Liquid crystal laser arrays

Citation for published version:
Hands, PJW, Morris, SM, Wilkinson, TD & Coles, HJ 2008, 'Liquid crystal laser arrays' 22nd British Liquid Crystal Society Annual Meeting (BLCS 2008), Norwich, United Kingdom, 17/03/08 - 19/03/08.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Liquid crystal laser arrays


Centre of Molecular Materials for Photonics and Electronics (CMMPE), Department of Engineering, Electrical Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA

A two-dimensional liquid crystal (LC) laser array has been demonstrated \(^1\) using the principle of band-edge lasing in dye-doped chiral nematic liquid crystals \(^2-4\). The array is generated by photopumping the liquid crystal cell using a microlens array (fig. 1). An array of multiple monomode laser sources results, which display evidence of mutual coherence. Consequently the array can be recombined to generate a single monomode laser output (fig. 2), which in the far-field displays a Fraunhofer interference pattern similar to that obtained from a small aperture. This opens the possibility of developing high-power organic laser microsources, and also leads to a considerable improvement in the overall efficiency of the device.

Furthermore, the spectra of individual microsources within the array can be shown to vary with liquid crystal sample topology, where polydomain samples have been shown to generate multi-wavelength laser emission. By deliberately introducing divisions within the LC cell, each doped with differing laser dyes and LC chiral pitch lengths, it is hoped to generate red, green and blue lasing simultaneously across the array, which can then be recombined into a single white light output.

---


