Verbal working memory and functional large-scale networks in schizophrenia

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.pscychresns.2017.10.004

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Psychiatry Research-Neuroimaging

Publisher Rights Statement:
© 2017 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Verbal working memory and functional large-scale networks in schizophrenia

Maria R. Dauvermann, Thomas WJ Moorhead, Andrew R. Watson, Barbara Duff, Liana Romaniuk, Jeremy Hall, Neil Roberts, Graham L. Lee, Zoë A. Hughes, Nicholas J. Brandon, Brandon Whitcher, Douglas HR Blackwood, Andrew M. McIntosh, Stephen M. Lawrie

ARTICLE INFO

Keywords: Working memory Schizophrenia Functional Magnetic Resonance Imaging Functional large-scale networks Nonlinear Dynamic Causal Modeling

ABSTRACT

The aim of this study was to test whether bilinear and nonlinear effective connectivity (EC) measures of working memory fMRI data can differentiate between patients with schizophrenia (SZ) and healthy controls (HC). We applied bilinear and nonlinear Dynamic Causal Modeling (DCM) for the analysis of verbal working memory in 16 SZ and 21 HC. The connection strengths with nonlinear modulation between the dorsolateral prefrontal cortex (DLPFC) and the ventral tegmental area/substantia nigra (VTA/SN) were evaluated. We used Bayesian Model Selection at the group and family levels to compare the optimal bilinear and nonlinear models. Bayesian Model Averaging was used to assess the connection strengths with nonlinear modulation. The DCM analyses revealed that SZ and HC used different bilinear networks despite comparable behavioral performance. In addition, the connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area showed differences between SZ and HC. The adoption of different functional networks in SZ and HC indicated neurobiological alterations underlying working memory performance, including different connection strengths with nonlinear modulation between the DLPFC and the VTA/SN area. These novel findings may increase our understanding of connectivity in working memory in schizophrenia.

1. Introduction

Schizophrenia is a severely disabling illness that is characterized by positive and negative symptoms as well as cognitive deficits. It is thought that such cognitive deficits are often associated with working memory deficits (Bozikas and Andreou, 2011; Genevsky et al., 2010; Gold, 2004). Evidence comes from functional Magnetic Resonance Imaging (fMRI) studies including functional connectivity (FC) and effective connectivity (EC) studies in verbal working memory in patients with schizophrenia (SZ) and healthy controls (HC). Such studies repeatedly reported cortical disconnection in SZ when compared to HC (Birbaumer and Weinberger, 2013; Dauvermann et al., 2014; Deserno et al., 2012; Glahn et al., 2005; Schlosser et al., 2003a, 2003b, 2006; Schmidt et al., 2013, 2014).

Evidence from animal studies proposes that activity-dependent synaptic plasticity processes (Abbott et al., 1997; Rothman et al., 2009).
are modulated via nonlinear effects. These nonlinear and glutamatergic modulation processes encompass the meso-cortical and cortico-mesal connections (Pan and Zucker, 2009; Salinas and Sejnowski, 2001; Wang, 2010) and are implicated in working memory (Berends et al., 2005; Durstewitz and Seamans, 2002, 2008; Gao et al., 2003; Laruelle et al., 2005; Murphy and Miller, 2003; Neher and Sakaba, 2008; Pan and Zucker, 2009; Salinas and Sejnowski, 2000; Sun and Beierlein, 2011; Tseng and O’Donnell, 2004; Tzschentke, 2001; Volman et al., 2010), which also involve dopaminergic modulation processes (Coyle, 2006; Javitt, 2007; Tanaka, 2006). For human neuroimaging studies, it has been shown that the connection from the ventral tegmental area/substantia nigra (VTA/SN) area to the dorsolateral prefrontal cortex (DLPFC) (i.e. the meso-cortical connection) is implicated in working memory function (D’Ardenne et al., 2012; Murty et al., 2011). Furthermore, for SZ it has been proposed that blood oxygen level-dependent (BOLD) responses during working memory in SZ could be explained by underlying gating mechanisms of the meso-cortical connection when compared to HC (Braver et al., 1999; Braver and Cohen, 1999). In other words, observed changes in BOLD responses and cortical connectivity may be driven by altered connection strengths with nonlinear modulation of the meso-cortical and/or cortico-mesal connections.

The Dysconnection Hypothesis posits that the N-Methyl-D-aspartate receptor (NMDA-R) hypofunction model for schizophrenia could be underlying the pathophysiological pathways of altered synaptic plasticity processes and thus result in cortical dysconnectivity in schizophrenia (Friston et al., 2016; Friston and Frith, 1995; Stephan et al., 2006, 2009; Weinberger, 1993). In clinical studies, the non-invasive and indirect investigation of the NMDA-R hypofunction model can be modeled by Dynamic Causal Modeling (DCM) for fMRI. DCM is a biophysical modeling approach of neuronal dynamic processes (Friston and Dolan, 2010; Friston et al., 2003) that integrates functional large-scale models with Bayesian inversion methods (Daunizeau et al., 2011a; Friston and Dolan, 2010). DCM evaluates inter-regional EC through assessment of experimental modulation of a given experimental task (Friston et al., 2003) within a priori defined functional large-scale networks. Nonlinear DCM, an extension of bilinear DCM, allows for the inference about nonlinearities in fMRI data (Stephan et al., 2008).

We hypothesized that the connection strengths with nonlinear modulation from the VTA/SN area to the DLPFC would be altered in contrast to the connection strength with nonlinear modulation from the DLPFC to the VTA/SN as a potential measure of working memory disruption between SZ and HC. To test this hypothesis, we applied bilinear and nonlinear DCM for fMRI in separate analysis steps to investigate functional large-scale networks in the verbal “N-Back” task in SZ and HC.

2. Methods

2.1. Subjects

Sixteen SZ and 21 HC participated in the verbal working memory fMRI task. SZ and HC were recruited from the Royal Edinburgh Hospital, associated hospitals and the Scottish Mental Health Research Register (http://www.smhrn.org.uk/). Diagnosis of schizophrenia was based on interview using the Structured Clinical Interview for DSM-IV (First et al., 2002). SZ were also assessed with the Positive and Negative Syndrome Scale (Kay et al., 1987), Scale for the Assessment of Negative Symptoms (Andreasen, 1989) and the Global Assessment of Function (Pedersen and Karterud, 2012). Inclusion criteria included (i) diagnosis of established schizophrenia as assessed, and (ii) no acute psychotic symptoms at the time of the scan. Exclusion criteria included (i) history of any major psychiatric illness other than schizophrenia, (ii) history of severe brain injury, (iii) history of a neurological disorder, and (iv) dependency or harmful use of alcohol or drugs during the last 12 months. Also, HC were excluded if they had a family history of schizophrenia. All participants provided written informed consent. The study was approved by the local Research Ethics Committee.

2.2. Functional experimental details

All participants performed the verbal “2-Back” task known to show a consistent functional large-scale network of BOLD responses (Owen et al., 2005). They were presented with a sequence of single capital letters (Broome et al., 2009). The experimental block design consisted of (i) the baseline or “0-Back” condition; (ii) the “1-Back” condition; and (iii) the “2-Back” condition. Behavioral task performance was analyzed with the sensitivity index d’ (Eq. (1)) (Macmillan and Creelman, 1991).

\[
d’ = z(Hits) - z(Falsealarm) = z(Hits) - z(Falsealarm) = \frac{1}{\sqrt{\pi}} f(x) dx
\]

where \(z(Hits)\) and \(z(Falsealarm)\) are the standard normal distribution values for hits and false alarms, respectively.

Hits and false alarm rates were adjusted as previously reported (Macmillan and Kaplan, 1985). For the fMRI and DCM analyses, SZ and HC were selected based on comparable good behavioral performance level in the “N-Back” task to control for behavioral performance impairments on BOLD response (Eryilmaz et al., 2016) and EC measures. Briefly, the cut-off for good behavioral performance was set at \(d’ > 1.93\) which equals a hit rate > 85% and false alarm rate < 20% across all participants. D’ values were entered in a general linear model with group as fixed factor and age and gender as covariates.

2.3. Functional scanning procedure

Brain imaging was carried out at the Clinical Research Imaging Centre at the Queen’s Medical Research Institute (Edinburgh, UK) on a Siemens 3 T whole-body MRI Verio scanner (Siemens Medical Systems, Erlangen, Germany) using the matrix head coil with 12 elements. Structural scans, verbal “N-Back” EPI scans were acquired during the same scanning session in all participants.

An initial localizer scan was performed to measure the inter-hemispheric angle and the AC-PC line. The structural images were acquired using \(T_1\)-weighted, magnetization prepared rapid acquisition gradient echo images prescribed parallel to the AC-PC line, providing 160 sagittal slices of 1 mm thickness, 256 × 256 mm² FOV, matrix size 256 × 256 mm². Further scan parameters were \(TR = 3200\) ms, \(TE = 2.98\) ms, \(TI = 900\) ms and flip angle = 9°. EPI scans for the “N-Back” task were acquired continuously during the experimental task \((TR/TE = 1560/26\) ms, matrix size of 256 × 256 mm²; FOV 256 × 256 mm²). Twenty six interleaved slices with 4 mm slice thickness were acquired. Each EPI sequence encompassed 293 volumes of which the first six volumes were discarded.

2.4. FMRI data analysis

FMRI data processing and statistical analyses were performed in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/) running in Matlab (version 7.1; The MathWorks, Natick, MA, USA). All functional volumes were spatially realigned, normalized to MNI space and spatially smoothed with an isotropic 8 mm full-width at half-maximum Gaussian kernel.

For the statistical analyses, the onset times for each condition were convolved using a canonical hemodynamic response function. For the design matrix, the temporal reference has been set to the middle slice in the EPI acquisition where the TR was set to 1560 ms. The main contrast of interest was defined as “0-Back” < “2-Back” with age and gender as covariates. From this second-level analysis, we generated statistical parametric maps of the T statistic and F statistic at each voxel SPM (Constantinidis and Klingberg, 2016), which denoted differences in activation for the main contrast of interest. The statistical parametric maps were thresholded at \(p < 0.001\) uncorrected. Regions are reported that survived cluster-level correction for multiple comparisons across
the whole brain at $p < 0.05$. For the ACC and the VTA/SN area, we applied a threshold of $p < 0.05$ FDR in accordance with a previous report (Genovese et al., 2002).

2.4.1. Dynamic Causal Modeling

DCM analyses were run using DCMs (revision number 3684) as implemented in SPM8 to assess EC in the verbal “N-Back” task. Bilinear and nonlinear DCM was run following the heuristic search protocol (Dauvermann et al., 2013). The connections strengths modeled for the bilinear models and nonlinear models followed the original equations (Friston et al., 2003; Stephan et al., 2008; Penny et al., 2010): Matrix A denotes the endogenous connection strength in the absence of experimental manipulations; matrix B resembles the modulation of those endogenous connections by the experimental manipulation induced by the main contrast of interest; matrix C reflects activating inputs, which represent extrinsic parameters that change the neuronal state of brain regions within the model; and matrix D denotes the gating of a connection between two regions by the activity of a third region.

2.4.1.1. Region of interest selection and time series extraction

The selection of the regions of interest (ROIs) was based on (i) the second-level SPM results of the “0-Back” < “2-Back” contrast, and (ii) reported findings in the literature. Clinical fMRI and PET studies repeatedly reported the involvement of the DLPFC, intra-parietal sulcus (IPS), anterior cingulate cortex (ACC), and the VTA/SN area. These areas are in keeping with these studies on the VTA/SN area in working memory (D’Ardenne et al., 2012; Murty et al., 2011; Xu et al., 2013; Yu et al., 2005); FC, (Meyer-Lindenberg et al., 2001, 2005b; Quide et al., 2013; Rasetti et al., 2011; Tan et al., 2006); EC, (Deserno et al., 2012; Schmidt et al., 2013, 2014; Zhang et al., 2013). The VTA/SN area was included in the networks in addition to the established regions of the DLPFC, IPS and ACC to model the functional role of the VTA/SN area in working memory as reported in recent fMRI and PET studies in HC (D’Ardenne et al., 2012; Murty et al., 2011; Xu et al., 2013; Yu et al., 2013) and EST (D’Auito et al., 2015). The coordinates of the VTA/SN area are in keeping with these studies on the VTA/SN area in working memory.

Regional time series of the four regions were extracted from the individual’s activation map of the contrast thresholded at $P < 0.05$ uncorrected at the closest maxima within a standard distance of 8 mm of the group peak level for the IPS and DLPFC and adjusted distance of 6 mm of the group peak level for the ACC and the VTA/SN area according to previous studies. This procedure ensured that the selected ROIs for the DCM networks were consistent across subjects (Stephan et al., 2007). Participants were selected on the basis of the requirement of activation in all four ROIs in either the left or right hemisphere. This process led to the exclusion of one SZ and three HC. The coordinates of the ROIs are presented in Table 1.

2.4.1.2. Heuristic study protocol

The heuristic search protocol for the application of nonlinear DCM for fMRI (Dauvermann et al., 2013) has been adapted for the verbal “N-Back” task to examine connection strengths with nonlinear modulation of the bidirectional connection between the DLPFC and the VTA/SN area within a network comprising the DLPFC, IPS, ACC and VTA/SN area:

(i) Phase 1: bilinear DCM
(ii) Phase 2: nonlinear DCM
(iii) Phase 3: Bayesian Model Averaging (BMA).

In phase 1, bilinear DCM was used in order to select the structure for the working memory network. This analysis contained modulations for the activity-dependent neuronal interactions between the four regions. The optimal model of this analysis was entered into phase 2.

In phase 2, nonlinear DCM was applied to model the connection strengths with activity-dependent modulation of the bidirectional connection between the VTA/SN area and the DLPFC. In order to ensure the modeling of the nonlinear modulation, two preconditions were met: (i) The specification of the nonlinear models was based on the optimal bilinear model from phase 1. Therefore, the bilinear model and the nonlinear models differed only in the single parameter of nonlinearity from each other. (ii) The implementation of Model Space Partitioning and Family Inference was applied to compare between the bilinear and nonlinear models.

In phase 3, the connection strengths with nonlinear modulation in the winning model family were assessed using the posterior densities over connection strengths as assessed with BMA. This step allowed inference of the connection strengths with nonlinear modulation of the bidirectional meso-cortical and cortico-mesal connections.

The three phases of the DCM analyses were run separately for the two groups and both hemispheres.

2.4.1.2.1. Phase 1: Bilinear Dynamic Causal Modeling

The model space of bilinear models consisted of nine functional large-scale networks or DCMs. The DCMs differed in their unidirectional and bidirectional endogenous connections between the four ipsilateral regions of the DLPFC, IPS, ACC and VTA/SN area, whereas the modulations were identical across the nine DCMs (Fig. 1A). Both preclinical and clinical studies of working memory function and gating mechanisms have been used to specify each connection between the regions, each modulation and each input for working memory function to increase the biological interpretability of the biological models (Yahata et al., 2017; Dauvermann et al., 2017).

The endogenous connections between the DLPFC, IPS and ACC have been widely modeled based on animal studies that investigated working memory function (Berends et al., 2005; Durstewitz and Seamans, 2002, 2008; Gao et al., 2003; Laruelle et al., 2005; Murphy and Miller, 2003; Neher and Sakaba, 2008; Pan and Zucker, 2009; Salinas and Sejnowski, 2000; Sun and Beierlein, 2011; Tseng and O’Donnell, 2004; Tzschentke, 2001; Volman et al., 2010).

For example, the endogenous connections between the ACC and the VTA/SN area were defined on the basis of known dopaminergic projections (Onn and Wang, 2005). Furthermore, clinical studies were used for the other connections: FC and EC findings for the “N-Back” task were used to specify functional connections between the IPS and the DLPFC (FC, (Quide et al., 2013; Rasetti et al., 2011; Tan et al., 2006); EC, (Deserno et al., 2012; Schmidt et al., 2013, 2014; Zhang et al., 2013), the IPS and ACC (FC, (Meyer-Lindenberg et al., 2001); EC during the Continuous Performance Task (CPT) (Brazdil et al., 2007); the DLPFC and the ACC (Brazdil et al., 2007)). Lastly, the endogenous connections between the DLPFC and VTA/SN area were specified by known dopaminergic projections from the VTA/SN area to the DLPFC (Au-Young et al., 1999; D’Ardenne et al., 2012; Gao and Wolf, 2007; Girault and Greengard, 2004; Takahata and Moghaddam, 1998) and glutamatergic projection from the DLPFC to the VTA/SN area (Tseng and O’Donnell, 2004; Tzschentke, 2001).

Connections with modulatory input were defined by the “0-

Table 1

| Talairach coordinates for the ROIs for the Dynamic Causal Modeling analyses. |
|----------------------------------|----------------------------------|
| Brain regions, BA | Coordinates in Talairach space x, y, z |
| ACC, BA32 | 0, 24, 28 |
| Left DLPFC, (BA8; BA9) | −37, −34, 32 |
| Right DLPFC, BA9 | 37, 42, 27 |
| Left IPS, BA40 | −44, −46, 52 |
| Right IPS, BA40 | −44, −46, 52 |
| Left VTA/SN area | −9, −17, −6 |
| Right VTA/SN area | 7, −17, −3 |

Abbreviations: ACC, anterior cingulate cortex; BA, Brodmann areas; DCM, Dynamic Causal Modeling; DLPFC, dorsolateral prefrontal cortex; IPS, intra-parietal sulcus; ROIs, regions of interest; VTA/SN area, ventral tegmental area/substantia nigra area.
Back” < “2-Back” experimental manipulation of the working memory load. Evidence for (parametric) working memory load and interaction effects with working memory load during the “N-Back” task in SZ and HC has been presented for (i) BOLD response results of the bilateral subregions of the prefrontal cortex (PFC) (including the DLPFC), bilateral inferior-parietal lobule (IPL), ACC (Callicott et al., 2000, 2003; Guerrero-Pedraza et al., 2012; Perlstein et al., 2001; Quide et al., 2013; Rasetti et al., 2011; Tan et al., 2006; Thermenos et al., 2005); (ii) FC measures of bilateral subregions of the PFC (including the DLPFC) and bilateral IPL (Quide et al., 2013; Rasetti et al., 2011; Tan et al., 2006)
Fig. 1. Model space of bilinear and nonlinear models. (A) Model space of bilinear models for both groups. All nine models are characterized by bidirectional endogenous connections (black arrow) between the IPS and DLPFC, IPS and ACC and DLPFC and ACC. Furthermore, all models are defined by a modulatory input (blue arrow) on the connection from the IPS to the DLPFC. All models receive two driving inputs (red arrow): One driving input (presented visual stimuli, i.e. single letters) enters the IPS; and one driving input (false alarms) enters the VTA/SN. The nine models differ in the specification of unidirectional or bidirectional endogenous connections: (i) Between the DLPFC and the VTA/SN and (ii) between the ACC and VTA/SN. Model 1 is specified by a bidirectional endogenous connection (i) between DLPFC and VTA/SN and (ii) and ACC and VTA/SN. Model 2 is specified by a unidirectional endogenous connection from DLPFC to VTA/SN and a bidirectional endogenous connection between ACC and VTA/SN. Model 3 is specified by a unidirectional endogenous connection from VTA/SN to DLPFC and a bidirectional endogenous connection between ACC and VTA/SN. Model 4 is specified by a bidirectional endogenous connection between DLPFC and VTA/SN and an unidirectional endogenous connection from VTA/SN to ACC. Model 5 is specified by a unidirectional endogenous connection from DLPFC to VTA/SN and a unidirectional endogenous connection from VTA/SN to ACC. Model 6 is specified by a unidirectional endogenous connection from VTA/SN to DLPFC and a unidirectional endogenous connection from VTA/SN to ACC. Model 7 is specified by a bidirectional endogenous connection between DLPFC and VTA/SN and a unidirectional endogenous connection from ACC to VTA/SN. Model 8 is specified by a unidirectional endogenous connection from DLPFC to VTA/SN and a unidirectional endogenous connection from ACC to VTA/SN. Model 8 is specified by a unidirectional endogenous connection from DLPFC to VTA/SN and a unidirectional endogenous connection from ACC to VTA/SN. Model 9 is specified by a unidirectional endogenous connection from VTA/SN to ACC and a unidirectional endogenous connection from ACC to VTA/SN. Model 10 is specified by a unidirectional endogenous connection from DLPFC to VTA/SN and a unidirectional endogenous connection from ACC to VTA/SN. Model 11 is specified by a unidirectional endogenous connection from VTA/SN to ACC and a unidirectional endogenous connection from ACC to VTA/SN. Model 12 is specified by a unidirectional endogenous connection from DLPFC to VTA/SN and a unidirectional endogenous connection from ACC to VTA/SN.

(ii) Model family 2 - two nonlinear models with nonlinear modulation (green arrow) from DLPFC to the connection from VTA/SN to DLPFC. Model 1_DLPFC_VTA/SN_DLPFC is specified by the nonlinear modulation (green arrow) from DLPFC to the connection from VTA/SN to DLPFC. Model 1_DLPFC_DLPFC_VTA/SN is specified by the nonlinear modulation (green arrow) from DLPFC to the connection from VTA/SN to DLPFC. Model 1, VTA/SN, DLPFC and model 1 VTA/SN, DLPFC are characterized by the nonlinear modulation (green arrow) from the DLPFC on the bidirectional connection between VTA/SN and DLPFC. Both models are specified upon the winning bilinear model and form model family 2. Model 1_DLPFC_VTA/SN_DLPFC is specified by the nonlinear modulation (green arrow) from DLPFC to the connection from VTA/SN to DLPFC. Model 1_DLPFC_VTA/SN_DLPFC is specified by the nonlinear modulation (green arrow) from DLPFC to the connection from VTA/SN to DLPFC. Model 1_DLPFC_DLPFC_VTA/SN is specified by the nonlinear modulation (green arrow) from DLPFC to the connection from VTA/SN to DLPFC. Model 1, VTA/SN, DLPFC and model 1 VTA/SN, DLPFC are characterized by the nonlinear modulation (green arrow) from the DLPFC on the bidirectional connection between VTA/SN and DLPFC. Both models are specified upon the winning bilinear model and form model family 3. Model 1, VTA/SN, DLPFC and model 1 VTA/SN, DLPFC are characterized by the nonlinear modulation (green arrow) from the DLPFC on the bidirectional connection between VTA/SN and DLPFC. Both models are specified upon the winning bilinear model and form model family 3. Model 1_DLPFC_VTA/SN_DLPFC is specified by the nonlinear modulation from VTA/SN to the connection from VTA/SN to DLPFC. Model 1, VTA/SN, DLPFC and model 1 VTA/SN, DLPFC are characterized by the nonlinear modulation (green arrow) from the DLPFC on the bidirectional connection between VTA/SN and DLPFC. Both models are specified upon the winning bilinear model and form model family 3. Model 1, VTA/SN, DLPFC and model 1 VTA/SN, DLPFC are characterized by the nonlinear modulation (green arrow) from the DLPFC on the bidirectional connection between VTA/SN and DLPFC. Both models are specified upon the winning bilinear model and form model family 3. Model 1_DLPFC_VTA/SN_DLPFC is specified by the nonlinear modulation from VTA/SN to the connection from VTA/SN to DLPFC. ACC, anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex; IPS, intra-parietal sulcus; VTA/SN, ventral tegmental area/substantia nigra.

and (ii) task-dependent EC findings of bilateral subregions of the PFC (including the DLPFC) and bilateral IPL (Deserno et al., 2012; Schmidt et al., 2013, 2014; Zhang et al., 2013).

Driving inputs were defined by previous DCM studies, which reported evidence of effects of visual presentation of stimuli to the IPS (during the CPT) (Brazdil et al., 2007; Wang et al., 2010). The bilateral effects were driven by box car stimulus functions encoding difficulty level of the N-Back task, whereas the driving inputs were driven by box car stimulus functions encoding the main effect of the task.

Bayesian Model Selection (BMS) at the group level has been applied to models of both hemispheres in SZ and HC separately. BMS tests competing hypotheses (the models) about the neural mechanisms generating the data by assessing the model evidence as previously described (Penny et al., 2010, 2004).

2.4.1.2.2. Phase 2: Nonlinear Dynamic Causal Modeling. The objective of modeling the gating mechanism for the bidirectional connection between the DLPFC and the midbrain region comprised of the ventral tegmental area (VTA) and substantia nigra (SN) area during working memory in subjects with schizophrenia and healthy controls, three widely established findings have been incorporated into the models:

- The dopaminergic meso-cortical projection from the VTA/SN area to the DLPFC (bilinear models);
- The glutamatergic projection from the DLPFC to the VTA/SN area (bilinear models); and
- The gain modulation of both of these two connections (nonlinear models).

The model space of nonlinear models comprised four nonlinear networks and was specified on the basis of the optimal bilinear network as outlined in phase 1 of the heuristic search protocol.

The nonlinear modulation of the meso-cortical and cortico-mesial connections is based on evidence from clinical neuroimaging (Braver et al., 1999; Braver and Cohen, 1999) as well as animal and computational studies (Arnsten et al., 2010, 2012; Berends et al., 2005; Tseng and O’Donnell, 2004; Tzschentke, 2001; Wang, 2010).

There were two different optimal models for the “N-Back” task in SZ and HC as a result of the BMS at the group level. Model 1 (bilinear model; Fig. 1A) was the optimal bilinear model for SZ for both hemispheres, whereas as model 7 (bilinear model; Fig. 1A) was the optimal model for HC for both hemispheres. Thus, the nonlinear models were defined separately for SZ and HC.

For SZ, two nonlinear models were constructed on the structure of the winning Model 1 with nonlinear modulation from the DLPFC to both connections between the DLPFC and the VTA/SN area (i.e. nonlinear models – DLPFC, Fig. 1B). Two further models were defined on the basis of model 1 by the nonlinear modulation from the VTA/SN area to the connections between the DLPFC and the VTA/SN area (i.e. nonlinear models – VTA/SN area, Fig. 1B). The nonlinear model space for HC was defined accordingly to model 7.

The previously described BMS inference approach at the model family level, phase 2 of the protocol, has been applied. The BMS analysis was separately run for both groups and both hemispheres. The model space for SZ was partitioned in to three model families:

(i) Model family 1 - optimal bilinear model 1 (Fig. 1A);
(ii) Model family 2 - two nonlinear models with nonlinear modulation from the DLPFC (nonlinear models – DLPFC; Fig. 1B);
(iii) Model family 3 - two nonlinear models with nonlinear modulation from the VTA/SN area (nonlinear models – VTA/SN area; Fig. 1B).

The model space partitioning for HC was defined accordingly to Model 7 and based on the same structure as the model space partitioning for SZ. The Xp for the two winning model families 2 and 3 were summarized as described previously (Dauvermann et al., 2013).

2.4.1.2.3. Phase 3: Connection strength with nonlinear modulation - Bayesian Model Averaging. Bayesian Model Averaging (BMA) has been applied to the winning models from BMS at the model family level as previously applied (Dauvermann et al., 2013), where the posterior densities of the connection strength with nonlinear modulation for the meso-cortical and cortico-mesial connections in the winning models are assessed.

3. Results

3.1. Demographic, clinical and behavioral details

Sixteen SZ and 21 HC underwent the ‘2-Back’ fMRI task of which 15 SZ and 18 HC were included in the DCM analyses (left hemisphere, 13 SZ and 18 HC, right hemisphere, 15 SZ and 16 HC). Full demographic and clinical details including medication details are presented in Table 2. All SZ were treated with antipsychotic medication. Neither task accuracy during the ‘2-Back’ condition nor the response times were (footnote continued)
3.2. Functional MRI results

The main results showed greater activation in the bilateral DLPFC (BA9/46) in HC when compared to SZ (BA9, x = −46, y = 25, z = 31; P = 0.036; BA46, x = 41; y = 29, z = 17; P = 0.044; Fig. 2A; voxel-wise P < 0.01 uncorrected and FWE corrected cluster level). Other regions of greater activation in HC than in SZ included the IPS (BA40 (x = 49, y = −47, z = 30; P = 0.022; voxel-wise p < 0.01 uncorrected and FWE corrected cluster level), the ACC (BA32) (x = 3, y = 36, z = 26; P = 0.0243) and the bilateral midbrain region of the VTA/SN (k = −9, y = −17, z = −6; P = 0.047; Fig. 2B; right hemisphere, x = 7, y = −17, z = −3; P = 0.049; both at P < 0.05 FDR corrected cluster level; Table 3). Briefly, the statistical findings are in keeping with clinical verbal/numeric “N-Back” studies (Callicott et al., 2000; Glahn et al., 2005; Tan et al., 2006; Wang et al., 2010) and the BOLD response of the VTA/SN area had been reported previously in working memory in HC (D’Ardenne et al., 2012; Murty et al., 2011).

3.3. Dynamic Causal Modeling

3.3.1. Phase 1: Bilinear Dynamic Causal Modeling

The exceedance probabilities (XP) of models 1, 2, 7 and 8 ranged between XP = 0.14 – 0.24 for HC and XP = 0.13 – 0.23 for SZ, respectively. In SZ, model 1 was the optimal model, whereas models 7 and 8 displayed the greater probability in HC.

In SZ, model 1 was the optimal model for both hemispheres (left hemisphere, XP = 0.23; Fig. 3A; right hemisphere, XP = 0.20; Fig. 3B). In contrast, model 7 was the optimal model for the left hemisphere in HC (XP = 0.24; Fig. 3A) whereas model 8 was the optimal model for the right hemisphere (XP = 0.23; Fig. 3B).

Insert Fig. 3

3.3.2. Phase 2: Nonlinear Dynamic Causal Modeling

We report three main results for the BMS analysis at the model family level as described in the model space partitioning:

(i) The nonlinear model families outperformed the bilinear model family in both SZ and HC (left hemisphere, Fig. 4A; right hemisphere, Fig. 4B).
(ii) In SZ, model family 2 was the optimal model family (left hemisphere, XP = 0.44; right hemisphere, XP = 0.56).
(iii) In HC, model family 2 was the winning model family (left hemisphere, XP = 0.46; right hemisphere, XP = 0.45).

It is noted that the results cannot be directly compared between HC and SZ because two different model structures underlie the BMS findings.

3.3.3. Phase 3 - connection strengths with nonlinear modulation

The posterior densities of connection strengths with nonlinear modulation for the meso-cortical and cortico-mesal connections are summarized in Fig. 5. In SZ, the posterior means ranged from 0.00 Hz/0.01 Hz (right/left hemisphere) for the meso-cortical connection to 0.04 Hz (left/right hemisphere) for the cortico-mesal connection. In HC, the posterior means ranged from −0.01 Hz/0.02 Hz (right/left hemisphere) for the meso-cortical connection to 0.001 Hz/0.02 Hz (right/left hemisphere) for the cortico-mesal connection. It is noted that the results cannot be directly compared between HC and SZ because two different model structures underlie the BMS findings.

4. Discussion

This study presents two novel sets of findings on EC measures in functional large-scale networks in working memory in SZ and HC: Firstly, we found that SZ and HC used different functional large-scale networks for verbal working memory as measured with bilinear DCM. Secondly, we reported connection strengths with nonlinear modulation in working memory in SZ and HC as inferred by nonlinear DCM. The main finding of the bilinear DCM analyses revealed that SZ used a different bilinear network than HC contrary to the hypothesis of altered connection strengths with nonlinear modulation of the meso-cortical connection of the same network. We interpreted the utilization of different networks as a potential illness effect since the behavioral performance in the working memory task was comparable between SZ and SZ.
and HC. It is also conceivable that the different functional large-scale network used by SZ may reflect a compensatory ‘network’ mechanism which explains the equally high behavioral performance level compared to HC. This interpretation of findings at the network level extends the widely shared notion that reduced DLPFC BOLD response during working memory in SZ may resemble cortical dysfunction (Schlosser et al., 2008) or a compensation mechanism to impaired cognitive function (Tan et al., 2006). Additionally, it is likely that antipsychotic medication may have affected the task-dependent and nonlinear EC findings. Recent studies showed group differences of task-dependent EC measures of the same functional network in the verbal “N-Back” task: (i) Reduced connection strengths with modulatory input of cortico-cortical and cortico-cerebellar connections and increased connection strengths with modulatory input of thalamo-cortical connection in SZ treated with second-generation antipsychotic (SGA) when contrasted to SZ treated with first-generation antipsychotics (FGA) and HC (Schlosser et al., 2003a), and (ii) reduced connection strengths with modulatory input of the prefrontal-parietal connection in patients with first-episode psychosis (FEP) in contrast to HC and subjects at-risk mental state (ARMS) but comparable EC measures with modulatory input between HC and FEP treated with antipsychotic medication (Schmidt et al., 2013). It is not possible to interpret the EC findings of modulatory input and nonlinear modulation in terms of potential pharmacological effects since this study was not designed for such an investigation.

Support for the interpretation of the observed differences in network utilization during the verbal “N-Back” task between SZ and HC comes from three recent DCM studies in SZ (Deserno et al., 2012) and ARMS/FEP that applied bilinear DCM (Schmidt et al., 2013, 2014). In the first study, Deserno et al. (2012) reported reduced task-dependent EC from the DLPFC to the parietal cortex in SZ when compared to HC as assessed with BMA after the observation of different optimal networks for SZ and HC (Deserno et al., 2012). Similarly, Schmidt et al. (2013) found progressively reduced task-dependent modulation of EC between the middle frontal gyrus (MFG) and superior parietal lobe (SPL) (from HC to ARMS) but comparable EC measures with modulatory input between HC and FEP treated with antipsychotic medication (Schmidt et al., 2013). Lastly, Schmidt et al. (2014) showed decreased task-dependent EC from

3 In this study, SZ were treated with a variety of FGA and SGA.
the right MFG to the right SPL in ARMS in contrast to HC as evaluated by BMA after different optimal large-scale networks were found (Schmidt et al., 2014). In these studies BMA was used to average the weights of the entire model space under the assumption that the same winning model is used by all groups to enable statistical group analyses. Those group differences in task-dependent EC are findings in their own right under the widely shared notion of the same functional network utilization among groups.

The findings of nonlinear connection strengths of the meso-cortical and cortico-mesal connection in working memory in SZ and HC have not been reported previously to our knowledge. We were not able to confirm our hypothesis of different connection strengths with nonlinear modulation of the bidirectional connection between the DLPFC and VTA/SN area between SZ and HC. This was due to the result of different functional bilinear networks following the heuristic search protocol (Dauvermann et al., 2013). According to the conditions of the heuristic search protocol, connection strengths with nonlinear modulation can only be statistically compared between groups if both groups display the same optimal bilinear networks. ‘We consider that the similar likelihoods of the two most likely model families in HC may indicate that the successful performance of working memory function is dependent on the balance of nonlinear modulations of both the meso-cortical and the cortico-mesal connection rather than only one of the connections.’ Nonetheless, these findings offer novel insight into neurobiological pathways that may underlie neuronal responses in schizophrenia. In future studies, it needs to be investigated whether the differently lateralized findings indicate a dysfunctional network system (given the altered BOLD responses) or an alternative functional network in SZ (given the comparable behavioral performance).

Support for the functional role of the VTA/midbrain and the implication of dopaminergic alterations in verbal/numeric working memory involving the DLPFC in SZ in contrast to HC comes from PET studies (Abi-Dargham et al., 2002; Carter et al., 1998; Fusar-Poli et al., 2010; Meyer-Lindenberg et al., 2001, 2005b). Furthermore, findings of an interaction between midbrain dopamine synthesis capacity and prefrontal function of working memory have been presented. Reduced dopamine synthesis in the midbrain was related to decreased regional cerebral blood flow of the DLPFC during working memory in HC (Meyer-Lindenberg et al., 2005a). In addition, performance of the continuous performance test in HC was associated with relatively higher magnitude of net blood brain clearance of [18F] fluorodopamine in the midbrain (Vernaleken et al., 2007). Lastly, [18F] fluorodopamine turnover in the midbrain has been shown to be increased in unmedicated SZ compared to HC (Kumakura et al., 2007).

Currently, it is not understood what the neurocognitive and neuropsychological processes of gating or their effects in working memory in humans are. However, we suggest that intact gating may lead to successful performance of working memory given the comparable performance levels in this study and based on electroencephalogram studies which have previously reported on the relevance of intact sensory gating during working memory tasks (Huang et al., 2013; Lijffijt et al., 2009; Shimi and Astle, 2013).

The limitations of the DCM8 approach have been discussed previously (Daunizeau et al., 2011a, 2011b). The networks in this study were limited to intra-hemispheric networks, whereas it can be assumed that working memory is also processed inter-hemispherically (Wheeler et al., 2014). The systematic testing of EC measures on task-dependent
modulation can only be considered for the specific experimental task and the given model space for the bilinear and nonlinear models. Therefore, it has to be acknowledged that EC measures between brain regions for any examined model space may be different among individuals, including the task modulation from the IPS to the DLPFC. We acknowledge a caveat that antipsychotic medication may have affected our EC findings in addition to the lack of dopamine concentration measurement in the midbrain in this study. However, it has been established that glutamatergic and dopaminergic alterations in the PFC (Coyle, 2006; Kandel and Javitt, 2010; Laruelle, 2014), midbrain (Abi-Dargham et al., 2002; Durstewitz and Seamans, 2002) and their interactions within the PFC – midbrain circuit (Gao and Wolf, 2007, 2008) underlie working memory in schizophrenia (Arnsten et al., 2012; Goldman-Rakic and Selemon, 1997; Lewis and Moghaddam, 2006; Moghaddam et al., 1997; Tanaka, 2006; Timofeeva and Levin, 2011). Furthermore, glutamatergic concentrations from prefrontal brain regions in SZ when compared to HC as measured with Proton Magnetic Resonance Spectroscopy (MRS) are missing in this article. However, recent MRS, proton echo planar spectroscopic imaging and multi-modal MRS and fMRI studies presented evidence for a role of prefrontal glutamatergic concentrations in the pathophysiology of schizophrenia (Poels et al., 2014; Xu et al., 2016) and higher cognitive performance in SZ and/or HC (Bustillo et al., 2011; Ohrmann et al., 2008, 2007; Shirayama et al., 2010), including working memory (Chen et al., 2014; Michels et al., 2012). We cannot exclude the possibility of other illness or medication effects. Lastly, it is acknowledged that the sample size for the two groups was small but comparable to other published DCM studies in schizophrenia (Dima et al., 2009; Allen et al., 2010; Bastos-Leite et al., 2015).4

Taken together, the findings suggest that the analysis of functional large-scale networks may lead to a better understanding of cortical connectivity and glutamatergic alterations in working memory in patients with schizophrenia.

Acknowledgments

We thank all participants who took part in this study. Scans were acquired at the Clinical Research Imaging Centre (http://www.cric.ed.ac.uk/). We are also grateful to Edwin van Beek for assistance with the overall co-ordination of the study and examining the structural MRI scans of all participants to exclude gross lesions.

Funding

This work was supported by an award from the Translational Medicine Research Collaboration (NS-EU-166) – a consortium made up of the Universities of Aberdeen, Dundee, Edinburgh and Glasgow, the four associated NHS Health Boards (Grampian, Tayside, Lothian and Greater Glasgow & Clyde), Scottish Enterprise and Pfizer. Pfizier has been involved in the study design of the study, writing of the report and in the decision to submit the article for publication. The investigators also acknowledge the support of National Health Service Research Scotland, through the Scottish Mental Health Research Network (www.smrn.org.uk), who provided assistance with subject recruitment and cognitive assessments. Imaging aspects also received financial support from the Dr. Mortimer and Theresa Sackler Foundation.

Contributions

The following authors contributed to these parts of the work: Study design (MD, TM, LR, JH, NR, ZH, NB, DB, AM, SL), acquisition of data (MD, TM, AW, BD, LR, DB), analysis of the data (MD, TM, AW, BD, GL), interpretation of the work (MD, TM, GL, SL), writing the manuscript (MD, TM, GL) or revising the manuscript (MD, TM, JH, NR, GL, ZH, NB, BW, DB, AM, SL), final approval of the work (MD, TM, AW, BD, LR, JH, NR, GL, ZH, NB, BW, DB, AM, SL), and agreement to be accountable for the work (MD, TM, AW, BD, LR, JH, NR, GL, ZH, NB, BW, DB, AM, SL).

Conflicts of interests

MD and TM were supported by Dr. Mortimer and Theresa Sackler Foundation throughout the project. No conflicts of interest are declared. TM, AW and BD received funding from Pfizer through the study. No conflicts of interest are declared.

ZH and is a current full time employee of Pfizer Inc.

NB is a former full time employee of Pfizer Inc.; NB is current full time employees of AstraZeneca Plc.

SL has received personal fees from Janssen, Roche and Sunovion, and research grants from Abbvie, Roche and Pfizer. LR, JH, NR, GL, DB, AMcI report no conflicts of interest.

The following affiliations were directly involved in the study

Division of Psychiatry, University of Edinburgh, Edinburgh, UK
Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA
Clinical and Translational Imaging, Pfizer Inc., Cambridge, MA, USA

These are current affiliations

School of Psychology, National University of Ireland Galway, University Road, Galway, Ireland
McGovern Institute for Brain Research, Massachusetts Institute of Technology, Boston, USA
Neuroscience and Mental Health Research Institute, Cardiff

4 We note that it is conceivable that different networks may include the following alternative interpretations: (i) Both groups are using the same networks but (at least) one group utilizes (at least) one additional network that differs from the first network; (ii) Different networks are defined by different brain regions, different number of brain regions, different connections and/or modulations. In this study, we cannot test these alternative hypotheses.
in schizophrenia is preceded by altered functional activation during information encoding: an fMRI study. Neuropsychobiology 46, 336–337.

