-
disciplinary WSR was underpinned by wider institutional stability and
political consensus — albeit with a privileging of some types of
knowledge and disciplines above others. Later on, this became more
challenging as energy policy knowledge production proliferated and
political consensus weakened. More researchers, consultants and cam-
paign groups became involved in energy research, bringing diverse
interests, viewpoints and normativities. While contested politics and
fragmented institutions may bring greater demands for independent
and authoritative research, it also diminishes the likelihood of any
agreed evidence and expertise base. One senior UKERC advisor noted
that ‘public policy needs clear messages, and interdisciplinary research
is difficult to convey’ [interview, SA3].

Within UKERC, tensions grew between independence and engage-
ment, and even as the impetus for co-design and co-production gath-
ered, the independent Research Committee promoted academic-led
research commissioning and assessment. Some academics and stake-
holders argued for deeper dialogue with stakeholders: ‘There’s a need
to involve stakeholders ... more directly than in advisory groups — that
would give more credibility to research’ [interview, AA1]; ‘industry
engagement ... needs to be embedded in the whole organisation’ [in-
terview, SA4]; ‘Academics [need] to see the problem from a policy-
maker’s perspective ... a step-change is needed in the quality of re-
search-policy exchange’ [interview, SA2].

However, a number of UKERC’s academic advisors and researchers
rejected calls for a stronger transdisciplinary commitment: ‘Co-produ-
cing research means you could lose control of your research agenda’
4.4. UKERC and institutional contexts

Although UKERC was heralded as a major new initiative and a cornerstone of UK public energy research, it was from the outset marginal to Research Council spending. For most participating academics their UKERC role was supplementary to established teaching and research activities. Rather than being able to occupy an autonomous or protected space for WSR, UKERC had to work largely within the confines of mainstream academic institutions. As one senior researcher noted ‘UKERC can’t change how our home institutions, or stakeholders, or funders, organise themselves; we have to work with the way they are’ [FGD, SR1].

UKERC’s multi-Council funding also imposed an institutional imprint on its pursuit of WSR, with a tendency to devise discrete and recognisable activities and outputs for each Council [interview, EA2]; it also had to navigate the distinctive commissioning and assessment practices of each Council, with some Councils strongly shaped by their academic communities while others operated with greater discretion. One interviewee noted the difficulties of explicitly addressing funder-researcher relations: ‘Discussing the terms of trade … between Research Councils and UKERC and its various stakeholders would be regarded as extremely impolite’ [interview, EA1].

Another challenge for WSR in Phase 2 was the emergence of widening multisectoral ‘nexus’ research agendas, spanning food, water and climate [57]. Recent policy framings have also embedded energy in broader agendas such as industrial strategy, localism and inequality (e.g. [58,9]). These challenge UKERC’s ‘energy only’ framing: ‘Given where the political discourse is and the imperatives on the funding bodies … UKERC will have to expand into … the role of energy in the wider economy’ [FGD, MCS]. One advisor suggested that these re-framings meant that UKERC should abandon its pursuit of ‘independent and authoritative’ scholarship and embrace a more constructivist approach: ‘[UKERC] should be more open about contending notions of value, and how they might be reconciled through collaborative research’ [interview, EA1].

Research assessment also exerted a powerful imprint. The focus on disciplinary-based, individual assessment in the UK Research Excellence Framework (REF) is a recognised inhibitor of interdisciplinarity [54], as several fieldwork respondents reaffirmed: ‘REF relies upon discipline-based panels that struggle to assess interdisciplinary papers [interview, SR2]; “REF is a disincentive … [you] have to justify ‘mixed’ papers to a discipline-specific submission panel’ [survey, Q.19].

UKERC was also assessed in a number of dedicated assessment exercises, including mid- and end-phase reviews. These typically involved assembled senior academics and stakeholders, and tended to raise particular disciplinary- or domain-based concerns. For example, a Phase 2 review concluded that UKERC was weak in underpinning and integrative social science research [59] – criticisms which were disputed by the Centre’s senior researchers [60].

UKERC also featured in reviews of the wider Research Councils’ Energy Programme (RCEP). One prominent review identified a lack of coherence across the RCEP, with competition between funding bodies and poor career prospects for interdisciplinary researchers [61]. The review called for ‘a single, well defined cross-Council energy research budget’, with larger centres to be funded for no less than 10 years to provide greater continuity ([61], p. 2, 24).

5. UKERC in context: comparison with other interdisciplinary WSR initiatives

This section compares UKERC’s pursuit of WSR with a handful of other broadly similar UK-based initiatives. The section draws on two types of sources: firstly, the published accounts of senior researchers involved in the different initiatives [56,1,13,5,62,14,16,17,7]. Secondly, original fieldwork conducted for the UKERC case study: as well as their UKERC-based experiences, several of the fieldwork participants were involved in one or more of the other initiatives discussed here, and the fieldwork explicitly solicited comparisons between UKERC and these other initiatives.

The comparative assessment helps to discriminate UKERC case specifics from wider patterns. The comparison has involved identifying some of the main factors involved in shaping WSR practice: funding

Table 1

| Selected UK Interdisciplinary WSR Energy Related Research Initiatives. |
|-----------------------------|-----------------------------|
| **Main Funder(s)** | **Overall Budget** | **Disciplinary Diversity** | **Programme Flexibility** | **Programme Integration** | **Programme Transdisciplinarity** |
| **UKERC 1 (2004–09)** | NERC, EPSRC, ESRC | c.£18.5m | Medium (across physical, social and environment sciences) | Low | High | Low |
| **UKERC 2 (2009–14)** | NERC, EPSRC, ESRC | c.£15m | High (across physical, social and environmental sciences) | High | Medium | Low |
| **Tyndall Centre (Phases 1 and 2; 2000–10)** | NERC, EPSRC, ESRC | c.£19m | Medium (mainly social and environmental sciences) | Medium | Medium | Medium |
| **Transition Pathways (Phases 1 and 2; 2008–16)** | EPSRC & (e-con in Phase 1) | c.£6.6m | Medium (mainly physical and social sciences) | Low | High | Medium |
| **Rural Economy and Land Use (RELU) (2004–12)** | ESRC, BBSRC, NERC | c.£22m | Medium (across environmental, biological and social sciences) | High | Low | High |

- Including non-research activities.
- BBSRC = Biotechnology and Biological Sciences Research Council.
sources and budget, disciplinary diversity, research programme flexibility, programme integration and transdisciplinarity (Table 1). The assessments are based on evidence from published and fieldwork sources, and the author’s longstanding working knowledge of the different initiatives (as an advisor, workshop/conference participant and research colleague).

The assessments have been made on a consistent basis: e.g. a ‘high’ flexibility rating indicates that a substantial proportion of the overall funds were allocated on an open and competitive basis; a ‘high’ integration rating indicates research processes and outputs that encompassed the majority of the staff involved; a ‘high’ transdisciplinary rating indicates that non-academic stakeholders were co-designers or co-producers across most of the research programme.

Fig. 5 maps the five initiatives in Table 2 against four criteria: diversity, flexibility, integration and transdisciplinarity. (These are the three elements of interdisciplinary WSR identified earlier, plus an additional ‘flexibility’ criterion, reflecting the tension in WSR programme design between fixed funds and membership versus more flexible, emergent arrangements). The analysis suggests that under limited funding there are some pervasive tensions in interdisciplinary WSR strategy and practice. For example, the only two initiatives with highly integrated practice and outcomes (UKERC 1 and Transition Pathways) both operated with closed networks, suggested a trade-off between integratedness and openness.

Case particularities shaped these experiences. For example, single-Council funded initiatives such as Transition Pathways were not faced with deriving distinctive outputs for multiple funders; the Transition Pathways consortium was also permitted greater continuity between phases than larger centres such as UKERC and the Tyndall Centre. RELU was distinct in that, although it developed a reflexive interdisciplinary research strategy, it did not seek to develop integrated programme-wide insights across its programme: ‘RELU [was] less explicitly “whole system” oriented than UKERC; we avoided a single methodological or modelling approach … we tried opening-up systems models to different disciplines and stakeholders’ [interview, EA3]. Reflecting its strong transdisciplinary commitment, RELU emphasised contextual, local knowledge rather than UKERC’s orientation to more ‘authoritative’ knowledge and expertise; this suggests another inherent trade-off in WSR design and practice: between stakeholder engagement and independence.

UKERC had a unique role as the Research Council Energy Programme’s national co-ordination centre [63]. While this was largely pursued by ‘non-research’ parts of the Centre, it carried some implications for senior UKERC researchers: for example, in commissioning and leading facilitated research conferences and stakeholder workshops. These expectations of ‘good academic citizenship’ arguably prioritised external relations above internal co-ordination.

Strategic choices were also involved. UKERC gave less explicit attention to its WSR ‘aims, means and methods’ than some other initiatives. For example, both Transition Pathways and RELU research designs explicitly included interdisciplinary tasks, methods and resources. Among fieldwork respondents with experiences of multiple initiatives, UKERC was judged positively in terms of disciplinary breadth and application (i.e. bringing together different disciplines to address ‘real world’ problems), but less positively in its WSR design and methods: ‘Transition Pathways was more consciously interdisciplinary … more thought was placed on the actual process’ [Interview, EC1]; ‘RELU was the best example I know of … building a community of practice’ [interview, AA3]. Although UKERC’s less formal approach lent strategic flexibility, it also meant fewer planned opportunities and dedicated resources for interdisciplinary exchange.

Looking more broadly, the UK’s interdisciplinary energy research efforts during this period involved multiple public and private sector initiatives, each created for particular purposes at particular times. The resulting pattern is accumulating, overlapping and piecemeal [64]. While a dispersed, polycentric research system has its merits – such as reduced institutional lock-in [19] – it also brings costs, with a danger of ‘reinventing the wheel’, as similar underlying challenges are discovered anew by each initiative. For UKERC, this institutional churn has meant adapting its strategy as newer initiatives were created (for example,
reducing its efforts on whole systems modelling and end use energy demand); more broadly, it is also at odds with calls for long term stability in major research initiatives.

Further research is needed to compare the different interdisciplinary WSR strategies and practices, beyond the cases covered here, across different combinations of disciplinary breadth or focus, research programme flexibility or integration, and engagement or independence. Table 2 offers a summary of WSR model archetypes, as a guide to researchers, commissioners and assessors.

6. Conclusions and recommendations

Despite attracting increasing interest as a response to complex societal challenges, interdisciplinary WSR is under-recognised as distinct research form among researchers, funders, stakeholders (and interdisciplinary analysts). As a result, it tends to operate in the margins of disciplinary-based research systems. Though it can be designed and practised in different ways, interdisciplinary WSR is likely to involve a combination of radical disciplinary breadth, integrative programme design and transdisciplinary ambition. However, these elements are not easily reconciled, and funders, assessors and leaders of WSR initiatives should give careful attention to the choices and trade-offs involved.

To help better understand WSR as a distinct interdisciplinarily form, this paper has considered the experiences a prominent UK initiative over a decade of changing strategies, practices and contexts. The UKERC case illustrates the tensions between disciplinary diversity and inter disciplinary integration, organisational stability and flexibility, and academic independence and engagement. In its first phase UKERC's pursued an integrated form of WSR across a stable research community. In Phase 2, despite having a similar remit, the emphasis was on diversity and flexibility. There was strikingly little attention to these different forms among research funders, commissioners and strategists.

To help consider the generalisability of the case study, the paper offered a short comparative assessment of several energy-related interdisciplinary WSR initiatives in the UK. This comparison, and the wider research literature, indicates the pervasive nature of WSR challenges and trade-offs, yet among more recent UK initiatives (e.g. [65,81]) there is little explicit reference to earlier experiences, suggesting a lack of reflexivity and learning. The comparative analysis was also used to generate a set of interdisciplinary WSR archetypes as a guide to funders, researchers and further interdisciplinary studies.

Interdisciplinary WSR can offer distinctive insights on complex societal challenges, but it is a fragile and often elusive form – as Mike Hulme noted over a decade ago: 'difficult to fund, difficult do and to evaluate' ([1,p. 16]). The UK Government has recently introduced a more unified structure for interdisciplinary research [66] – a longstanding request by some interdisciplinarians. Any revised structure will bring new concerns, for example, the suggested closer coupling between business and academia, and many other intellectual and institutional forces will continue to present challenges to interdisciplinary WSR strategy and practice. Rather than abandoning such research in the face of these challenges, however, the need is to better acknowledge its distinctive role and dependencies.

Acknowledgements

The research supporting this paper was in-part undertaken for the UK Energy Research Centre, supported by the UK Research Councils awards NE/G007748/1 and EP/L024756/1. The author wishes to thank three anonymous Energy Research and Social Science reviewers and the Editor in Chief for their detailed comments, and also a number of UKERC advisors who kindly commented on earlier versions of the paper. Thanks also to Joanna Ketsopoulou and Tim Churchouse who helped carry out the fieldwork. The views expressed are the author's own.

References

[17] J. Phillipson, P. Lowe, A. Proctor, E. Ruto, Stakeholder engagement and knowledge...

