What do people study when they study Twitter? Classifying Twitter related academic papers

Citation for published version:

Digital Object Identifier (DOI):
10.1108/JD-03-2012-0027

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of Documentation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
What people study when they study Twitter

Classifying Twitter related academic papers

Structured Abstract

Purpose
Since its introduction in 2006, messages posted to the microblogging system Twitter have provided a rich dataset for researchers, leading to the publication of over a thousand academic papers. This paper aims to identify this published work and to classify it in order to understand Twitter based research.

Design/methodology/approach
Firstly the papers on Twitter were identified. Secondly, following a review of the literature, a classification of the dimensions of microblogging research was established. Thirdly, papers were qualitatively classified using open coded content analysis, based on the paper’s title and abstract, in order to analyze method, subject, and approach.

Findings
The majority of published work relating to Twitter concentrates on aspects of the messages sent and details of the users. A variety of methodological approaches are used across a range of identified domains.

Research Limitations
This work reviewed the abstracts of all papers available via database search on the term “Twitter” and this has two major implications: 1) the full papers are not considered and so works may be misclassified if their abstract is not clear, 2) publications not indexed by the databases, such as book chapters, are not included. The study is focussed on microblogging, the applicability of the approach to other media is not considered.

Originality/value
To date there has not been an overarching study to look at the methods and purpose of those using Twitter as a research subject. Our major contribution is to scope out papers published on Twitter until the close of 2011. The classification derived here will provide a framework within which researchers studying Twitter related topics will be able to position and ground their work.

Keywords
Twitter, Microblogging, Abstracts, Papers, Classification, Social Network Systems

Paper type
Research paper
Introduction

A number of social networking services (SNS) exist (boyd and Ellison, 2007) which have a range of features that allow users to share and exchange messages, fitting into the broader terrain of social network theory (Merchant, 2011). SNS are sometimes referred to as online social network services (OSN) (Ellison et al., 2007) and they can be divided into a number of sub-areas depending on functionality and practice. With the growing availability of easily accessible and low cost mobile technology, a niche area has developed known generically as microblogging. The use of microblogs has become a means of real time commenting on, responding to, and amplifying the impact of current events. The term “microblogging” was initially used in the early 2000s across a number of websites, and later started to appear in academic papers (Erickson, 2007, Java et al., 2007, Krishnamurthy et al., 2008). With the introduction of applications such as Twitter and Jaiku (Java et al., 2007) microblogging became more popular. By 2008 Twitter had become mainstream (Zhao and Rosson, 2009) and continues to be by far the most widely used platform.

Twitter allows users to rapidly communicate information in up to 140 characters on a one-to-one, specified group or global basis. The ease of use and essentially instantaneous nature of Twitter has made it a media for sharing news, or reports about events, ranging from the mundane (what I had for breakfast) through emerging information about politics (the Arab spring) to helping dealing with emergencies (Japanese earthquake) (Muralidharan et al., 2011). Events that were once closed become open to a much larger community: this has advantages such as increasing the audience for the message, mobilizing people into action, and enabling those unable to attend an event to share in the community (Dork et al., 2010). However, Twitter also brings about some interesting social issues linked to etiquette and potential misuse (Ross et al., 2011).

The openness and availability of messages posted to Twitter has provided a rich dataset for academic researchers from a variety of disciplines to study. Research ranges from the statistical through to the anthropological. This paper seeks to classify academic research on Twitter related topics based on an analysis of the abstracts of over a thousand papers published between 2007 and 2011 on the topic. Search techniques for papers related to Twitter were considered and a corpus of papers were identified, then a grounded research approach was used to identifying classifications of the work presented.

Literature Review
The literature review has been used as an integral part of the research process providing an initial foundation for a new research topic.

Microblogging and Twitter
Much of the published academic work on microblogging has focused on the Twitter platform, with only a relative small percentage of academic papers on Twitter using any variant of the term microblog (see Table 1).
Table 1 Numbers of Academic Papers relating to Microblogging and Twitter published between 2007 and 2011

<table>
<thead>
<tr>
<th>Search Term</th>
<th>Databases</th>
<th>Search area</th>
<th>Items returned</th>
</tr>
</thead>
<tbody>
<tr>
<td>micro-blogging OR micro-blog OR microblogging OR microblog</td>
<td>Scopus (http://www.info.sciverse.com/scopus)</td>
<td>Article Title, Abstracts, Keywords</td>
<td>436</td>
</tr>
<tr>
<td>twitter OR tweet</td>
<td>Scopus</td>
<td>Article Title, Abstracts, Keywords</td>
<td>1428</td>
</tr>
<tr>
<td>overlap</td>
<td>Scopus</td>
<td>Article Title, Abstracts, Keywords</td>
<td>276</td>
</tr>
<tr>
<td>micro-blogging OR micro-blog OR microblogging OR microblog</td>
<td>Web of Science (Part of the Web of Knowledge http://wok.mimas.ac.uk/ based on the Science Citation Index, the Social Sciences Citation Index and the Arts and Humanities Citation Index)</td>
<td>Topic</td>
<td>137</td>
</tr>
<tr>
<td>twitter OR tweet</td>
<td>Web of Science</td>
<td>Topic</td>
<td>529</td>
</tr>
<tr>
<td>overlap</td>
<td>Web of Science</td>
<td>Topic</td>
<td>81</td>
</tr>
<tr>
<td>micro-blogging OR micro-blog OR microblogging OR microblog</td>
<td>Google Scholar (http://scholar.google.com)</td>
<td>No control over search fields</td>
<td>About 10,400</td>
</tr>
<tr>
<td>twitter OR tweet</td>
<td>Google Scholar</td>
<td>No control over search fields</td>
<td>About 230,000</td>
</tr>
<tr>
<td>overlap</td>
<td>Google Scholar</td>
<td>No control over search fields</td>
<td>About 8,490</td>
</tr>
</tbody>
</table>

A small number of the Twitter papers returned by Scopus and Web of Science are not about the microblogging system, for example (Atencio et al., 2007) addresses vocal communication in owl monkeys: they “twitter”. Google Scholar does not allow the search to be limited to specific fields and so returned a lot of papers which were not related to the microblogging system, including several where the author had the surname “Tweet”, and lower down in the results.
Definitions
Ross et al. (2011) have conducted an extensive literature review of published work on microblogging and Twitter, giving this definition of microblogging:

“Microblogging is a variant of blogging which allows users to quickly post short updates, providing an innovative communication method that can be seen as a hybrid of blogging, instant messaging, social networking and status notifications. The word’s origin suggests that it shares the majority of elements with blogging, therefore it can potentially be described using blogging’s three key concepts (Karger and Quan, 2005): the contents are short postings, these postings are kept together by a common content author who controls publication, and individual blog entries can be easily aggregated together.”

As well as incorporating characteristics of blogging, microblogging sites (such as Twitter) have elements of SNS (boyd and Ellison, 2007), with users able to construct profiles (Hughes et al., 2011) and establish and share connections with other users (Gonçalves et al., 2011). The short updates posted on microblogging sites are of limited lengths. Twitter posts are limited to 140 characters because of the original limits on short messages on mobile phones (Weller, 2011); in addition to this they sometimes have other features, with the microblogging systems Myrcosom allowing users to share simple statistical graphs (Assogba and Donath, 2009).

User practices have had an impact on the functionality available in microblogging sites. Cormod et al. (2010) express user generated changes in the way Twitter is used:

“What about Twitter, the minimalist site based on micro–content sharing — ... the usage of the service has evolved more complex structures: follower/following relationships, targeted replies, hashtags to group tweets, re–tweeting and more. The disparate modes of access (Web, various smartphone apps, SMS) further complicate the model.”

Wenger et al. (2009) report that the use of the @ symbol in front of a Twitter user name to direct a post to an individual (while still appearing in the public stream) began in a conference setting in 2007 and was immediately picked up by the developers and incorporated into a replies page. The use of hashtags were adopted by users as a way of grouping messages (Weller, 2011). A retweet button was introduced in to Twitter following users having developed a practice of amplifying messages of others by re-posting the message (boyd et al., 2010).

Classifications
Cormod et al. (2010) and Cheong and Ray (2011) classify research on Twitter and other microblogging platforms as having two central objects: the user...
domain (the sender of the tweet) and the message domain (“the tweet itself”).

Cheong and Lee (2010) identify that the majority of Twitter-based research is within the message domain. Cormod et al. (2010) further divides research into the “first studies in Twitter” and the “next set of papers”. The early work is seen as characterizing Twitter focusing on the properties relating to the domains of user and message, including quantitative studies of: the number of tweets; the number of followers and followings; times of postings; and location of posts. The next set includes linguistic and semantic analysis of tweets and identifiable conversations.

Barnes and Bohringer (2011) classify previous research on Twitter and microblogging into two broad areas: 1) understanding microblogging; 2) microblogging in special use cases. These areas are further sub-divided as:

1 a) Descriptive and statistical research about Twitter, including: the initial works (Erickson, 2007, Java et al., 2007, Krishnamurthy et al., 2008); studies of usage practices such as @ replies (Honeycutt and Herring, 2009) and retweeting (boyd et al., 2010).

1 b) Model building, for example Erickson (2008)

2 a) Enterprise Microblogging, based largely around round case studies (Barnes et al., 2010, Zhang et al., 2010).

2 b) Computer Science-oriented research, based around the technologies supporting microblogging (Passant et al., 2008, Assogba and Donath, 2009).

Dann (2010) highlights that there are a number of research papers relating to applications of Twitter in areas such as: health community, politics and government, business, education and learning, journalism, and eyewitness accounts of news stories. Examples of such papers includes work that: predicts flu trends (Achrekar et al., 2011); studies communication within government agencies (Wigand, 2010); investigates the different use by engaged and less engaged companies (Wigley and Lewis, 2012); researches detection and reaction to disasters (Muralidharan et al., 2011, Sakak et al., 2010); and experiments with the use of microblogging in higher education (Ebner et al., 2010). Work presented varies in the size, depth and length of studies. Zhao and Rosson (2009) investigated the use of microblogging in informal communication at work by using semi-structured telephone interviews with eleven subjects over four months, Erickson (2008) studying social translucence used a data set consisting of “total posts (N=1145) produced by ten Twitter subjects over a four-week period” personally interviewing subjects, while Dodds et al. (2011) investigating happiness used a data set consisting of: “over 46 billion words contained in nearly 4.6 billion expressions posted over a 33 month span by over 63 million unique users” using Amazon’s Mechanical Turk (http://www.mturk.com) human intelligence work force to conduct the analysis. Collecting data has provided challenges reported in a number of papers, some papers present tools (Whitelaw et al., 2011) or repositories designed to help other researchers (Petrovi et al., 2010, Naveed et al., 2011). However Twitter's terms and conditions have limited access to such resources, such as Twapper Keeper (http://twapperkeeper.com) which is no longer freely available. Many researchers have followed advice from various sources (Russell, 2011b, Russell,
2011a) and devised their own scripts for collecting data from the Twitter API. Non-Twitter based research still had challenges collecting data but were often able to have direct contact with the data owners (Barnes et al., 2010).

There are a number of papers in academic publications that do not fit into the areas considered above, these are papers that are general introductions or discussions. For example DeVoe (2009) explains how microblogging can be used in libraries, while McFedries (2007) - one of the earliest papers on microblogging - explains what it is and how it may be used. There are a number of papers in widely respected publications that consider the potential of microblogging and Twitter, for example in articles such as “Spies to use Twitter as crystal ball” considering the espionage use of social media (Weinberger, 2011), “Trial by Twitter” which addresses reputation issues for authors of academic papers (Mandavilli, 2011) and “Twitter thou doeth?” discussing the potential minefield for litigation arising from the use of Twitter (Kierkegaard, 2010).

Our Classification
Based on our review of the literature we have identified that microblogging has four aspects that researchers consider, which are presented below with a simple example of each:

1. Message: the text that the user enters and associated metadata identifying such things as the time sent (Cormod et al., 2010, Cheong and Ray, 2011, Barnes and Bohringer, 2011).

 An example would be a researcher considering occurrences of a particular set of words across a random sample of tweets.

2. User: aspects of the user's digital identity exposed by the microblogging system, which may include details of who the user follows, and their profile (Cormod et al., 2010, Cheong and Ray, 2011, Barnes and Bohringer, 2011, Hughes et al., 2011).

 An example would be a study of the number of followers who were also following a particular individual.

3. Technology: ranging through the underlying hardware used to implement the system through any APIs to the software the user interacts with to send messages (Barnes and Bohringer, 2011, Passant et al., 2008, Assogba and Donath, 2009).

 An example would be a researcher who had developed and trialled a new way of interfacing with Twitter.

4. Concept: encompassing introductory overviews, discussion pieces through to reviews, for example McFedries (2007), Mandavilli (2011), (Cheong and Ray, 2011). This paper would be classified as a Concept paper, as would a review of how Twitter could be used in a particular setting such as a library.

In addition researchers consider:

- The domain: Studies are undertaken from a number of different standpoints and often within a domain or a group of domains (Dann, 2010).
The data: the size, depth and length of studies (Dodds et al., 2011, Erickson, 2008, Zhao and Rosson, 2009) impact on data collection, as does the way in which it is collected (Russell, 2011a).

The method for their research, ranging from the use of coders to prepare data for content analysis (Waters and Jamal, 2011), through details of algorithm development (Avello, 2011) to papers predominantly on other topics but with an element of review of Twitter such as a study of accessibility of SNS that focus on Facebook (Buzzi et al., 2010).

Thus for our study we attempted to classify the aspect of an academic paper as predominantly one of these:

- Message
- User
- Technology
- Concept

With three free format fields:

- Domain
- Data
- Method

Plus an indictor as to whether the paper has: a focus on microblogging topics such as Twitter; includes mention of the topic; or is another topic but has a matching keyword.

These dimensions have similarities to conceptual models of information science which identify axes and parameters of specialisms (Hjørland, 2002, Tennis, 2003, Robinson, 2009). However here there is no attempt to define domain other than to use what Tennis (2003) describes as “common-sense parameters”.

Method

Data collection

Researchers normally identify papers to consider by a number of methods such as searching in electronic databases, and chaining from existing papers. Ellis (1989) defined six characteristics of search by academic social scientists: “starting, chaining, browsing, differentiating, monitoring, and extracting”, later extending the work to other disciplines, including engineering (Ellis and Haugan, 1997). Green (2000) reports humanities scholars often find resources “by following bibliographic references from documents already known to them or to their colleagues”. The use of electronic databases is known to vary within domains (Talja and Maula, 2003, Tenopir et al., 2009). A number of authors have compared different databases and their use, primarily concentrating on the utility of Web of Science, Scopus and Google Scholar (Levine-Clark and Gil, 2009, Jacso, 2005), which are the most widely used.

The aim of this study was to locate academic papers on Twitter according to the classification above and identify characteristics within these classes. To ensure that the study was replicable it was decided to base it on database searches, for the period 2007 (when the first papers appeared on Twitter) to 2011 (the last complete year). There are known difficulties in social sciences and the
Corbin and Strauss, 1967) where line by line coding produces label variables from within the data itself, allowing large amounts of data to be synthesized (Glaser and Strauss, 1967). This adapted approach has been successfully used in classification of Twitter data (Ross et al., 2011).

Each paper’s title and abstract was read and re-read and classified according to the schema shown in Table 2.

Table 2 Schema for classifying titles and abstracts of papers related to Twitter

<table>
<thead>
<tr>
<th>Classification</th>
<th>Format</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic</td>
<td>Fixed</td>
<td>F = focused on microblogging/Twitter; P = partially; N = not on topic</td>
</tr>
<tr>
<td>Message</td>
<td>Number</td>
<td>1 = mainly on this, 2 = secondly on this</td>
</tr>
<tr>
<td>User</td>
<td>Number</td>
<td>1 = mainly on this, 2 = secondly on this</td>
</tr>
<tr>
<td>Technology</td>
<td>Number</td>
<td>1 = mainly on this, 2 = secondly on this</td>
</tr>
<tr>
<td>Concept</td>
<td>Number</td>
<td>1 = mainly on this, 2 = secondly on this</td>
</tr>
<tr>
<td>Domain</td>
<td>Free</td>
<td>Semicolon separated list of domain, such as health, software development</td>
</tr>
<tr>
<td>Data</td>
<td>Free</td>
<td>Indicator of type of data and size</td>
</tr>
<tr>
<td>Method</td>
<td>Free</td>
<td>Methodological approach to research indicated</td>
</tr>
</tbody>
</table>

Where a paper was partially on topic, the other classifications were based on the proportion of work relating to microblogging, not the full study.

Through our analysis, we were able to derive and develop categories from the corpus data, for both domain and method. These categories are specific to the

Twitter paper corpus: they were decided upon through close examination of the corpus content. It is important to note that the stated goal of the coding was to hypothesize on the categorization of the paper, rather than to provide a descriptive evaluation of it.

Findings

Focus

Of the original 1161 papers reviewed 575 were found to have a focus on Twitter and related microblogging work; 550 included mention of the topic but it was not the focus, for example the paper entitled “Twittering on about social networking and babyfeeding matters” (Guy et al., 2010) was a cross social network investigation of potential for increasing traffic to websites related to babyfeeding. Twitter was considered alongside Facebook and Bebo. “Content is liberated!” (Goldstein and Romero, 2009) is an article about the publication IEEE Spectrum and its revamped online presence. Of the remaining papers: in 27 the reference to the term twitter was not related to microblogging but to other topics such as the sound monkeys and tractor engines make, the other 9 had identical titles and abstracts but had not been identified as duplicates in the original data cleansing due to differences in other fields, for example a conference paper also published in the employer’s technical report series. The full list of papers considered is listed in the Appendix, separated into: 1) those papers that are Twitter-focussed, 2) those that mention Twitter, but do not focus on it, 3) those using the word twitter but are not related to microblogging.

The remainder of this paper concentrates on the 575 papers that focussed on Twitter and related microblogging research, below we use the term “Twitter-focussed” to refer to this group.

Year published

The first Twitter-focussed papers published appeared in 2007, when a total of 3 papers were identified in this study, this number did not increase significantly in 2008 and 2009 where 8 and 36 papers respectively were identified. There was a significant increase with 210 identified in 2010 and 320 in 2011. This matches Cormod et al. (2010) grouping of “first studies in Twitter” and the “next set of papers”. As the number of papers published increases we are reaching a point where individual researchers will not be able to be familiar with all the literature published. The aim of this paper, then, is to contribute to our understanding of approach and method in studying twitter by classifying the research in this corpus.

Methods

From the abstracts, some thirty-three different research methods were initially identified as used in the published research. A number of abstracts reported using more than one method and hence the total of methods exceeds the number of papers. Studies of methods as a source for information retrieval have indicated that it would be very useful for documents to classified by methods (Szostak, 2011), however this information is sometimes missing or presented
differently according to the domain (Szostak, 2008, Hjørland, 2008). Additionally we found while reviewing the abstracts that some authors provided much more detail of their methods than others, and that one abstract may only refer to undertaking analysis while another may specify that the researchers undertook content analysis and sentiment analysis on their corpus. Therefore an overarching set of four methods were defined embracing a set of approaches.

1. Analytic
 Where the researchers had performed some type of analysis, such as content analysis [1,2], data analysis [3], semantic analysis [4], social network analysis [4]; with a quantitative or qualitative approach.

2. Design and Development
 Where systems are proposed or built [5,6], which may be exploratory, including experimental [7] or a demonstrator [8]; a model [9,10] or simulation; a full design and implementation.

3. Examination
 Where the authors had undertaken review and survey type [11] works, embracing approaches such as: biography, case study [12], essay, ethnography, evaluation, interview [10], investigation and longitudinal studies.

4. Knowledge Discovery
 In which existing techniques from artificial intelligence [2], mathematics and statistics have been applied, for the purposes of data mining, text mining and natural language processing. In addition, embracing the development of new algorithmic [13] approaches to the above.

Across the group of 575 papers spread of methodological approaches is shown in Table 3.

<table>
<thead>
<tr>
<th>Method</th>
<th>Total</th>
<th>solely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic</td>
<td>153</td>
<td>97</td>
</tr>
<tr>
<td>Design and Development</td>
<td>267</td>
<td>211</td>
</tr>
<tr>
<td>Examination</td>
<td>139</td>
<td>103</td>
</tr>
<tr>
<td>Knowledge Discovery</td>
<td>127</td>
<td>59</td>
</tr>
</tbody>
</table>

Note there are a number of abstracts where the methods used span two or three of these methodological approaches, none spread across all four, the column “Soely” indicates the number of times a single methodological approach was used. Most of the combinations of methods happened a relatively few times, the most noteworthy were:

- Knowledge Discovery methods were used in:
 - 24 papers alongside Analytic methods [2]
 - 28 papers alongside Design and Development
 - 7 papers with both Analytic and Design and Development

- Examination methods were used in:
 - 15 papers alongside Analytic
 - 11 papers alongside Design and Development [10]
Almost half the abstracts indicated that the work had an element which involved the Design and Development of a system, ranging from proposals, through experiments to full implementations. While Knowledge Discovery, incorporating existing techniques from artificial intelligence, mathematics and statistics, was most frequently combined with the other methodological approaches. Earlier work has not attempted to quantify the methods used in Twitter-focussed work and so here we have shown for the first time the diversity of approaches and the spread of their usage.

Aspects

Of the 575 Twitter-focussed papers the spread over the aspects identified are shown in Table 4. Note the diagonals indicate that there was no secondary aspect and no papers were identified as having more than two aspects.

<table>
<thead>
<tr>
<th></th>
<th>Message</th>
<th>User</th>
<th>Technology</th>
<th>Concept</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message</td>
<td>266</td>
<td>66</td>
<td>12</td>
<td>0</td>
<td>78</td>
</tr>
<tr>
<td>User</td>
<td>80</td>
<td>55</td>
<td>2</td>
<td>0</td>
<td>82</td>
</tr>
<tr>
<td>Technology</td>
<td>3</td>
<td>0</td>
<td>45</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Concept</td>
<td>1</td>
<td>0</td>
<td>44</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>350</td>
<td>121</td>
<td>59</td>
<td>45</td>
<td></td>
</tr>
</tbody>
</table>

As we can clearly see the most studied topic is the Message [1,2,5] indicating that most research is done about the content of messages exchanged in Twitter. The second most studied topic is the User [8] with work relating to user profiles including lists of followings. Some 146 papers jointly considering the Message and the User (80 primary the Message [7] and 66 primarily the User [3,10]), linking investigations of content of messages with details of the tweeter and potential readers. While the Concept [11] is the least studied it should be noted that it is likely that the majority of Twitter-focussed papers will have a literature review section that discusses conceptual issues, our classification is based on the features of the work highlighted in the title and abstract. There is a relatively small proportion of work studying the Technologies [6,13] and developing them further, this maybe in part due to the proprietary nature of Twitter and the limited access developers now have to its API.

Our results are in line with the work of Cheong and Lee (2010) who identified that the majority of Twitter-based research around the message. As with Cormod et al. (2010) and Cheong and Ray (2011) we identified a second central area of user, quantifying that a large proportion of authors address both the Message and the user: what people are saying, combined with who these people are. Other authors have not identified that there are a number of papers that do not

concentrate on the Message or the User, but rather are relating to Technology and Concept. Figure 1 summarises the division of primary aspects across all the Twitter-focused papers.

Figure 1 Pie chart summarising the division of primary aspects across all the Twitter-focused papers

Methods and Aspects
The research methods used in papers that concentrate on different aspects were investigated and are summarised in Table 5, against the broad headings of methods previously identified and the aspects: Message, User, Technology and Concept.

Table 5 methods used in Twitter-focussed papers investigating particular aspects

<table>
<thead>
<tr>
<th>Primary Aspect</th>
<th>Message</th>
<th>User</th>
<th>Technology</th>
<th>Concept</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytic</td>
<td>120</td>
<td>30</td>
<td>3</td>
<td></td>
<td>153</td>
</tr>
<tr>
<td>Design and</td>
<td>154</td>
<td>58</td>
<td>50</td>
<td>4</td>
<td>267</td>
</tr>
<tr>
<td>Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Examination</td>
<td>60</td>
<td>30</td>
<td>8</td>
<td>41</td>
<td>140</td>
</tr>
<tr>
<td>Knowledge Discovery</td>
<td>94</td>
<td>29</td>
<td>4</td>
<td></td>
<td>127</td>
</tr>
</tbody>
</table>

The majority of the Technology papers took a Design and Development methodological approach [6], with a number of authors presenting conference papers on systems that they have developed, and trialled. In comparison, the majority of Concept papers were based on Examination methods [11], including
reviews of systems. The majority of Message oriented papers took a Design and Development approach [5].

Data
The majority of the Twitter-focussed abstracts (over 80%) did not provide any quantitative information of the data that was used in the study nor how it was collected. Phrases such as “large scale” could not be interpreted in comparison to the small number of studies which indicated orders of magnitude [5] or those giving precise details [15]. So within this study we are unable to report on results relating to the size and scope of data used in studies. This analysis therefore shows that those writing abstracts do not tend to elaborate enough on scope or method: the size of a corpus should be central to their research description.

Domain
The initial classification of domains produced over 280 categories, many of which where only used a few times, the top categories are shown in Table 6.

Table 6 The twenty most frequently used terms following the Initial Classification of domains

<table>
<thead>
<tr>
<th>Domain</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>location</td>
<td>43</td>
</tr>
<tr>
<td>communication</td>
<td>29</td>
</tr>
<tr>
<td>health</td>
<td>29</td>
</tr>
<tr>
<td>search</td>
<td>29</td>
</tr>
<tr>
<td>spam</td>
<td>27</td>
</tr>
<tr>
<td>classification</td>
<td>25</td>
</tr>
<tr>
<td>education</td>
<td>23</td>
</tr>
<tr>
<td>politics</td>
<td>23</td>
</tr>
<tr>
<td>visualisation</td>
<td>20</td>
</tr>
<tr>
<td>sentiment</td>
<td>19</td>
</tr>
<tr>
<td>disaster</td>
<td>17</td>
</tr>
<tr>
<td>recommender</td>
<td>16</td>
</tr>
<tr>
<td>business</td>
<td>14</td>
</tr>
<tr>
<td>clustering</td>
<td>14</td>
</tr>
<tr>
<td>intelligence</td>
<td>14</td>
</tr>
<tr>
<td>libraries</td>
<td>13</td>
</tr>
<tr>
<td>marketing</td>
<td>13</td>
</tr>
<tr>
<td>semantic</td>
<td>12</td>
</tr>
<tr>
<td>influence</td>
<td>11</td>
</tr>
<tr>
<td>network</td>
<td>11</td>
</tr>
<tr>
<td>hashtag</td>
<td>10</td>
</tr>
<tr>
<td>Japan</td>
<td>10</td>
</tr>
</tbody>
</table>
The domains were therefore re-stratified into 13 broader categories, from this initial sift, to understand patterns in the data. Consolidation in this manner is a normal approach when an emergent coding approach is undertaken within content analysis (Stemler, 2001). This resulted in the following categories:

1. Business
covering all commercial topics including public relations and marketing [16].
2. Classification
ever encompassing papers that identify any patterns and clusters, including intelligence [13].
3. Communication
ranging from communications between individuals to influencing others [3], to media such as TV and radio [1].
4. Education
use in an educational context ranging from a formal university setting [12] to general public awareness.
5. Emergency
covering unexpected circumstances [9], including disasters related to earthquakes and flooding.
6. Geography
embracing place, named countries, culture and political aspects; along with the location of the user [9].
7. Health
all health and medical issues [7].
8. Libraries
9. Linguistics
including syntax, semantics and sentiment, cultural protocol [4], and use in multilingual communities.
10. Search
including recommenders, and trend recognition as well as manual and automated searches [17].
11. Security
including SPAM, the use of automated tweeters (bot), as well as credentials, aspects of trust [8] and identity [10].
12. Technical
embracing areas including the use of visualisation [6], networks and Twitter specifics such as hashtags.
13. Other
all things not fitting in the above [5], including papers not grounded in a specific domain.

The Twitter-focused papers were then reallocated to these domains, where there was an apparent predominant domain that was chosen. In thirty-two cases there were two domains allocated, for example abstracts that were related to the education of health professions were classified as: Education; Health. It was not necessary to allocate more than two domains, and there were no particular pairs of domains that were predominant and so these pairings are not considered in
detail unless interesting data was observed. Figure 2 shows the number of papers allocated to each domain.

![Figure 2 The stratified domains and the number Twitter-focused Papers allocated to each](image)

As can be seen Geography was the dominant domain with 91 of the 575 papers being related to place including named countries, the culture of the place and its politics; along with the physical location of the user. Eleven of the papers were joint with other domains, four of which were Emergency with papers addressing a particular incident in a place, and the researchers unable to identify whether the incident or place was dominant, other Emergency papers were clearly more about the incident and so were not allocated to Geography. “Other” was composed of varied areas including: tweeting pets and clothes, celebrity, and legal aspects, as within the abstract many appeared general and not in an identifiable specific domain.

These domains are in line with those identified by other researchers (Dann, 2010), however other stratifications could be chosen dividing larger categories and linking smaller ones, as is the nature of content analysis. We believe our stratification reflects the general categories people focus on when carrying out studies of Twitter based communication, based on the titles and domains of the publications in which the papers appear.

Domain, Methods and Aspects
In Table 7 we summarise for each domain the percentages of the Twitter-focused papers that used each set of methods and concentrated on each aspect.
Table 7 The methods Used and aspects Considered for each domain, expressed as percentages. Darker shading reflects larger percentage.

<table>
<thead>
<tr>
<th>Method</th>
<th>Analytic</th>
<th>Design and Development</th>
<th>Examination</th>
<th>Knowledge Discovery</th>
<th>Message</th>
<th>User</th>
<th>Technology</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business</td>
<td>32%</td>
<td>24%</td>
<td>37%</td>
<td>15%</td>
<td>56%</td>
<td>17%</td>
<td>2%</td>
<td>24%</td>
</tr>
<tr>
<td>Classification</td>
<td>27%</td>
<td>51%</td>
<td>12%</td>
<td>29%</td>
<td>75%</td>
<td>18%</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>Communication</td>
<td>29%</td>
<td>39%</td>
<td>18%</td>
<td>27%</td>
<td>59%</td>
<td>24%</td>
<td>8%</td>
<td>10%</td>
</tr>
<tr>
<td>Education</td>
<td>22%</td>
<td>57%</td>
<td>43%</td>
<td>9%</td>
<td>52%</td>
<td>30%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Emergency</td>
<td>26%</td>
<td>30%</td>
<td>30%</td>
<td>22%</td>
<td>91%</td>
<td>0%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Geography</td>
<td>30%</td>
<td>43%</td>
<td>15%</td>
<td>26%</td>
<td>68%</td>
<td>21%</td>
<td>9%</td>
<td>2%</td>
</tr>
<tr>
<td>Health</td>
<td>45%</td>
<td>23%</td>
<td>42%</td>
<td>23%</td>
<td>61%</td>
<td>16%</td>
<td>3%</td>
<td>19%</td>
</tr>
<tr>
<td>Libraries</td>
<td>7%</td>
<td>14%</td>
<td>86%</td>
<td>7%</td>
<td>21%</td>
<td>0%</td>
<td>7%</td>
<td>64%</td>
</tr>
<tr>
<td>Linguistics</td>
<td>45%</td>
<td>45%</td>
<td>16%</td>
<td>27%</td>
<td>80%</td>
<td>14%</td>
<td>7%</td>
<td>0%</td>
</tr>
<tr>
<td>Search</td>
<td>21%</td>
<td>55%</td>
<td>28%</td>
<td>25%</td>
<td>62%</td>
<td>26%</td>
<td>8%</td>
<td>4%</td>
</tr>
<tr>
<td>Security</td>
<td>27%</td>
<td>55%</td>
<td>18%</td>
<td>18%</td>
<td>55%</td>
<td>32%</td>
<td>13%</td>
<td>0%</td>
</tr>
<tr>
<td>Technical</td>
<td>22%</td>
<td>58%</td>
<td>16%</td>
<td>18%</td>
<td>51%</td>
<td>16%</td>
<td>31%</td>
<td>2%</td>
</tr>
<tr>
<td>Other</td>
<td>13%</td>
<td>54%</td>
<td>32%</td>
<td>19%</td>
<td>48%</td>
<td>26%</td>
<td>14%</td>
<td>12%</td>
</tr>
<tr>
<td>Across all domains</td>
<td>27%</td>
<td>45%</td>
<td>25%</td>
<td>22%</td>
<td>61%</td>
<td>21%</td>
<td>10%</td>
<td>8%</td>
</tr>
</tbody>
</table>

Note that because more than one method is identified as used in some papers the total for methods is more than 100% within single domains. Rounding the percentages to whole numbers also introduces minor inaccuracies to the table.

The shading in the table can be used to identify anomalies, for example in the Technology aspect column most cells are lightly shaded, the darkest at 31% is Technical. This can be seen as an indication that researchers in the Technical domain having a greater proportional interest in the Technology aspect, these researchers less interested in the use of Twitter but more in how underlying tools are designed and can be improved.

There are considerable differences with the choice of methods within the various domains compared to the average across all domains. Of particular note studies within the domain of Libraries, twelve of the fourteen studies use an Examination methodological approach, with little use of other methods. While in the domain of Health only seven of the thirty-one studied adopted a Design and Development method compared to 45% overall, there was a similar lack of selection of Design and Development methods within the domain of Business (ten from forty-one), perhaps reflecting within these domains that researchers are less likely to build experimental systems or simulations than in the other domains. Studies from both the Health and the Linguistics domains were based largely on Analytic methods with respectively fourteen out of thirty-one and twenty out of forty-four compared with an average of 27%, perhaps reflecting within both domains researchers frequently want to undertake quantitative and qualitative analysis of both data and content.

When looking at the aspects the domain of Libraries is again an outlier with ten of the fourteen studies concentrating on the Concept compared with an average of only 8%. The Emergency domain concentrates on the Message with twenty-one out of twenty-three compared to the average of 61%, possibly reflecting that in emergency situation Twitter is able to provide information when conventional news services are not fast enough or may not even be available.

A Pearson correlation is a statistical measure of association between two variables: calculated values of Pearson correlation always lie between +1 and -1, a positive value indicating the two variables increase together, a negative value indicating one increases as the other decreases. The closer the Pearson value is to 1 (or -1) the stronger the association. Considering the correlation between methods and aspects across domains give Pearson values as shown in Table 8.

<table>
<thead>
<tr>
<th></th>
<th>Message</th>
<th>User</th>
<th>Technology</th>
<th>Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytic</td>
<td>0.86</td>
<td>0.55</td>
<td>0.25</td>
<td>-0.32</td>
</tr>
<tr>
<td>Design and Development</td>
<td>0.82</td>
<td>0.92</td>
<td>0.79</td>
<td>-0.21</td>
</tr>
<tr>
<td>Examination</td>
<td>0.23</td>
<td>0.58</td>
<td>0.30</td>
<td>0.68</td>
</tr>
<tr>
<td>Knowledge Discovery</td>
<td>0.97</td>
<td>0.76</td>
<td>0.48</td>
<td>-0.22</td>
</tr>
</tbody>
</table>

We see there is a particularly strong correlation between the use of Knowledge Discovery methods and studying the Message. Of course a correlation does not mean that there is a causal relationship, but it would be reasonable to suppose that the Knowledge Discovery methods are suited to handling large amounts of information and that Messages are source of large quantities of information. Likewise there is a strong correlation between User and the Design and Development methods. Figure 3 presents the correlation information data in a different form mapping the number of papers in each domain that use Knowledge Discovery methods against the number of papers focusing on the Message as the first series; the second series is a similar comparison of number
of papers in each domain using Design and Development methods compared to the number focusing on the User aspect.

![Diagram](image)

Figure 3 Number of Papers per domain for the Given method vs Number for the Given aspect

Domain Characteristics

We used the text analysis portal TAPoR (http://portal.tapor.ca) and the Voyant (http://voyant-tools.org/) toolset to analyse the text within the abstracts for each of the domains and the full set of Twitter-focussed abstracts. Frequencies of words were calculated for each set, having discounted common words and symbols using stop words from a list Taporware provide by TAPoR.

For all sets the most frequent word was “Twitter”, so for the rest of this section we look at the next most frequent words. Table 9 shows the ten most frequent words. Examination of this list shows stemming has not taken place and that there are three variants of use (use, users and using), combining groups that should be stemmed and then selecting the next words gives the revised list in Table 10. Note “network” is now high in the list, it is often used in an abstract with the word “social” in phrases such as: “social network” and “social networking”, in several cases these phrases were hyphenated. The list of words is not surprising and extending the list to more words did not reveal more. What was more interesting was the differences in the top ten between the full set and the individual domains. Table 11 lists distinct frequent words in the top ten of each domain that are not in the top ten for the set of all of the Twitter-focussed abstracts.

Table 9 The Most Frequent Words across the full set of Twitter-focussed Abstracts

<table>
<thead>
<tr>
<th>Word</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>social</td>
<td>711</td>
</tr>
<tr>
<td>information</td>
<td>495</td>
</tr>
<tr>
<td>users</td>
<td>473</td>
</tr>
<tr>
<td>data</td>
<td>376</td>
</tr>
<tr>
<td>tweets</td>
<td>339</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Word</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>use</td>
<td>1004</td>
</tr>
<tr>
<td>social</td>
<td>711</td>
</tr>
<tr>
<td>tweet</td>
<td>543</td>
</tr>
<tr>
<td>network</td>
<td>498</td>
</tr>
<tr>
<td>information</td>
<td>495</td>
</tr>
<tr>
<td>data</td>
<td>376</td>
</tr>
<tr>
<td>message</td>
<td>323</td>
</tr>
<tr>
<td>paper</td>
<td>320</td>
</tr>
<tr>
<td>media</td>
<td>243</td>
</tr>
<tr>
<td>analysis</td>
<td>233</td>
</tr>
</tbody>
</table>

Table 10 The Revised list of Most Frequent stemmed Words across the full set of Twitter-focussed Abstracts

<table>
<thead>
<tr>
<th>Domain</th>
<th>Distinct Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business</td>
<td>Business, Marketing, Study</td>
</tr>
<tr>
<td>Classification</td>
<td>Topics, Microblogging</td>
</tr>
<tr>
<td>Communication</td>
<td>Influence, News, TV</td>
</tr>
<tr>
<td>Education</td>
<td>Students, Learning, Course, Microblogging, Education, Study</td>
</tr>
<tr>
<td>Emergency</td>
<td>Earthquake, Event, Public</td>
</tr>
<tr>
<td>Geography</td>
<td>Location, Event</td>
</tr>
<tr>
<td>Health</td>
<td>Health, Public, Antibiotic</td>
</tr>
<tr>
<td>Linguistics</td>
<td>Sentiment, Approach, Show</td>
</tr>
<tr>
<td>Search</td>
<td>Search, Web, Results, Content</td>
</tr>
<tr>
<td>Security</td>
<td>Spam, Web, Based, Content</td>
</tr>
<tr>
<td>Technical</td>
<td>Based, New</td>
</tr>
<tr>
<td>Other</td>
<td>Model, Microblogging</td>
</tr>
</tbody>
</table>

The distinct words can largely be seen to have a obvious relationship to their domain: Students participate in Education, an Earthquake causes an Emergency, the existence of SPAM means Security needs to be considered.

We highlighted in the Literature Review that the word “Microblogging” is not as widely used as the word Twitter, but in four of the domains it is among the ten

most frequently used words within the abstracts, suggesting a more prevalent academic use of the term.

The word “New” is used in two domains: Libraries and Technical, where it is associated with new approaches within the discipline, this is different to the use of “News” in Communications where it is associated with current events. Automatic stemming would have occluded this difference.

The domains of Search and Security overlap on Web and Content as well as generic words, reflecting that researchers in these areas are particularly interested in material on the Internet.

Performing text analysis on the abstracts did not reveal any surprising results, rather it validated the stratification of domains and the allocation of abstracts to these. The topic of the domains were reflected by the words used within the abstracts.

Conclusions
This work has undertaken a study of over one thousand papers related to Twitter, it is to the best of our knowledge the largest study of the area. We have established that approximately half the papers that are returned by searching major databases are not focussed on Twitter, instead contributing to wider studies, often in the general area of social networking. A small group of papers (~5%) are not to do with the microblogging system but are using the term “twitter” in other ways such as describing a noise made by animals and machinery.

We have classified the remaining Twitter-focussed papers according to their abstracts across three dimensions:

- Aspect: the aspect of Twitter primarily considered, which can be one of: Message, User, Technology, Concept.
- Method: a grouping of methodological approaches, classified as one or more of: Analytic, Design and Development, Examination, Knowledge Discovery.
- Domain: a stratified list of the researchers standpoint or field interest, made up of one or more of: Business, Classification, Communication, Education, Emergency, Geography, Health, Libraries, Linguistics, Search, Security, Technical, Other.

A fourth dimension, Data, was identified but there was not enough information provided within the abstracts to be able to attempt a classification of the quantity or quality of the data used in the studies, nor of how it was collected. The lack of this information shows that to many authors the size of the corpus or scope of their studies is not considered of sufficient importance to be included in when summarising their research.

We have shown that the majority of papers (some 80%) concentrate their research around the Message and the User, considering the content of tweets and the people communicating. However, we are aware that beyond the abstract

most academic papers will include a literature review that in itself we would class as Concept. The Technology aspect is thus the most under-represented in the Twitter-focussed abstracts reviewed – perhaps reflecting the technical barriers to adoption in developing tools for the Twitter API.

Earlier work did not identify the research methods used within various Twitter-focussed studies. We have identified that there are a wide variety of methods used, and often one piece of work will use multiple methods. We have grouped these methods into four broad categories of methodological approaches: Analytic, Design and Development, Examination, Knowledge Discovery. The choice of methodological approaches varies within domains, but we note there is a strong correlation between the methodological approaches of the Knowledge Discovery domain and the study of the Message [2]. Also of interest is that the majority of the Technology papers took a Design and Development methodological approach, many of these works were presented at conferences with the authors describing systems that they have developed, and trialled.

A number of areas for future work have been identified, and will be considered further. This study was based on papers published between 2007 and 2011: in future years new papers should be added to the study, and a longitudinal study undertaken of changes that occur in the focus of work, particularly linked to changes in the affordances offered by Twitter and the tools used to access it. More information is needed about the data used in the research studies and how it is collected. However since this information is not widely present in abstracts a more detailed study will be needed within a sub-area: we will investigate the largest domain: Geography and by studying the full papers aim to identify the quantity of data and how it was collected, the more detailed study of this large area will also enable the identifications of sub-domains. Differences within domains have been highlighted and within each domain there are sub-domains which may have different approaches to the study of Twitter. The approach used in this study may be applicable to papers based on other existing and emerging social networking services, academic papers relating to these services will need to be collected and considered.

The classification derived here will provide a framework within which researchers studying development and use of Twitter will be able to position their work and against which those undertaking comparative studies of research relating to Twitter will be able to ground their work.

Notes
In this section we present examples of papers which are classified according to the dimensions identified above, and provide some explanation in the form of a thumbnail sketch based on the paper’s abstract. The papers are selected to demonstrate how classification was achieved.

1. Ferguson and Greer (2011) in a paper entitled “Local Radio and Microblogging: How Radio Stations in the U.S. are Using Twitter” mention in their abstract that they use content analysis methods to understand the
use of Twitter by 111 local radio stations. The study was based on examining the contents of messages, the domain was initially identified as media and radio, but following stratification this became Communication.

2. Bollen et al. (2011) present a paper “Twitter mood predicts the stock market” which examines Twitter messages to forecast according to behavioural economics. Their approach uses Analytic methods including text analysis and Knowledge Discovery including those based on artificial intelligence.

3. Khrabrov and Cybenko (2010) in the abstract of their paper “Discovering influence in communication networks using dynamic graph analysis” explain they use data analysis, within the domain of Communication. We identified the analysis is primarily on the user aspect but also the message to allow the researchers to uncover what they describe as “an ecosystem of users”.

4. Lindgren and Lundstrom (2011) use both semantic and social network analysis to understand linguistic nuances in their paper “Pirate culture and hacktivist mobilization: The cultural and social protocols of #Wikileaks on Twitter”. Their abstract indicates this work is in the domain of discourse later stratified to Linguistics and that they concentrate on the message aspect.

5. Dodds et al. (2011) in the abstract of their paper “Temporal patterns of happiness and information in a global social network: Hedonometrics and Twitter” describe the use of Analytic methods to examine expressions made in tweets, they use Design and Development methods to construct a system that will measure happiness. Their work focuses on the message aspect, their domain is happiness/hedonometer which was stratified as Other. This is one of the few abstracts giving details of the data set (including 46 billion words in nearly 4.6 billion expressions) and the length of the study (thirty-three months), it does not detail how the data was collected.

6. Dork et al. (2010) paper “A Visual backchannel for large-scale events” present the design of a system that will visualize Twitter data on what is called the back channel (that is not official) during large scale events such as sporting events and conferences. Their method is classed as Design and Development, their domain is Technical. They are particularly interested in the Twitter technology which they interact with but also the messages which they display.

7. Sadikov et al. (2011) paper “Correcting for missing data in information cascades” consider the transmission of infectious diseases and the impact of identification due to missing data, they have built experimental tools which they have evaluated against 70 million Twitter nodes. The experimental nature led to classifying as a Design and Development methodological approach, the research was interested primarily in the message but also in the user. Because of the interest in infectious disease this was classed as Health.

8. Yamasaki (2011) in the paper “A trust rating method for information providers over the social web service: A pragmatic protocol for trust among information explorers and information providers” describes a demonstrator system developed for rating trust among IT-engineers
based on the number of Twitter followers and other user oriented data. The paper is positioned within the domain of Security, because of the interest in trust, the method is Design and Development as a demonstrator system is described and the primary aspect is user as the interest is in the individual.

9. Gelernter and Mushagian (2011) work “Geo-parsing messages from microtext” is classified in both the domain geography and the domain emergency, with a primary aspect of message, as their work is about the type of locations that occur in disaster-related messages. They report the development of a model and so their method is classified as Design and Development.

10. Marwick and boyd (2010) paper “I tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audience” focuses primarily on the aspect of user but also considers the message. The paper addresses the imagined audience that Twitter users interact with. The domain was initially classed as digital identity but stratified to Security. There initial approach involved talking to users and so the paper was deemed to use an Examination method, but they also develop a model and so used Design and Development methodological approaches.

11. Marshall and Shipman (2011) in their paper “Attitudes about Institutional Archiving of Social Media” report on the results of two surveys, one of which concentrated on respondents attitudes to the archiving and subsequent access of Twitter data. The domain was initially recognized as archiving, but this is not an area in which there are currently many Twitter-focused papers and so it was stratified to Libraries. The methodological approach was based on surveys and so the approach was classed as Examination. The research was generally about Twitter and so the paper was classed as the concept aspect.

12. Ebner et al. (2010) in the paper “Microblogs in Higher Education – A chance to facilitate informal and process-oriented learning?” present a case study of the use of microblogs by a group of students at an Austrian university. The research considers primarily the messages but also the users, the domain is clearly Education and the methodological approach being a case study is classed as Examination.

13. Bernstein et al. (2010) present a Twitter client they have developed in their paper “Eddi: Interactive topic-based browsing of social status streams”. The work is based on a novel algorithm and so classed as using Knowledge Discovery methodological approach. The primary aspect of interest is technology with the message secondary. The domain was initially cast as topic search, but reexamining bought it into the broader strata Classification.

14. Naaman et al. (2010) examine the Tweets of over 350 users in their paper “Is it Really About Me? Message Content in Social Awareness Streams” identifying differences in the types of messages sent. The abstract does not identify the quantity of tweets analysed nor how they were collected.

15. Arakawa et al. (2010) in the abstract for their paper “Relationship Analysis between User’s Contexts and Real Input Words through Twitter” specify they examined 421274 tweets collected between two given dates,
the data was collected by the then available Twitter streaming and search APIs.

16. Li et al. (2011) examined 22 official brands on the Chinese microblogging site (http://t.sina.com) in their paper "Brand tweets: How to popularize the enterprise Micro-blogs" presenting advice on how microblogging can be used in the domain of Business.

17. Chen et al. (2011) in their paper “TI: An efficient indexing mechanism for real-time search on tweets” consider the difficulties of real-time searching of Twitter data and introduce a new indexing scheme to assist. This technical paper is classified as belonging to the domain Search.

References

Avello, D. G. (2011), "All liaisons are dangerous when all your friends are known to us", in HT '11: Proceedings of the 22nd ACM conference on Hypertext and hypermedia, ACM, pp. 171-180.

Li, G., Cao, J., Jiang, J., Li, Q. and Yao, L. (2011), "Brand tweets: How to popularize the enterprise Micro-blogs", in Information Technology and Artificial Intelligence Conference (ITAI), IEEE, pp. 136-139.

Appendix A: Twitter related academic papers

A dataset from 2007-2011

Overview
This dataset consists of a bibliography of papers relating to Twitter studied in Williams, Terras, and Warwick (to appear). The aim of the study was to locate and classify academic papers on Twitter. Papers were identified by searching two databases:

- Scopus (http://www.info.sciverse.com/scopus)
- Web of Science (http://wok.mimas.ac.uk/)

Papers were identified by using the search word “Twitter”, limiting the searches to the abstracts, keywords and titles of journal and conference papers, published between 2007 (the first year there were any papers related to Twitter) and 2011 (the last full year before the study). The searches were all conducted on 12th January 2012, Web of Science returned 384 items and Scopus 1132. Data cleansing was performed to remove obvious duplicates, and items with missing data, leaving a total of 1161 items, subsequently another nine were found to be duplicates, leaving a corpus of 1152 papers.

Each paper’s title and abstract was read and re-read and classified according to the paper’s focus:

- Focussed. The paper is focussed on Twitter or another microblogging system.
- Mentions. The paper mentions Twitter or microblogging but it is primarily about something else.
- Not. The paper is not about microblogging, the term twitter is used in another sense, for example the noise made by birds.

This dataset lists these papers with 575 identified as Twitter-focussed; 550 as mentioning Twitter and 27 not related to microblogging.

Limitations
The classification of papers is based on the opinions of the researchers formed after reading the title and abstract. A reader of the full paper may make a different classification.

The dataset was collected on 12th January 2012, since that time the journals and conferences indexed by the databases have increased and so there are papers in earlier years that would appear in the dataset if it were collected today. For example the paper by Chang (2010) was not in the original set as the Proceedings it is in was not at the time indexed. Some editions of periodicals with 2011 publication dates were not indexed until later in 2012 for example Eysenbach G (2011) is not included as the final 2011 issue of the journal was not apparently indexed at the time.

References

Complete list of Twitter Papers
The following is a list of the 575 twitter studies found during this research. A spreadsheet containing this data is available from the University of Reading institutional repository.

1 Abel F., Celik I., Houben G.-J., Siehndel P. Leveraging the semantics of tweets for adaptive faceted search on twitter 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7031 LNCS PART 1 17

2 Abel F., Gao Q., Houben G.-J., Tao K. Analyzing user modeling on Twitter for personalized news recommendations 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6787 LNCS 1 12

3 Abel F., Gao Q., Houben G.-J., Tao K. Semantic enrichment of twitter posts for user profile construction on the social web 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6643 LNCS PART 2
375 389

4 Acar A., Muraki Y. Twitter for crisis communication: Lessons learned from Japan’s tsunami disaster 2011 International Journal of Web Based Communities 7 3 392 402

9 Ampofo L., Anstead N., O’Loughlin B. Trust, confidence, and credibility: Citizen responses on Twitter to opinion polls during the 2010 UK general election 2011 Information Communication and Society 14 6 850 871

10 Anger I., Kittl C. Measuring influence on Twitter 2011 ACM International Conference Proceeding Series 31

11 Arakawa Y., Tagashira S., Fukuda A. Relationship analysis between user’s contexts and real input words through Twitter 2010 2010 IEEE Globecom Workshops, GC’10 5700241 1751 1755

12 Aragon P., Garcia I., Garcia A. Graph visualization tool for Twittersphere users based on a high-scalable extract, transform and load system 2011 ACM International Conference Proceeding Series

13 Arakawa Y., Tagashira S., Fukuda A. Relationship analysis between user’s contexts and real input words through Twitter 2010 2010 IEEE Globecom Workshops, GC’10 5700241 1751 1755

15 Arceneaux N., Weiss A.S. Seems stupid until you try it: Press coverage of twitter, 2006-9 2010 New Media and Society 12 8 1262 1279
16 Archambault D., Greene D., Cunningham P., Hurley N. ThemeCrowds: Multiresolution summaries of twitter usage 2011 International Conference on Information and Knowledge Management, Proceedings 77 84
17 Ariyasu K., Fujisawa H., Kanatsugu Y. Message analysis algorithms and their application to social TV 2011 EuroITV'11 - Proceedings of the 9th European Interactive TV Conference 1 9
18 Armstrong C.L., Gao F. Gender, Twitter and news content an examination across platforms and coverage areas 2011 Journalism Studies 12 4 490 505
19 Asur S., Huberman B.A. Predicting the future with social media 2010 HP Laboratories Technical Report 53
22 Bae Y., Lee H. A sentiment analysis of audiences on twitter: Who is the positive or negative audience of popular twitterers? 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6935 LNCS 732 739
24 Ballsun-Stanton B., Carruthers K. #c3t the command & control of Twitter: On a socially constructed Twitter & applications of the Philosophy of Data 2010 Proceeding - 5th International Conference on Computer Sciences and Convergence Information Technology, ICCIT 2010 5711049 161 165
26 Barbosa L., Feng J. Robust sentiment detection on twitter from biased and noisy data 2010 Coling 2010 - 23rd International Conference on Computational Linguistics, Proceedings of the Conference 2 36 44
27 Barnes S.J., Bohringer M. Modeling use continuance behavior in microblogging services: The case of Twitter 2011 Journal of Computer Information Systems 51 4 1 10
28 Beck K. Analyzing tweets to identify malicious messages 2011 IEEE International Conference on Electro Information Technology 5978594
29 Bernstein M.S., Suh B., Hong L., Chen J., Kairam S., Chi E.H. Eddi: Interactive topic-based browsing of social status streams 2010 UIST 2010

- 23rd ACM Symposium on User Interface Software and Technology
 303 312
30 Bielicky M., Richter K.B. The garden of error and decay 2011 ACM SIGGRAPH 2011 Art Gallery, SIGGRAPH’11
 356 357
31 Bifet A., Frank E. Sentiment knowledge discovery in Twitter streaming data 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6332 LNAI 1 15
32 Bifet A., Holmes G., Pfahringer B. MOA-TweetReader: Real-time analysis in twitter streaming data 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6926 LNAI 46 60
 5501558 1257 1260
34 Bollen J., Goncalves B., Ruan G., Mao H. Happiness is assortative in online social networks 2011 Artificial Life 17 3 237
 251
35 Bollen J., Mao H. Twitter mood as a stock market predictor 2011 Computer 44 10 6036101 91 94
36 Bollen J., Mao H., Zeng X. Twitter mood predicts the stock market 2011 Journal of Computational Science 2 1 1 8
37 Bonetta L. Should You Be Tweeting? 2009 Cell 139 3
 452 453
38 Borau K., Ullrich C., Feng J., Shen R. Microblogging for language learning: Using twitter to train communicative and cultural competence 2009 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5686 LNCS 78 87
39 Borgs C., Chayes J., Karrer B., Meeder B., Ravi R., Reagans R., Sayedi A. Game-theoretic models of information overload in social networks 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6516 LNCS 146 161
 31 36
41 Boyd D., Golder S., Lotan G. Tweet, tweet, retweet: Conversational aspects of retweeting on twitter 2010 Proceedings of the Annual Hawaii International Conference on System Sciences
 5428313
42 Bristol T.J. Twitter: Consider the possibilities for continuing nursing education 2010 Journal of Continuing Education in Nursing 41 5
 199 200
43 Brody S., Diakopoulos N. Coooollllllllllllllllllllllllllllllll!!!!!!!!! using word lengthening to detect sentiment in microblogs 2011 EMNLP 2011 -
45 Bulut M.F., Yilmaz Y.S., Demirbas M. Crowdsourcing location-based queries 2011 2011 IEEE International Conference on Pervasive Computing and Communications Workshops, PERCOM Workshops 2011 5766944 513 518
47 Burghouwt P., Spruit M., Sips H. Towards detection of botnet communication through social media by monitoring user activity 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7093 LNCS 131 143
48 Burton S., Soboleva A. Interactive or reactive? Marketing with Twitter 2011 Journal of Consumer Marketing 28 7 491 499
50 Buzzi M.C., Buzzi M., Leporini B. Web 2.0: Twitter and the blind 2011 ACM International Conference Proceeding Series 151 156
53 Cataldi M., Di Caro L., Schifanella C. Emerging topic detection on Twitter based on temporal and social terms evaluation 2010 Proceedings of the 10th International Workshop on Multimedia Data Mining, MDMKDD ’10 4
55 Celik I., Abel F., Houben G.-J. Learning semantic relationships between entities in Twitter 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6757 LNCS 167 181

57 Chao T.C. Data repositories: A home for microblog archives? 2011 ACM International Conference Proceeding Series 655 656

58 Chaudhry A. Social media and compliant pharmaceutical industry promotion: The ASCO 2010 Twitter experience 2011 Journal of Medical Marketing 11 1 38 48

59 Chen C., Li F., Ooi B.C., Wu S. TI: An efficient indexing mechanism for real-time search on tweets 2011 Proceedings of the ACM SIGMOD International Conference on Management of Data 649 660

64 Chen Q., Shipper T., Khan L. Tweets mining using Wikipedia and impurity cluster measurement 2010 ISI 2010 - 2010 IEEE International Conference on Intelligence and Security Informatics: Public Safety and Security 5484758 141 143

65 Chen, Gina Masullo Tweet this: A uses and gratifications perspective on how active Twitter use gratifies a need to connect with others 2011 COMPUTERS IN HUMAN BEHAVIOR 27 2 755 762

67 Cheng Z., Caverlee J., Lee K. You are where you tweet: A content-based approach to geo-locating Twitter users 2010 International Conference on Information and Knowledge Management, Proceedings 759 768

68 Cheong M., Lee V. Integrating web-based intelligence retrieval and decision-making from the twitter trends knowledge base 2009

International Conference on Information and Knowledge Management, Proceedings 1 8
69 Cheong M., Lee V. A study on detecting patterns in Twitter intra-topic user and message clustering 2010 Proceedings - International Conference on Pattern Recognition 5597282 3125 3128
70 Cheong M., Lee V. Twittering for earth: A study on the impact of microblogging activism on earth hour 2009 in Australia 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5991 LNAI PART 2 114 123
71 Cheong M., Lee V.C.S. A microblogging-based approach to terrorism informatics: Exploration and chronicling civilian sentiment and response to terrorism events via Twitter 2011 Information Systems Frontiers 1 13 1 45 59
72 Chew C., Eysenbach G. Pandemics in the age of Twitter: Content analysis of tweets during the 2009 H1N1 outbreak 2010 PLoS ONE 5 1 11 e14118
74 Chi F., Yang N. Twitter adoption in congress 2011 Review of Network Economics 10 1 3
75 Chiang C.-W., Tomimatsu K. The effort of social networking on social behavior - Integrating Twitter, mobile devices, and wearable clothing as an example 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6763 LNCS PART 3 30 37
76 Chinrungrueng J., Dumnin S., Pongthornseri R. Iparking: A parking management framework 2011 2011 11th International Conference on ITS Telecommunications, ITST 2011 6060133 63 68
79 Chung J., Mustafaraj E. Can collective sentiment expressed on twitter predict political elections? 2011 Proceedings of the National Conference on Artificial Intelligence 2 1770 1771
80 Clark E., Araki K. Text normalization in social media: Progress, problems and applications for a pre-processing system of casual English 2011 Procedia - Social and Behavioral Sciences 27 27 11

82 Claster W.B., Cooper M., Sallis P. Thailand - Tourism and conflict. Modeling sentiment from twitter tweets using naive bayes and unsupervised artificial neural nets 2010 Proceedings - 2nd International Conference on Computational Intelligence, Modelling and Simulation, CIMSIm 2010 5701826 89 94
83 Claster W.B., Dinh H., Cooper M. Naive bayes and unsupervised artificial neural nets for caneu tourism social media data analysis 2010 Proceedings - 2010 2nd World Congress on Nature and Biologically Inspired Computing, NaBIC 2010 5716370 158 163
85 Correa D., Sureka A. Mining tweets for tag recommendation on social media 2011 International Conference on Information and Knowledge Management, Proceedings 69 75
86 Cosoi, Alexandru Catalin; Cosoi, Carmen Maria; Sgarciu, Valentin; Dumitru, Bogdan; Vlad, Madalin Stefan SPAM/TWITTER 2009 ANNALS OF DAAAM FOR 2009 & PROCEEDINGS OF THE 20TH INTERNATIONAL DAAAM SYMPOSIUM 20 105 106
87 Cramer H., Buttner S. Things that tweet, check-in and are befriended. Two explorations on robotics & social media 2011 HRI 2011 - Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction 125 126
88 Crawford, Kate Following you: Disciplines of listening in social media 2009 CONTINUUM-JOURNAL OF MEDIA & CULTURAL STUDIES 23 4 525 535
89 Cuddy C., Graham J., Morton-Owens E.G. Implementing twitter in a health sciences library 2010 Medical Reference Services Quarterly 29 4 320 330
91 Cui A., Zhang M., Liu Y., Ma S. Emotion tokens: Bridging the gap among multilingual twitter sentiment analysis 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7097 LNCS 238 249
92 Culotta A. Towards detecting influenza epidemics by analyzing Twitter messages 2010 SOMA 2010 - Proceedings of the 1st Workshop on Social Media Analytics 115 122
93 Cunningham J. Time to Tweet 2010 ITNOW 52 1 12 13
94 Curran K., O'Hara K., O'Brien S. The role of twitter in the world of business 2011 International Journal of Business Data Communications and Networking 7 3 1 15
95 Cuvelier E., Aufaure M.-A. A buzz and E-reputation monitoring tool for twitter based on galois lattices 2011 Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6828 LNAI 91 103
97 Dann S. Twitter content classification 2010 First Monday 15 12
100 Davis Jr. C.A., Pappa G.L., de Oliveira D.R.R., de L. Arcanjo F. Inferring the location of twitter messages based on user relationships 2011 Transactions in GIS 15 6 735 751
101 De Choudhury M., Counts S., Czerwinski M. Identifying relevant social media content: Leveraging information diversity and user cognition 2011 HT 2011 - Proceedings of the 22nd ACM Conference on Hypertext and Hypermedia 161 170
102 De Longueville B., Smith R.S., Luraschi G. "OMG, from here, I can see the flames!": A use case of mining location based social networks to acquire spatio-temporal data on forest fires 2009 GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems 73 80
103 De Moor A. Conversations in context: A Twitter case for social media systems design 2010 ACM International Conference Proceeding Series

104 DeFebbo D.M., Mihrlad L., Strong M.A. Microblogging for medical libraries and librarians 2009 Journal of Electronic Resources in Medical Libraries 6 3 211 223
105 Del Campo-Avila J., Moreno-Vergara N., Trella-Lopez M. Analyzing factors to increase the influence of a Twitter user 2011 Advances in Intelligent and Soft Computing 89 69 76

115 Ediger D., Jiang K., Riedy J., Bader D.A., Corley C., Farber R., Reynolds W.N. Massive social network analysis: Mining twitter for social good 2010 Proceedings of the International Conference on Parallel Processing 5599247 583 593
117 Efron M. Information search and retrieval in microblogs 2011 Journal of the American Society for Information Science and Technology 62 6 996 1008
118 Elavsky C.M., Mislan C., Elavsky S. When talking less is more: Exploring outcomes of Twitter usage in the large-lecture hall 2011 Learning, Media and Technology 36 3 215 233
119 Endarnoto S.K., Pradipta S., Nugroho A.S., Purnama J. Traffic condition information extraction & visualization from social media twitter for android mobile application 2011 Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, ICEEI 2011 6021743
120 Epstein, Gady A Twitter To Invest In 2011 FORBES 187 4 36 36
121 Eriksen M. Scaling Scala at Twitter 2010 ACM SIGPLAN Commercial Users of Functional Programming, CUFP’10 1900170

128 Field K., O’Brien J. Cartoblography: Experiments in using and organising the spatial context of micro-blogging 2010 Transactions in GIS 14 SUPPL. 1 5 23
129 Fields E. A unique Twitter use for reference services 2010 Library Hi Tech News 27 6 14 15
130 Fischer E., Reuber A.R. Social interaction via new social media: (How) can interactions on Twitter affect effectual thinking and behavior? 2011 Journal of Business Venturing 26 1 1 18
131 Forrestal V. Making twitter work: A guide for the uninitiated, the skeptical, and the pragmatic 2011 Reference Librarian 52 1 146 151
133 Fox B.I., Varadarajan R. Use of twitter to encourage interaction in a multi-campus pharmacy management course 2011 American Journal of Pharmaceutical Education 75 5
134 Franko, Orrin I. Twitter as a Communication Tool for Orthopedic Surgery 2011 ORTHOPEDICS 34 11 873 876

138 Galassini C., Malizia A., Bellucci A. An approach for developing intelligent systems for sentiment analysis over social networks 2011 Proceedings of the IASTED International Conference on Intelligent Systems and Control 1 7

140 Gayo-Avello D. Don’t turn social media into another ‘literary digest’ poll 2011 Communications of the ACM 54 10 121 128

141 Geho P.R., Smith S., Lewis S.D. Is twitter a viable commercial use platform for small businesses? an empirical study targeting two audiences in the small business community 2010 Entrepreneurial Executive 15 73 85

142 Gelernter J., Mushegian N. Geo-parsing messages from microtext 2011 Transactions in GIS 15 6 753 773

143 Genc Y., Sakamoto Y., Nickerson J.V. Discovering context: Classifying tweets through a semantic transform based on wikipedia 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)6780 LNAI 484 492

145 Ghosh S., Srivastava A., Ganguly N. Assessing the effects of a soft cut-off in the twitter social network 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6641 LNCS PART 2 288 300

147 Golbeck J., Grimes J.M., Rogers A. Twitter use by the U.S. Congress 2010 Journal of the American Society for Information Science and Technology 61 8 1612 1621

149 Golder S.A., Macy M.W. Diurnal and seasonal mood vary with work, sleep, and daylength across diverse cultures 2011 Science 333 6051 1878 1881

International Conference on Privacy, Security, Risk and Trust
5590841 88 95
151 Goncalves B., Perra N., Vespignani A. Modeling users’ activity on twitter networks: Validation of Dunbar’s number 2011 PLoS ONE 6 8 e22656
153 Gragg, Phillip; Sellers, Christine L. Twitter 2010 LAW LIBRARY JOURNAL 102 2 325 330
155 Grant W.J., Moon B., Grant J.B. Digital dialogue? australian politicians’ use of the social network tool twitter 2010 Australian Journal of Political Science 45 4 579 604
156 Greer C.F., Ferguson D.A. Using twitter for promotion and branding: A content analysis of local television twitter sites 2011 Journal of Broadcasting and Electronic Media 55 2 198 214
157 Grier C., Thomas K., Paxson V., Zhang M. @Spam: The underground on 140 characters or less 2010 Proceedings of the ACM Conference on Computer and Communications Security 27 37
159 Grosseck G., Holotescu C. Microblogging multimedia-based teaching methods best practices with Cirip.eu 2010 Procedia - Social and Behavioral Sciences 2 2 2151 2155
161 Gruzd A., Wellman B., Takhteyev Y. Imagining twitter as an imagined community 2011 American Behavioral Scientist 55 10 1294 1318
163 Guerra P.H.C., Veloso A., Meira W., Almeida V. From bias to opinion: A transfer-learning approach to real-time sentiment analysis 2011 Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 150 158
164 Guizzo E. Send a tweet to your office door 2011 IEEE Spectrum 48 6 5779781 22 23
165 Guy M., Earle P., Ostrum C., Gruchalla K., Horvath S. Integration and dissemination of citizen reported and seismically derived earthquake
information via social network technologies 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6065 LNCS 42 53

166 Haghani P., Michel S., Aberer K. The gist of everything new: Personalized top-k processing over web 2.0 streams 2010 International Conference on Information and Knowledge Management, Proceedings 489 498

167 Hamed A.A., Lee B.S., Thessen A.E. Ecosystems monitoring: An information extraction and event processing scientific workflow 2010 Proceedings - 2010 6th World Congress on Services, Services-1 2010 5575852 302 305

169 Hannon J., Bennett M., Smyth B. Recommending Twitter users to follow using content and collaborative filtering approaches 2010 RecSys’10 - Proceedings of the 4th ACM Conference on Recommender Systems 199 206

172 Hargittai E., Litt E. The tweet smell of celebrity success: Explaining variation in Twitter adoption among a diverse group of young adults 2011 New Media and Society 13 5 824 842

173 Hauff C., Houben G.-J. Deriving knowledge profiles from twitter 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6964 LNCS 139 152

174 He S., Guo Y., Ghanem M. Incremental learning of relations from the most frequent patterns in conversations on microblogging services 2010 Proc. of the IADIS Int. Conf. Intelligent Systems and Agents 2010, Proc. of the IADIS European Conference on Data Mining 2010, Part of the MCCSIS 2010 35 42

175 Heaivilin N., Gerbert B., Page J.E., Gibbs J.L. Public health surveillance of dental pain via Twitter 2011 Journal of Dental Research 90 9 1047 1051

176 Hecht B., Hong L., Suh B., Chi E.H. Tweets from justin bieber's heart: The dynamics of the "location" field in user profiles 2011 Conference on Human Factors in Computing Systems - Proceedings 237 246

177 Hepp M. HyperTweet: Collaborative knowledge engineering via Twitter messages 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6317 LNAI 451 461

178 Herdagdelen A., Baroni M. Stereotypical gender actions can be extracted from web text 2011 Journal of the American Society for Information Science and Technology 62 9 1741 1749
180 Heverin T. Microblogging for distributed surveillance in response to violent crises 2011 ACM International Conference Proceeding Series 827 828
181 Hijikata Y., Yamanaka T., Tanaka Y., Nishida S. Development of information filtering systems for disaster prevention 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7008 LNCS PART 4 318 327
183 Holotescu C., Grosseck G. Using microblogging to deliver online courses. Case-study: Cirip.ro 2009 Procedia - Social and Behavioral Sciences 1 1 495 501
184 Honeycutt C., Herring S.C. Beyond microblogging: Conversation and collaboration via twitter 2009 Proceedings of the 42nd Annual Hawaii International Conference on System Sciences, HICSS 4755499
186 Hong L., Davison B.D. Empirical study of topic modeling in Twitter 2010 SOMA 2010 - Proceedings of the 1st Workshop on Social Media Analytics 80 88
187 Hong L., Dom B., Gurumurthy S., Tsoutsouliulkidis K. A time-dependent topic model for multiple text streams 2011 Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 832 840
188 Hong S., Nadler D. Does the early bird move the polls? The use of the social media tool 'Twitter' by U.S. politicians and its impact on public opinion 2011 ACM International Conference Proceeding Series 182 186
190 Hu D.H., Wang C.-L., Wang Y. GPS calibrated ad-hoc localization for geosocial networking 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6406 LNCS 52 66

193 Huberman B.A., Romero D.M., Wu F. Social networks that matter Twitter under the microscope 2009 First Monday 14 1

194 Huston C., Weiss M. Gathering in digital spaces: Exploring topical communities on twitter 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6984 LNCS 320 323

195 Huston C., Weiss M., Benyoucef M. Following the conversation: A more meaningful expression of engagement 2011 Lecture Notes in Business Information Processing 78 LNBIP 199 210

196 Hutchins B. The acceleration of media sport culture: Twitter, telepresence and online messaging 2011 Information Communication and Society 14 2 237 257

197 Inches G., Basso A., Crestani F. On the generation of rich content metadata from social media 2011 International Conference on Information and Knowledge Management, Proceedings 85 91

198 Itoh M. 3D techniques for visualizing user activities on microblogs 2010 IET Conference Publications 2010 568 CP 384 389

200 Jackson N., Lilleker D. Microblogging, Constituency Service and Impression Management: UK MPs and the Use of Twitter 2011 Journal of Legislative Studies 17 1 86 105

201 Jamil N., Alhadi A.C., Noah S.A. A collaborative names recommendation in the Twitter environment based on location 2011 2011 International Conference on Semantic Technology and Information Retrieval, STAIR 2011 5995775 119 124

202 Jansen B.J., Chowdury A., Cook G. The ubiquitous and increasingly significant status message 2010 Interactions 17 3 15 17

203 Jansen B.J., Zhang M., Sobel K., Chowdury A. Twitter power: Tweets as electronic word of mouth 2009 Journal of the American Society for Information Science and Technology 60 11 2169 2188

205 Java A., Song X., Finin T., Tseng B. Why We twitter: An analysis of a microblogging community 2009 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5439 LNAI 118 138

206 Jin O., Liu N.N., Zhao K., Yu Y., Yang Q. Transferring topical knowledge from auxiliary long texts for short text clustering 2011 International Conference on Information and Knowledge Management, Proceedings 775 784

207 Jo S., Hong D. The study of text extraction for forensic data 2011 Proceedings - 7th International Conference on Networked Computing and Advanced Information Management, NCM 2011 5967542

208 Johnson K.A. The effect of twitter posts on students' perceptions of instructor credibility 2011 Learning, Media and Technology 36 1 21 38

209 Joly A., Maret P., Daigremont J. Between social awareness and productivity: Result of a survey about real-time microblogging 2010 First Monday 15 11

210 Jones D., Potts L. Best practices for designing third party applications for contextually-aware tools 2010 SIGDOC 2010 - Proceedings of the 28th ACM International Conference on Design of Communication 95 102

214 Kamath K.Y., Caverlee J. Identifying hotspots on the real-time web 2010 International Conference on Information and Knowledge Management, Proceedings 1837 1840

215 Kamath K.Y., Caverlee J. Discovering trending phrases on information streams 2011 International Conference on Information and Knowledge Management, Proceedings 2245 2248

217 Kan T.W., Teng C.H. Life Twitter: Connecting everyday commodities with social networking service 2010 ACM SIGGRAPH ASIA 2010 Posters, SA’10 8

218 Kandylas V., Dasdan A. The utility of tweeted URLs for web search 2010 Proceedings of the 19th International Conference on World Wide Web, WWW ’10 1127 1128

Conference on Collaboration Technologies and Systems, CTS 2011	5928696 265 272
Kang J.H., Lerman K., Plangprasopchok A.	Analyzing microblogs with affinity propagation 2010 SOMA 2010 - Proceedings of the 1st Workshop on Social Media Analytics
Kang U., Meeder B., Faloutsos C.	Spectral analysis for billion-scale graphs: Discoveries and implementation 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6635 LNAI PART 2 13 25
Karweg B., Hutter C., Bohm K.	Evolving social search based on bookmarks and status messages from social networks 2011 International Conference on Information and Knowledge Management, Proceedings 1825 1833
Kato D., Elkhiyaoui K., Kunieda K., Yamada K., Michiardi P.	A scalable interest-oriented peer-to-peer pub/sub network 2011 Peer-to-Peer Networking and Applications 4 2 165 177
234 Kieslinger B., Ebner M. A qualitative approach towards discovering microblogging practices of scientists 2011 2011 14th International Conference on Interactive Collaborative Learning, ICL 2011 - 11th International Conference Virtual University, VU’11 6059547 51 57
235 Kinsella S., Murdock V., O’Hare N. "I’m eating a sandwich in Glasgow": Modeling locations with tweets 2011 International Conference on Information and Knowledge Management, Proceedings 61 68
237 Kivran-Swaine F., Naaman M. Network properties and social sharing of emotions in social awareness streams 2011 Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW 379 382
238 Koga H., Taniguchi T. Developing a user recommendation engine on Twitter using estimated latent topics 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6761 LNCS PART 1 461 470
239 Komamizu T., Yamaguchi Y., Amagasa T., Kitagawa H. FACTUS: Faceted Twitter user search using Twitter lists 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6997 LNCS 343 344
240 Kraker P., Wagner C., Jeanquartier F., Lindstaedt S. On the way to a science intelligence: Visualizing TEL tweets for trend detection 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6964 LNCS 220 232
244 Kwak H., Lee C., Park H., Moon S. What is Twitter, a social network or a news media? 2010 Proceedings of the 19th International Conference on World Wide Web, WWW ’10 591 600

245 Laboreiro G., Sarmento L., Oliveira E. Identifying automatic posting systems in microblogs 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7026 LNAI 634 648
247 Lampos V., Cristianini N. Tracking the flu pandemic by monitoring the social web 2010 2010 2nd International Workshop on Cognitive Information Processing, CIP2010 5604088 411 416
248 Lampos V., De Bie T., Cristianini N. Flu detector-tracking epidemics on twitter 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6323 LNAI PART 3 599 602
249 Laniado D., Mika P. Making sense of Twitter 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6496 LNCS PART 1 470 485
250 Lappas T., Punera K., Sarlos T. Mining tags using social endorsement networks 2011 SIGIR’11 - Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval 195 204
251 Lassen, David S.; Brown, Adam R. Twitter: The Electoral Connection? 2011 SOCIAL SCIENCE COMPUTER REVIEW 29 4 419 436
252 Layton R., Watters P., Dazeley R. Authorship attribution for Twitter in 140 characters or less 2010 Proceedings - 2nd Cybercrime and Trustworthy Computing Workshop, CTC 2010 5615152 1 8

261 Lee J.G., Antoniadis P., Salamatian K. Faving reciprocity in content sharing communities a comparative analysis of Flickr and Twitter 2010 Proceedings - 2010 International Conference on Advances in Social Network Analysis and Mining, ASONAM 2010 5562780

263 Lee K., Caverlee J., Cheng Z., Sui D.Z. Content-driven detection of campaigns in social media 2011 International Conference on Information and Knowledge Management, Proceedings 551 556

267 Lee R., Wakamiya S., Sumiya K. Discovery of unusual regional social activities using geo-tagged microblogs 2011 World Wide Web 14 4 321 349

269 Li B., Si X., Lyu M.R., King I., Chang E.Y. Question identification on twitter2011 International Conference on Information and Knowledge Management, Proceedings 2477 2480

271 Li G., Hoi S.C.H., Chang K., Jain R. Micro-blogging sentiment detection by collaborative online learning 2010 Proceedings - IEEE International Conference on Data Mining, ICDM 5694057 893 898
272 Li H., Bhowmick S.S., Sun A. CASINO: Towards conformity-aware social influence analysis in online social networks 2011 International Conference on Information and Knowledge Management, Proceedings 1007 1012
273 Li J.-Y., Yeh M.-Y. On sampling type distribution from heterogeneous social networks 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6635 LNAI PART 2 111 122
274 Li L., Zhang S. The Twitter-based research of personal knowledge management 2010 2010 3rd International Symposium on Knowledge Acquisition and Modeling, KAM 2010 5646220 5 7
276 Li W., Grossman T., Matejka J., Fitzmaurice G. TwitApp: In-product micro-blogging for design sharing 2011 UIST’11 - Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology 185 194
278 Li Y.-M., Li T.-Y. Deriving marketing intelligence over microblogs 2011 Proceedings of the Annual Hawaii International Conference on System Sciences 5718694
279 Lin C.-S., Chiang M.-F., Peng W.-C., Chen C.-C. An event-based POI service from microblogs 2011 APNOMS 2011 - 13th Asia-Pacific Network Operations and Management Symposium: Managing Clouds, Smart Networks and Services, Final Program 6076994
280 Lin C.X., Zhao B., Mei Q., Han J. PET: A statistical model for popular events tracking in social communities 2010 Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 929 938
281 Lin J., Snow R., Morgan W. Smoothing techniques for adaptive online language models: Topic tracking in tweet streams 2011 Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 422 429
282 Lindgren S., Lundstrom R. Pirate culture and hacktivist mobilization: The cultural and social protocols of #Wikileaks on Twitter 2011 New Media and Society 13 6 999 1018
283 Lopez-de-Ipina D., Diaz-de-Sarralde I., Garcia-Zubia J. An ambient assisted living platform integrating RFID data-on-tag care annotations and

<table>
<thead>
<tr>
<th>Twitter 2010</th>
<th>Journal of Universal Computer Science</th>
<th>16</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>285 Loudon L., Hall H.</td>
<td>From triviality to business tool: The case of Twitter in library and information services delivery 2010</td>
<td>Business Information Review</td>
<td>27</td>
</tr>
<tr>
<td>286 Lowe B., Laffey D.</td>
<td>Is twitter for the birds? Using twitter to enhance student learning in a marketing course 2011</td>
<td>Journal of Marketing Education</td>
<td>33</td>
</tr>
<tr>
<td>287 Lussier J.T., Chawla N.V.</td>
<td>Network effects on tweeting 2011</td>
<td>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</td>
<td>6926 LNAl</td>
</tr>
<tr>
<td>288 Magee J., Betke M.</td>
<td>HAIL: Hierarchical adaptive interface layout 2010</td>
<td>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</td>
<td>6179 LNCS PART 1</td>
</tr>
<tr>
<td>289 Mainka A.</td>
<td>Twitter: ”Chirping ”or targeted information transfer? [Twitter: ”Gezwitscher” oder Gezielte Informationsvermittlung?] 2010</td>
<td>Information-Wissenschaft und Praxis</td>
<td>61</td>
</tr>
<tr>
<td>290 Makice K.</td>
<td>Phatics and the design of community 2009</td>
<td>Conference on Human Factors in Computing Systems - Proceedings</td>
<td>3133</td>
</tr>
<tr>
<td>293 Marcus A., Bernstein M.S., Badar O., Karger D.R., Madden S., Miller R.C.</td>
<td>Tweets as data: Demonstration of TweeQL and TwitInfo 2011</td>
<td>Proceedings of the ACM SIGMOD International Conference on Management of Data</td>
<td>1259</td>
</tr>
<tr>
<td>295 Markham S.A., Belkasim S.</td>
<td>Collaborating across international boundaries ... using twitter as a tool in the classroom 2011</td>
<td>ITiCSE’11 - Proceedings of the 16th Annual Conference on Innovation and Technology in Computer Science</td>
<td>382</td>
</tr>
</tbody>
</table>

299 Martinez Teutle A.R. Twitter: Network properties analysis 2010 CONIELECOMP 2010 - 20th International Conference on Electronics Communications and Computers 5440773 180 186

300 Marwick A., Boyd D. To see and be seen: Celebrity practice on twitter 2011 Convergence 17 2 139 158

301 Marwick A.E., Boyd D. I tweet honestly, I tweet passionately: Twitter users, context collapse, and the imagined audience 2011 New Media and Society 13 1 114 133

302 Mathioudakis M., Koudas N. TwitterMonitor: Trend detection over the twitter stream 2010 Proceedings of the ACM SIGMOD International Conference on Management of Data 1155 1157

303 McAllister B. Why "the conversation" isn't necessarily a conversation 2010 Interactions 17 5 19 21

304 McCord M., Chuah M. Spam detection on twitter using traditional classifiers 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6906 LNCS 175 186

305 McFedries P. Technically speaking: All a-twitter 2007 IEEE Spectrum 44 10 84

307 McNely B.J. Backchannel persistence and collaborative meaning-making 2009 SIGDOC'09 - Proceedings of the 27th ACM International Conference on Design of Communication 297 303

309 Mendes P.N., Passant A., Kapanipathi P. Twarql: Tapping into the wisdom of the crowd2010 ACM International Conference Proceeding Series

310 Mendoza M., Poblete B., Castillo C. Twitter under crisis: Can we trust what we RT? 2010 SOMA 2010 - Proceedings of the 1st Workshop on Social Media Analytics 71 79

311 Michelson M., Macskassy S.A. Discovering users' topics of interest on twitter: A first look 2010 International Conference on Information and Knowledge Management, Proceedings 73 79

312 Milano, Roberta; Baggio, Rodolfo; Piattelli, Robert. The effects of online social media on tourism websites 2011 INFORMATION AND COMMUNICATION TECHNOLOGIES IN TOURISM 2011 471 483

313 Milstein S. Twitter for libraries (and librarians) 2009 Online (Wilton, Connecticut) 33 2 34 35

54

314 Mistry V. Critical care training: Using Twitter as a teaching tool 2011 British Journal of Nursing 20 20 1292 1296
315 Moh T.-S., Murmann A.J. Can you judge a man by his friends? - Enhancing spammer detection on the twitter microblogging platform using friends and followers 2010 Communications in Computer and Information Science 54 210 220
317 Mowbray M. A rice cooker wants to be my friend on twitter 2011 HP Laboratories Technical Report 175
319 Murphy J. Micro-blogging for science and technology libraries 2008 Science and Technology Libraries 28 4 375 378
320 Murthy D., Gross A., Longwell S. Twitter and e-health: A case study of visualizing cancer networks on Twitter 2011 International Conference on Information Society, i-Society 2011 5978519 110 113
322 Mustafaraj E., Anderson S.D. Learning about machine learning: An extended assignment to classify twitter accounts 2011 Proceedings of the 24th International Florida Artificial Intelligence Research Society, FLAIRS - 24 376 381
323 Mustafaraj E., Takis P. What edited retweets reveal about online political discourse 2011 AAAI Workshop - Technical Report WS-11-05 38 43
324 Naaman M., Becker H., Gravano L. Hip and trendy: Characterizing emerging trends on Twitter 2011 Journal of the American Society for Information Science and Technology 62 5 902 918
326 Nagarajan M., Gomadam K., Sheth A.P., Ranabahu A., Mutharaju R., Jadhav A. Spatio-temporal-thematic analysis of citizen sensor data: Challenges and experiences 2009 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5802 LNCS 539 553
327 Nakamura M., Miyazawa Y., Kidera Y., Moriyama T., Tamaki M. CiVo: Real-time visualization of social activities by cartoonized twitter 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6972 LNCS 349 353

328 Nakamura, Mitsuhiro; Deguchi, Hiroshi Cognitive-Costed Agent Model of the Microblogging Network 2011 AGENT-BASED APPROACHES IN ECONOMIC AND SOCIAL COMPLEX SYSTEMS VI 8 75 84
330 Narr S., De Luca E.W., Albayrak S. Extracting semantic annotations from twitter 2011 International Conference on Information and Knowledge Management, Proceedings 15 16
331 Nasirifard P., Hayes C. A real-time tweet diffusion advisor for #Twitter 2011 Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW 587 588
332 Nasirifard P., Hayes C. Tadvise: A twitter assistant based on twitter lists 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6984 LNCS 153 160
334 Nesbitt J., Thomas A. Bridging the digital divide one tweet at a time: Twitter-enabled devices for family communication 2010 Conference on Human Factors in Computing Systems - Proceedings 3949 3954
335 Ng W.S., Sharlin E. Tweeting halo: Clothing that tweets 2010 UIST 2010 - 23rd ACM Symposium on User Interface Software and Technology, Adjunct Proceedings 447 448
336 Nguyen T.-M., Kawamura T., Tahara Y., Ohsuga A. Capturing users’ buying activity at Akihabara electric town from twitter 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6422 LNAI PART 2 163 171
337 Nishida K., Banno R., Fujimura K., Hoshide T. Tweet classification by data compression 2011 International Conference on Information and Knowledge Management, Proceedings 29 34
339 Notess G.R. Searching the Twitter realm 2008 Online (Wilton, Connecticut) 32 4 43 45
341 Oh O., Agrawal M., Rao H.R. Information control and terrorism: Tracking the Mumbai terrorist attack through twitter 2011 Information Systems Frontiers 13 1 33 43
342 Oka M., Hope T., Hashimoto Y., Uno R., Lee M.-H. A collective map to capture human behavior for the design of public spaces 2011 Conference on
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Authors</th>
<th>Title</th>
<th>Journal/Conference/Proceedings</th>
<th>Year</th>
<th>Volume/Issue/ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>Okazaki M., Matsuo Y.</td>
<td>Semantic Twitter: Analyzing tweets for real-time event notification</td>
<td>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</td>
<td>2010</td>
<td>6045 LNCS M4D 63 74</td>
</tr>
<tr>
<td>345</td>
<td>Ostrowski D.A.</td>
<td>Sentiment mining within social media for topic identification</td>
<td>Proceedings - 2010 IEEE 4th International Conference on Semantic Computing, ICSC 2010</td>
<td>2010</td>
<td>5629112 394 401</td>
</tr>
<tr>
<td>346</td>
<td>Ozsoy S.</td>
<td>Use of new media by Turkish fans in sport communication: Facebook and Twitter</td>
<td>Journal of Human Kinetics</td>
<td>2011</td>
<td>28 1 165 176</td>
</tr>
<tr>
<td>349</td>
<td>Palmer J.</td>
<td>Hybrid Elicitation of Latent Intent in Open Societies (HELIOS)</td>
<td>2011 2nd Worldwide Cybersecurity Summit, WCS 2011</td>
<td>2011</td>
<td>5978789</td>
</tr>
<tr>
<td>350</td>
<td>Park B.-W., Lee K.C.</td>
<td>Effects of knowledge sharing and social presence on the intention to continuously use social networking sites: The case of Twitter in Korea</td>
<td>Communications in Computer and Information Science</td>
<td>2010</td>
<td>124 CCIS 60 69</td>
</tr>
<tr>
<td>351</td>
<td>Park J., Kim H., Cha M., Jeong J.</td>
<td>CEO's apology in twitter: A case study of the fake beef labeling incident by E-mart</td>
<td>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</td>
<td>2011</td>
<td>6984 LNCS 300 303</td>
</tr>
<tr>
<td>352</td>
<td>Pattern D.</td>
<td>A day in the Twitter life of a library systems manager</td>
<td>Serials</td>
<td>2011</td>
<td>24 1 98 99</td>
</tr>
<tr>
<td>354</td>
<td>Pennacchiotti M., Popescu A.-M.</td>
<td>Democrats, republicans and starbucks aficionados: User classification in twitter</td>
<td>Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining</td>
<td>2011</td>
<td>430 438</td>
</tr>
</tbody>
</table>

356 Perez C., Lemercier M., Birregah B., Corpel A. SPOT 1.0: Scoring suspicious profiles on Twitter 2011 Proceedings - 2011 International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2011 5992627 377 381
357 Perez-Tellez F., Pinto D., Cardiff J., Rosso P. On the difficulty of clustering company tweets 2010 International Conference on Information and Knowledge Management, Proceedings 95 102
358 Perfitt T., Englert B. Megaphone: Fault tolerant, scalable, and trustworthy P2P microblogging 2010 5th International Conference on Internet and Web Applications and Services, ICIW 2010 5476495 469 477
359 Peter U., Hruz T. Clustering signature in complex social networks 2009 Proceedings - 12th IEEE International Conference on Computational Science and Engineering, CSE 2009 4 5284139 237 244
362 Phelan O., McCarthy K., Smyth B. Buzzer - Online real-time topical news article and source recommender 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6206 LNAI 251 261
363 Pho H., Han S.C., Kang B.H. Emergency-affected population identification and notification by using online social networks 2011 Communications in Computer and Information Science257 CCIS 541 550
364 Phuvipadawat S., Murata T. Breaking news detection and tracking in Twitter 2010 Proceedings - 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops, WI-IAT 2010 5616930 120 123
365 Poblete B., Garcia R., Mendoza M., Jaimes A. Do all birds tweet the same? Characterizing twitter around the world 2011 International Conference on Information and Knowledge Management, Proceedings 1025 1030
366 Pollitt M. Forensic Twitter 2010 Journal of Digital Forensic Practice 3 1 1 3
367 Pontin J. The new money: Square, founded by the creator of Twitter, lets people accept credit cards with their smart phones. That innovation could transform transactions in surprising ways 2011 Technology Review 114 2 40 45

58

369 Popescu A.-M., Pennacchiotti M. Detecting controversial events from twitter 2010 International Conference on Information and Knowledge Management, Proceedings 1873 1876
371 Potts L., Jones D. Contextualizing experiences: Tracing the relationships between people and technologies in the social web 2011 Journal of Business and Technical Communication 25 3 338 358
373 Power R., Forte D. War & Peace in Cyberspace: Don’t twitter away your organisation’s secrets 2008 Computer Fraud and Security 2008 8 18 20
375 Prier K.W., Smith M.S., Giraud-Carrier C., Hanson C.L. Identifying health-related topics on twitter an exploration of tobacco-related tweets as a test topic 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6589 LNCS 18 25
376 Pujol J.M., Erramilli V., Siganos G., Yang X., Laoutaris N., Chhabra P., Rodriguez P. The little engine(s) that could: Scaling online social networks 2010 SIGCOMM'10 - Proceedings of the SIGCOMM 2010 Conference 375 386
379 Rababaah H., Shirkhodaie A.Twitter web-service for soft agent reporting in persistent surveillance systems 2010 Proceedings of SPIE - The International Society for Optical Engineering 7709 77090L
380 Ragland K.R. Share with everyone 2010 Printwear 23 11
36 37

385 Rehmann K.-T., Muller M.-F., Schottner M. Adaptive conflict unit size for distributed optimistic synchronization 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6271 LNCS PART 1 547 559
386 Reips U.-D., Garaizar P. Mining twitter: A source for psychological wisdom of the crowds 2011 Behavior Research Methods 43 3 635 642
390 Rocha Jr. J.B., Gkorgkas O., Jonassen S., Norvag K. Efficient processing of top-k spatial keyword queries 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6849 LNCS 205 222
393 Romero D.M., Galuba W., Asur S., Huberman B.A. Influence and passivity in social media 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6913 LNAI PART 3 18 33

396 Rowe M., Angeletou S., Alani H. Predicting discussions on the social semantic web 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6643 LNCS PART 2 405 420
399 Ruth A. Reading in the hyperconnected information era: Lessons from the Beijing ticket scam 2009 Australian Journal of Teacher Education 34 2 1 14
400 Rybalko S., Seltzer T. Dialogic communication in 140 characters or less: How Fortune 500 companies engage stakeholders using Twitter 2010 Public Relations Review 36 4 336 341
402 Saebo O. Understanding Twitterâ€™s use among parliament representatives: A genre analysis 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6847 LNCS 1 12
403 Sahito F., Latif A., Slany W. Weaving twitter stream into linked data a proof of concept framework 2011 2011 7th International Conference on Emerging Technologies, ICET 2011 6048497
404 Said Hung, Elias; Arcila Calderon, Carlos Online opinion leaders in Colombia, Venezuela and Iran. Case Top20 most view users in Twitter 2011 COMUNICACION Y SOCIEDAD 24 1 75 100
405 Saito J., Yukawa T. Extracting user interest for user recommendation based on folksonomy 2011 IEICE Transactions on Information and Systems E94-D 6 1329 1332
408 Sangani K. Yes, we can Twitter 2009 Engineering and Technology 4 6 34 35

61

410 Santos A.C., Cardoso J.M.P., Ferreira D.R., Diniz P.C. Mobile context provider for social networking 2009 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5872 LNCS 464 473

411 Scanfeld D., Scanfeld V., Larson E.L. Dissemination of health information through social networks: Twitter and antibiotics 2010 American Journal of Infection Control 38 3 182 188

413 Schneider A., Jackson R., Baum N. Social media networking: Facebook and Twitter 2010 Journal of Medical Practice Management 26 3 156 157

414 Segerberg A., Bennett W.L. Social media and the organization of collective action: Using twitter to explore the ecologies of two climate change protests 2011 Communication Review 14 3 197 215

418 Shekar C., Wakade S., Liszka K.J., Chan C.-C. Mining pharmaceutical spam from Twitter 2010 Proceedings of the 2010 10th International Conference on Intelligent Systems Design and Applications, ISDA’10 5687162 813 817

419 Shen Y., Tian C., Li S., Liu S. The grand information flows in micro-blog 2009 Journal of Information and Computational Science 6 2 683 690

421 Shirakihara W., Oishi T., Hasegawa R., Hujita H., Koshimura M. Trendspotter detection system for twitter 2011 ICAART 2011 -

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Conference</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>A blackboard architecture for data-intensive information fusion using locality-sensitive hashing</td>
<td>Fusion 2011 - 14th International Conference on Information Fusion</td>
<td>5977651</td>
</tr>
<tr>
<td>2011</td>
<td>The use of Twitter to track levels of disease activity and public concern in the U.S. during the influenza A H1N1 pandemic</td>
<td>PLoS ONE 6 5 e19467</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>Internal contexts inference system for ubiquitous context-aware applications</td>
<td>iiWAS2010 - 12th International Conference on Information Integration and Web-Based Applications and Services</td>
<td>776 779</td>
</tr>
<tr>
<td>2010</td>
<td>Effective sentiment stream analysis with self-augmenting training and demand-driven projection</td>
<td>SIGIR’11 - Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval</td>
<td>475 484</td>
</tr>
<tr>
<td>2010</td>
<td>Modeling events with cascades of Poisson processes</td>
<td>Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence, UAI 2010</td>
<td>546 555</td>
</tr>
<tr>
<td>2008</td>
<td>Social heroes: Games as APIs for social interaction</td>
<td>Proceedings - 3rd International Conference on Digital Interactive Media in Entertainment and Arts, DIMEA 2008</td>
<td>40 45</td>
</tr>
<tr>
<td>2011</td>
<td>Extracting insights from social media with large-scale matrix approximations</td>
<td>IBM Journal of Research and Development 55 5 6032776</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>From microblogs to social images: Event analytics for situation assessment</td>
<td>MIR 2010 - Proceedings of the 2010 ACM SIGMM International Conference on Multimedia Information Retrieval</td>
<td>433 436</td>
</tr>
<tr>
<td>2010</td>
<td>Situation detection and control using spatio-temporal analysis of microblogs</td>
<td>Proceedings of the 19th International Conference on World Wide Web, WWW ’10</td>
<td>1181 1182</td>
</tr>
<tr>
<td>2010</td>
<td>Structural analysis of the emerging event-web</td>
<td>Proceedings of the 19th International Conference on World Wide Web, WWW ’10</td>
<td>1183 1184</td>
</tr>
<tr>
<td>2011</td>
<td>What the hashtag?: A content analysis of Canadian politics on Twitter</td>
<td>Information Communication and Society 14 6 872 895</td>
<td></td>
</tr>
</tbody>
</table>

63
<table>
<thead>
<tr>
<th>Page</th>
<th>Author(s)</th>
<th>Title</th>
<th>Conference/Journal</th>
<th>Volume</th>
<th>Issue</th>
</tr>
</thead>
<tbody>
<tr>
<td>435</td>
<td>Smith B.G.</td>
<td>Socially distributing public relations: Twitter, Haiti, and interactivity in social media 2010</td>
<td>Public Relations Review</td>
<td>36</td>
<td>4</td>
</tr>
<tr>
<td>329</td>
<td>335</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>437</td>
<td>Smrz P., Otrusina L.</td>
<td>Finding indicators of epidemiological events by analysing messages from Twitter and other social networks</td>
<td>International Conference on Information and Knowledge Management, Proceedings</td>
<td>7 10</td>
<td></td>
</tr>
<tr>
<td>438</td>
<td>Song S., Li Q., Zheng N.</td>
<td>A spatio-temporal framework for related topic search in micro-blogging</td>
<td>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</td>
<td>6335 LNCS</td>
<td>63 73</td>
</tr>
<tr>
<td>439</td>
<td>Sousa D., Sarmento L., Rodrigues E.M.</td>
<td>Characterization of the twitter @replies network: Are user ties social or topical? 2010</td>
<td>International Conference on Information and Knowledge Management, Proceedings</td>
<td>63 70</td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>Sousa Silva R., Laboreiro G., Sarmento L., Grant T., Oliveira E., Maia B.</td>
<td>‘twazn me!!! ;(‘ automatic authorship analysis of micro-blogging messages</td>
<td>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</td>
<td>6716 LNCS</td>
<td>161 168</td>
</tr>
<tr>
<td>441</td>
<td>Spina D., Amigo E., Gonzalo J.</td>
<td>Filter keywords and majority class strategies for company name disambiguation in twitter</td>
<td>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</td>
<td>6941 LNCS</td>
<td>50 61</td>
</tr>
<tr>
<td>442</td>
<td>Sreenivasan N.D., Lee C.S., Goh D.H.-L.</td>
<td>Tweet me home: Exploring information use on Twitter in crisis situations</td>
<td>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</td>
<td>6778 LNCS</td>
<td>120 129</td>
</tr>
<tr>
<td>443</td>
<td>Sriram B., Fuhray D., Demir E., Ferhatosmanoglu H., Demirbas M.</td>
<td>Short text classification in twitter to improve information filtering</td>
<td>Proceedings - 33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval</td>
<td>841 842</td>
<td></td>
</tr>
<tr>
<td>445</td>
<td>Stepanyan K., Borau K., Ullrich C.</td>
<td>A social network analysis perspective on student interaction within the twitter microblogging environment</td>
<td>Proceedings - 10th IEEE International Conference on Advanced Learning Technologies, ICALT 2010</td>
<td>5571143 70 72</td>
<td></td>
</tr>
<tr>
<td>446</td>
<td>Stieger S., Burger C.</td>
<td>Let’s go formative: Continuous student ratings with Web 2.0 application Twitter 2010</td>
<td>Cyberpsychology, Behavior, and Social Networking</td>
<td>13 2 163 167</td>
<td></td>
</tr>
</tbody>
</table>
Stocco G., Savell R., Cybenko G. Dynamic social network analysis using conversational dynamics in social networking and microblogging environments 2010 Proceedings of SPIE - The International Society for Optical Engineering 7666 766606

Stuart D. What are libraries doing on twitter? 2010 Online (Wilton, Connecticut) 34 1 45 47

Sui Y., Yang X. The potential marketing power of microblog 2010 2nd International Conference on Communication Systems, Networks and Applications, ICCSNA 2010 1 5588676 164 167

Surapat W., Prompoon N. Social clues powered, personalized software engineering messages classification 2010 ISCIT 2010 - 2010 10th International Symposium on Communications and Information Technologies 5665156 1114 1119

Sweetser K.D., Kelleher T. A survey of social media use, motivation and leadership among public relations practitioners 2011 Public Relations Review 37 4 425 428

Takahashi T., Abe S., Igata N. Can Twitter be an alternative of real-world sensors? 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6763 LNCS PART 3 240 249

462 Takumi S., Miyamoto S. Agglomerative hierarchical clustering using asymmetric similarity based on a bag model and application to information on the web 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7027 LNCS 187 196
463 Talbot D. Can twitter make money? 2010 Technology Review 113 2 52 57
465 Tang J., Patterson D.J. Twitter, sensors and UI: Robust context modeling for interruption management 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6075 LNCS 123 134
468 Teufel P., Kraxberger S. Extracting semantic knowledge from Twitter 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6847 LNCS 48 59
470 Thelwall M., Buckley K., Paltoglou G. Sentiment in Twitter events 2011 Journal of the American Society for Information Science and Technology 62 2 406 418
Malicious and Unwanted Software, Malware 2010

475 Thurau C., Kersting K., Bauckhage C. Yes we can - Simplex volume maximization for descriptive web-scale matrix factorization 2010 International Conference on Information and Knowledge Management, Proceedings 1785 1788

478 Tripathy R.M., Bagchi A., Mehta S. A study of rumor control strategies on social networks 2010 International Conference on Information and Knowledge Management, Proceedings 1817 1820

479 Tsagkalidou K., Koutsonikola V., Vakali A., Kafetsios K. Emotional aware clustering on micro-blogging sources 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6974 LNCS PART 1 387 396

480 Tumasjan, Andranik; Sprenger, Timm O.; Sandner, Philipp G.; Welpe, Isabell M. Election Forecasts With Twitter: How 140 Characters Reflect the Political Landscape 2011 SOCIAL SCIENCE COMPUTER REVIEW 29 4 402 418

481 Twardowski D.C., Cybenko G.V. Synchronization properties of cyber behaviors 2010 Proceedings of SPIE - The International Society for Optical Engineering 7709 77090C

482 Tyma A. Connecting with what is out there!: Using twitter in the large lecture 2011 Communication Teacher 25 3 175 181

483 Tynan D. Is that a social network in your pocket? 2007 PC World (San Francisco, CA) 25 8 49

484 Tynan D. Eight ways Twitter will change your life 2008 PC World (San Francisco, CA) 26 11 20 23

485 Ueno M., Mori N., Matsumoto K. Novel chatterbot system utilizing web information 2010 Advances in Intelligent and Soft Computing 79 605 612

487 Ulicny B., Kokar M.M. Toward formal reasoning with epistemic policies about information quality in the twittersphere 2011 Fusion 2011 -

14th International Conference on Information Fusion

488 Ullrich C., Borau K., Stepanyan K. Who students interact with? A social network analysis perspective on the use of twitter in language learning 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6383 LNCS 432 437

489 Ushiana T., Eguchi T. An information recommendation agent on microblogging service 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6682 LNAI 573 582

490 Uysal I., Croft W.B. User oriented tweet ranking: A filtering approach to microblogs 2011 International Conference on Information and Knowledge Management, Proceedings 2261 2264

494 Vergeer M., Hermans L., Sams S. Is the voter only a tweet away? Microblogging during the 2009 European Parliament election campaign in the Netherlands 2011 First Monday 16 8

496 Wagner C., Strohmaier M. The wisdom in tweetonomies: Acquiring latent conceptual structures from social awareness streams 2010 ACM International Conference Proceeding Series

497 Wahid A., Bontchev B. Platform for extraction, visualization and analysis of search trends 2010 Proceedings of the 8th International Conference on Frontiers of Information Technology, FIT'10 13

499 Wakamiya S., Lee R., Sumiya K. Towards better TV viewing rates: Exploiting crowd’s media life logs over Twitter for TV rating 2011 Proceedings of the 5th International Conference on Ubiquitous
<table>
<thead>
<tr>
<th>Page</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Wakamiya S., Lee R., Sumiya K. Urban area characterization based on semantics of crowd activities in Twitter 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6631 LNCS 108 123</td>
</tr>
<tr>
<td>501</td>
<td>Wang A.H. Detecting spam bots in online social networking sites: A machine learning approach 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6166 LNCS 335 342</td>
</tr>
<tr>
<td>502</td>
<td>Wang A.H. Don’t follow me - Spam detection in twitter 2010 SECRYPT 2010 - Proceedings of the International Conference on Security and Cryptography</td>
</tr>
<tr>
<td>508</td>
<td>Wang, Chiou-Pirng; Chan, K. C. Who are the real followers in the Twitter? 2010 BUSINESS TRANSFORMATION THROUGH INNOVATION AND KNOWLEDGE MANAGEMENT: AN ACADEMIC PERSPECTIVE, VOLS 1-4 1113 1113</td>
</tr>
<tr>
<td>509</td>
<td>Wanichayapong N., Pruthipunyaskul W., Pattara-Atikom W., Chaovalit P. Social-based traffic information extraction and classification 2011 2011 11th International Conference on ITS Telecommunications, ITST 2011 6060036 107 112</td>
</tr>
<tr>
<td>510</td>
<td>Watanabe K., Ochi M., Okabe M., Onai R. Jasmine: A real-time local-event detection system based on geolocation information propagated to microblogs 2011 International Conference on Information and Knowledge Management, Proceedings 2541 2544</td>
</tr>
<tr>
<td>511</td>
<td>Waters R.D., Jamal J.Y. Tweet, tweet, tweet: A content analysis of nonprofit organizations’ Twitter updates 2011 Public Relations Review 37 3 321 324</td>
</tr>
</tbody>
</table>

515 Weberg D. Twitter and Simulation: Tweet Your Way to Better Sim 2009 Clinical Simulation in Nursing 5 2 e63 e65
520 Westman S., Freund L. Information interaction in 140 characters or less: Genres on Twitter 2010 IIiX 2010 - Proceedings of the 2010 Information Interaction in Context Symposium 323 326
521 Wigand F.D.L. Twitter in government: Building relationships one tweet at a time 2010 ITNG2010 - 7th International Conference on Information Technology: New Generations 5501673 563 567
523 Wohn D.Y., Na E.-K. Tweeting about TV: Sharing television viewing experiences via social media message streams 2011 First Monday 16 3
524 Wright N. Twittering in teacher education: Reflecting on practicum experiences 2010 Open Learning 25 3 259 265
525 Wright, Noeline Microblogging for Reflection: Developing Teaching Knowledge Through Twitter 2010 PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON E-LEARNING 419 424
527 Xie M., Lakshmanan L.V.S., Wood P.T. Breaking out of the box of recommendations: From items to packages 2010 RecSys’10 - Proceedings
of the 4th ACM Conference on Recommender Systems 151 158
528 Xifra J., Grau F. Nanoblogging PR: The discourse on public relations in Twitter 2010 Public Relations Review 36 2 171 174
529 Xu T., Chen Y., Fu X., Hui P. Twittering by Cuckoo - Decentralized and socio-aware online microblogging services 2010 SIGCOMM'10 - Proceedings of the SIGCOMM 2010 Conference 473 474
530 Xu T., Chen Y., Jiao L., Zhao B.Y., Hui P. Scaling microblogging services with divergent traffic demands 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7049 LNCS 20 40
531 Xu T., Chen Y., Zhao J., Fu X. Cuckoo: Towards decentralized, socio-aware online microblogging services and data measurements 2010 Proceedings of the 2nd ACM International Workshop on Hot Topics in Planet-scale Measurement, HotPlanet ‘10 4
535 Yamaguchi Y., Takahashi T., Amagasa T., Kitagawa H. TURank: Twitter user ranking based on user-tweet graph analysis 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6488 LNCS 240 253
537 Yamasaki S. A dynamic trust estimation method for 'persona' from the human relationship of social web: Social web and trust by the rating of a persona’s active audience 2010 Proceedings - 2010 10th Annual International Symposium on Applications and the Internet, SAINT 2010 5598058 300 303
538 Yamasaki S. A trust rating method for information providers over the social web service: A pragmatic protocol for trust among information explorers and information providers 2011 Proceedings - 11th IEEE/IPSJ International Symposium on Applications and the Internet, SAINT 2011 6004216 578 582
539 Yang H., Chen S., Lyu M.R., King I. Location-based topic evolution 2011 MLBS’11 - Proceedings of the 1st International Workshop on Mobile Location-Based Service 89 98

542 Yardi S., Romero D., Schoenebeck G., Boyd D. Detecting spam in a Twitter network 2010 First Monday 15 1
543 Ye S., Wu S.F. Measuring message propagation and social influence on Twitter.com 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6430 LNCS 216 231
544 Yerva S.R., Miklos Z., Aberer K. What have fruits to do with technology? The case of orange, blackberry and apple 2011 ACM International Conference Proceeding Series
545 Yin D., Hong L., Davison B.D. Structural link analysis and prediction in microblogs 2011 International Conference on Information and Knowledge Management, Proceedings 1163 1168
546 Yin D., Hong L., Xiong X., Davison B.D. Link formation analysis in microblogs 2011 SIGIR’11 - Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval 1235 1236
547 Yonezawa K., Miyaki T., Rekimoto J. Cat@Log: Sensing device attachable to pet cats for supporting human-pet interaction 2009 ACM International Conference Proceeding Series 149
549 Young M.M. Twitter me: Using micro-blogging to motivate teenagers to exercise 2010 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6105 LNCS 439 448
551 Ypodimatopoulos P., Lippman A. "Follow me": A web-based, location-sharing architecture for large, indoor environments 2010 Proceedings of the 19th International Conference on World Wide Web, WWW ’10 1375 1377
552 Zangerle E., Gassler W., Specht G. Using tag recommendations to homogenize folksonomies in microblogging environments 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6984 LNCS 113 126

72

554 Zappavigna M. Ambient affiliation: A linguistic perspective on Twitter 2011 New Media and Society 13 5 788 806

555 Zhan Xun; Jiang Juan Research on Emergency Information Disclosure Based on Government Micro-Bo-Take China’s First Provincial Government Micro-Bo "Micro-Bo Yunnan" as an Example 2010 PROCEEDINGS OF 2010 INTERNATIONAL CONFERENCE ON PUBLIC ADMINISTRATION (6TH), VOL III 725 729

556 Zhang C., Sun J., Ding Y. Topic mining for microblog based on MB-LDA model 2011 Jisuanji Yanjiu yu Fazhan/Computer Research and Development 48 10 1795 1802

557 Zhang C.M., Paxson V. Detecting and analyzing automated activity on twitter 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6579 LNCS 102 111

558 Zhang D., Liu Y., Lawrence R.D., Chenthamarakshan V. ALPOS: A machine learning approach for analyzing microblogging data 2010 Proceedings - IEEE International Conference on Data Mining, ICDM 5693439 1265 1272

559 Zhang D., Liu Y., Lawrence R.D., Chenthamarakshan V. Transfer latent semantic learning: Microblog mining with less supervision 2011 Proceedings of the National Conference on Artificial Intelligence 1 561 566

561 Zhang Hui-ping Analysis of Public Mood in Cyberspace: An Empirical Study Based on Twitter 2010 PROCEEDINGS OF 2010 INTERNATIONAL CONFERENCE ON PUBLIC ADMINISTRATION (6TH), VOL III 357 362

568 Zhao D., Rosson M.B. How and why people Twitter: The role that micro-blogging plays in informal communication at work 2009 GROUP’09 - Proceedings of the 2009 ACM SIGCHI International Conference on Supporting Group Work 243 252
569 Zhao L., Zeng Y., Zhong N. A weighted multi-factor algorithm for microblog search 2011 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6890 LNCS 153 161
570 Zhao X., Xiao W., Chi C., Yang M. Integrating Twitter into wiki to support informal awareness 2011 Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW 733 736
571 Zhou X., Chen H., Jin Q., Yong J. Generating associative ripples of relevant information from a variety of data streams by throwing a heuristic stone 2011 Proceedings of the 5th International Conference on Ubiquitous Information Management and Communication, ICUIMC 2011 59
572 Zhou Z., Bandari R., Kong J., Qian H., Roychowdhury V. Information resonance on Twitter: Watching Iran 2010 SOMA 2010 - Proceedings of the 1st Workshop on Social Media Analytics 123 131
574 Zoltan K., Johann S. Semantic analysis of microposts for efficient people to people interactions 2011 Proceedings - RoEduNet IEEE International Conference 5993688