Direct manipulation of T lymphocytes by proteins of gastrointestinal bacterial pathogens

Robin L. Cassady-Cain*, Jayne C. Hope and Mark P. Stevens

The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom

*Corresponding author

Email: robin.cassady-cain@roslin.ed.ac.uk

Tel: +44 (0)131 6519238
Abstract

Gastrointestinal bacterial infection represents a significant threat to human health, as well as a burden on food animal production and welfare. Although there is advanced knowledge about the molecular mechanisms underlying pathogenesis, including the development of immune responses to these pathogens, gaps in knowledge persist. It is well established that gastrointestinal bacterial pathogens produce a myriad of proteins that affect the development and effectiveness of innate immune responses. However, relatively few proteins that directly affect lymphocytes responsible for humoral or cell-mediated immunity and memory have been identified. Here, we review factors produced by gastrointestinal bacterial pathogens that have direct T cell interactions and what is known about their functions and mechanisms of action. T cell interacting bacterial proteins that have been identified to date mainly target three major T cell responses: activation and expansion, chemotaxis or apoptosis. Further, the requirement for more focused studies to identify and understand additional mechanisms used by bacteria to directly affect the T cell immune response and how these may contribute to pathogenesis is highlighted. Increased knowledge in this area will help to drive development of better interventions in prevention and treatment of gastrointestinal bacterial infection.
Introduction

Gastrointestinal bacterial infection represents a significant threat to human health and welfare, with an estimated 900 million illnesses resulting in over 500 000 deaths in a single year, according to the World Health Organisation (1). Although much is known about the molecular mechanisms underlying persistence, pathogenesis and protection, significant effort is still required to devise effective intervention strategies. Bacterial immune evasion methods include expression of surface polysaccharides to resist complement-mediated killing and opsonisation, enzymes to detoxify reactive oxygen species in phagosomes, escape from phagosomes and in the case of intracellular bacterial pathogens, interference in cellular antigen-presentation and innate immune responses by proteins secreted by Type III or Type IV secretion systems (2). The role of Type III secretion in gastrointestinal bacterial pathogens is covered by many high quality reviews (eg. 3), and therefore is not the focus of this review. Relatively fewer mechanisms have been identified whereby bacteria are able to directly affect lymphocytes during infection. Further, understanding the full role of these bacterial proteins and their T cell interactions during infections, any specificity for T cells subsets, and proof that they are able to directly meet T cells in the body is crucial to establish biological importance. However, such evidence is often lacking, and a number of barriers to understanding these aspects exist.

Here, we review the known molecules and strategies that contribute to the direct subversion or dampening of the adaptive T cell response in gastrointestinal bacterial infection. In addition, we discuss the challenges and aspirations of identifying these mechanisms.

T cell distribution in the intestine
An understanding of the importance of T-cell targeting strategies by bacteria that infect the intestine requires an understanding of the lymphoid architecture, distribution of gut resident T cells, the ability of T cells to be recruited to this tissue and the nature of the downstream immune response that is triggered upon infection. T cell responses in the intestine are mainly governed by the gut-associated lymphoid tissue (GALT), which is similar to other secondary lymphoid tissues in the body, and in mammals, consists of the mesenteric lymph nodes (mLN) and Peyer’s patches (PP), the appendix and multiple smaller isolated lymphoid follicles studding the intestinal wall. In addition, there are isolated immune cells scattered in the lamina propria (LP) and throughout the epithelium of the intestine (reviewed in 4) that contribute to intestinal immune responses (summarized in Figure 1). T cell responses in the gut can be initiated from several sites. Generally in an intestinal immune response, intravascular naïve T cells home to the GALT (specifically to the PP and mLN), where they can meet their cognate ligand in the context of the Major Histocompatibility Complex (MHC) and become activated. These T cells are then able to exit the lymphoid tissue via the lymphatic vessels and enter the circulation to home back to the intestinal LP (reviewed in 5) where they are able to carry out their functions. Within the mucosa, dendritic cells in the LP sample antigens and migrate to the PP and mLN where they are able to prime and present antigen to naïve CD4+ and CD8+ T cells, which clonally expand. These T cells may become memory cells, which accumulate over time in the LP. The LP is mainly enriched for the CD4+ Treg and Tn17 cells. In contrast, the intraepithelial lymphocyte (IEL) resident T cell population is mainly composed of both T cell receptor (TCR) αβ and TCR γδ (TCR αβ are generally considered “conventional T cells”, TCR γδ cells are often considered non-conventional atypical T cells), both mainly CD8ββ isoform. However, IELs appear to lack some typical T cell surface molecules such as CD2 (adhesion molecule),
CD28 (activating co-receptor) and Thy-1 (pan T cell marker of human and mouse cells).

These cells are considered “activated, yet resting” and are different compared to peripheral T cells (which express CD4 or CD8αβ isoform; reviewed in (4)).

Although there is not a large literature describing direct effects of gastrointestinal bacterial pathogens on T cells, a picture of the general strategies used to alter T lymphocyte function is emerging (summarised in Figure 2). The effects identified can be broadly assigned to three groups: those that affect T cell activation and proliferation, those that affect chemotaxis and those that cause elimination of T cells, with most of the strategies identified thus far falling into the first category. Little duplication of specific strategies across species of intestinal bacteria has been identified so far, and the mechanisms and observations described are derived from a relatively small number of bacterial species.

Proteins that affect T cell activation and proliferation

A number of bacterial proteins have been identified that act to interfere with signalling cascades in T cell activation and expansion, which are outlined below. These proteins are often soluble, diffusible factors, and can act externally to the T cell, as well as intracellularly.

Superantigens

Perhaps the earliest, well known and characterised bacterial factor with T cell-affecting activity is superantigen. Barber observed superantigen activity in *Staphylococcus* in 1914, and identified the cause to be a microorganism-derived toxin (6). Since then, there have been numerous studies characterising the activity of superantigens. One of the hallmarks of superantigens is their ability to activate a large population of T cells at very low concentrations (7, 8). At a basic level, superantigens are able to cross-link a relatively large number of T cells to antigen-presenting cells (APC) compared to normal antigen-driven activation, inducing wide spread non-antigen-specific activation of T cells, ultimately leading
101 to clonal deletion and anergy, thus suppressing a productive T cell response (9).

102 Superantigens are effective because they bind outside the peptide-binding groove of MHC,
103 they are not MHC restricted and activation does not rely on antigen internalisation and
104 processing. In addition, they specifically require the TCR β chain, not the Vα-Vβ chain
105 pairing required in conventional antigen recognition by the TCR (reviewed in 8).

106 Although most well described in *Staphylococcus*, superantigens have been identified
107 in other bacteria, including the pathogens *Yersinia enterocolitica* (10), and *Yersinia*
108 *pseudotuberculosis* (11), the latter of which most often causes a self-limiting gastrointestinal
109 infection. However, strains of *Y. pseudotuberculosis* have also been reported to infect the
110 gut and cause Far East Scarlet-like Fever (reviewed in 16), and many strains associated with
111 this pathogenic infection express the superantigen *Y. pseudotuberculosis*-derived mitogen A
112 (YPMa). Strains deficient in YPMa have been demonstrated to have decreased
113 pathogenicity, however, growth of the bacteria was unaffected in the major immune organs
114 after oral infection, so YPMa may have more pronounced effects in systemic infection (13),
115 and a more recent study has linked the toxic activity of YPMa to activation of a hepatotoxic
116 CD4⁺ T cell subset (14).

117 Lymphostatin

118 Lymphostatin (LifA, Efa-1) is one of the largest known bacterial proteins at 365 kDa,
119 and is a putative glycosyltransferase, expressed by enteropathogenic *Escherichia coli* (EPEC)
120 and non-O157 enterohaemorrhagic *E. coli* (EHEC) (15). It has homology to the large
121 clostridial toxins A and B (TcdA/B) at the N terminal portion of the protein, where the
122 catalytic glycosyltransferase domain of TcdA/B resides (15, 16). The existence of a soluble
123 factor capable of inhibiting mitogen-activated lymphocyte proliferation and pro-
124 inflammatory cytokine expression was first described using crude bacterial lysates of the
prototype EPEC strain E3248/69 (17). Lymphostatin was then subsequently identified using a cosmid library screen to identify the gene responsible for this activity, which was confirmed by mutation of the lifA gene in EPEC (15). Recently, it was shown that lymphostatin, like its clostridial homologues, is able to bind sugar moieties, in this case UDP-N-acetyl glucosamine (UDP-GlcNAc), and has significant predicted structural homology around the putative glycosyltransferase domain. A DXD motif within this domain is necessary for UDP-GlcNAc binding and lymphostatin activity, however, formal evidence of sugar transfer and the identity of the cellular target remain elusive (16). It has been demonstrated that lymphostatin is capable of inhibiting all major T cell subsets. In addition, lymphostatin has some activity against B cells, but not natural killer cells (18). Further, the effects of lymphostatin on T cells appear to be long-lived, even in the absence of continued incubation with the protein, preventing mitogenic activation for more than 18 hours after transient exposure and withdrawal of the protein. Lymphostatin was also able to inhibit antigen-specific proliferation of bovine T cells using Theileria parva antigens presented on infected irradiated APCs to T. parva specific T cells as a model antigen system (18). These findings suggest that lymphostatin might act to permanently de-sensitise T cells to stimulus, possibly suppressing T cell responses and preventing or dampening a productive immune response and delaying clearance of infection (18). It would appear that the effects of lymphostatin interfere with signalling in a membrane proximal way, as inhibition was not achieved in T cells stimulated with Phorbol 12-myristate 13-acetate (PMA)/ionomycin, which bypass membrane signalling.

Lymphostatin is known to play an important role in intestinal colonization of calves by non-O157 EHEC strains of multiple serogroups (19, 20) and of mice by Citrobacter rodentium (21). However, attenuation is evident early after infection, before adaptive
responses may be expected to have developed. Alongside the ability to suppress T cell
activation, lymphostatin also appears to be associated with adhesion (22), possibly as a
consequence of effects on Type III secretion in some strains (19, 20). These results indicate
that lymphostatin may have additional roles in infection. There are a number of unresolved
questions regarding the activity of lymphostatin, including its cellular target of glycosylation.
Further, in O157:H7 strains of EHEC, where full-length lymphostatin is not expressed, there
is a putative homologue, ToxB, that also shows T cell inhibitory activity, as well as homology
at the N-terminal end of the molecule to TcdA/B (18). This suggests that lymphostatin and
lymphostatin-like molecules may be a family of proteins expressed by E. coli to control T cell
responses to infection.

VacA

Helicobacter pylori expresses the VacA vacuolating cytotoxin, which has direct
activity against T cells, specifically inhibiting T cell proliferation (23–25) as well as effects on
other cells, including phagocytes and epithelial cells (likely by a different mechanism; reviewed in 23). VacA is a two domain protein, processed from a protoxin form, after
secretion via a Type Va system from the bacteria (reviewed in 24). Variation in the VacA
gene amongst different strains of *H. pylori* results in varying levels of toxicity among the
different variants (28). Like other toxins, VacA must be taken up by the cell in order to exert
its activity, and it has been shown that both domains are needed for proper uptake and
function of the toxin (29). The integrin CD18, expressed on the cell surface, has been
identified as being important for uptake of VacA in human T cells (30), mediated by Protein
Kinase C (PKC), and activation of the T cell is required to see the active endocytosis of VacA
in T cells (31). In addition, VacA is able to block calcium flux in the Jurkat T cell line (32), and
prevent IL-2 expression by blocking translocation of the transcription factor NF-AT (24, 25).

Overall, the data suggest that VacA targets previously activated T cells. Using in vivo studies in mice, a null mutation of vacA was reported to impair initial colonization of mice by H. pylori, however, once infection by the vacA mutant becomes established, the bacterial load and extent of intestinal inflammation were similar to the parent strain (33). This effect is independent of an effect on T cells, as mice T cells do not express a compatible receptor that allows uptake of VacA (30).

YopH

Another example of inhibition of T cell activation by interference in T cell signalling is the YopH protein from *Yersinia*. YopH is expressed by *Yersinia spp.* that infect the gut (34), including *Y. entercolitica* and *Y. pseudotuberculosis*, and has been characterised as a protein tyrosine phosphatase (35). In *in vitro* studies, using T cell-like cell lines, YopH was able to inhibit IL-2 production induced by antigen stimulation, the effects of which were upstream of PMA/Ionomycin (36). It was apparent by Western Blotting that general tyrosine phosphorylation of signalling molecules was inhibited. YopH has also been shown to exhibit activity against B cell activation via the B cell receptor, with similar characteristics (36). These effects were independently confirmed in primary human T cells (37). In T cells, YopH is able to dephosphorylate the early signalling molecule Lck (38). Further, it has been shown that YopH interacts with a number of adaptor molecules involved in early T cell receptor signalling. Using a trapping mutant, YopH was shown to directly dephosphorylate recombinant phosphorylated Lck in an *in vitro* activity assay, while not dephosphorylating other associated adaptor molecules, indicating some specificity of activity (39). This is an elegant mechanism, as an effect on relatively few molecules of Lck...
would have a large impact on downstream signalling due to amplification through the signalling cascade. These studies remain quite far removed from the complex *in vivo* infection, so the implications of these activities are not entirely known. However, it has been demonstrated *in vivo* that *yopH* deficient *Y. enterocolita* are drastically attenuated in oral infection of C57BL/6 mice, although colonization of the small intestine persists until at least 21 days post-infection (40). Colonization by the YopH mutant declined quickly after infection (40). Further, in an intranasal infection model, a *yopH* deficient strain was less effective at lung colonization (41). In both cases, reduced colonization was seen early in infection before one might expect an adaptive response to have properly formed, and so it remains unclear what role YopH/T cell interactions play in virulence. In addition to YopH, *Yersinia* expresses an additional protein, invasin, which may allow *Yersinia* to subvert lymphocytes, particularly T cells, to influence their motility and facilitate dissemination of *Yersinia* to distal sites (42). These two proteins may function to simultaneously neutralize T cell activation while keeping the cells intact to allow *Yersinia* infection, and redirection to other sites within the body. An invasin homologue in EPEC and *Citrobacter rodentium*, intimin (reviewed in 41), has been shown to interact with T cells, however, it is difficult to separate its direct effects on lymphocytes from the vital role it plays in gut colonization when interpreting its role *in vivo* (44, 45).

Interference with metabolic activity

T cells undergo rapid metabolic reprogramming on activation, one of the requirements of which is a source extracellular amino acids (46). Import of amino acids such as asparagine and glutamine is required to accommodate the increased metabolic load induced by aerobic glycolysis during activation and proliferation of T cells (47). There are at least 21 days post-infection.
least two examples of proteins from gastrointestinal bacterial pathogens that appear to inhibit T cell activation via limiting availability of extracellular amino acids.

In a recent publication, Floch and colleagues (48) reported that the *Campylobacter jejuni* protein, gamma-glutamyl transpeptidase (GGT) was capable of inhibiting mitogenic proliferation of T cells *in vitro*. Although GGT is known to be important in intestinal colonization by *C. jejuni* in the chicken (49), little is known about its activity on T cells. However, it is tempting to extrapolate from what is known about a similar GGT that is expressed by *H. pylori*. The GGT of *H. pylori* plays an essential role in colonization of the gastric mucosa in mice (50). GGTs are N-terminal nucleophile hydrolases that play a role in the degradation of glutathione, and GGTs across mammal and bacterial species often exhibit a high protein sequence identity, with the GGT of *C. jejuni* clustering with *Helicobacter spp.* (51). Treatment of mouse T cells with recombinant GGT from *H. suis* inhibits CD3/CD28-stimulated proliferation in a concentration-dependent manner (52). In human peripheral blood mononuclear cells, GGT also inhibits PMA/Ionomycin stimulated proliferation, causing cell cycle arrest, inhibiting c-Myc and c-Raf (53). GGT more specifically causes glutamine deprivation in the extracellular space of T cells, downregulating both c-Myc and IRF4 which are sensitive to glutamine, and required for metabolic adaptation (54).

Overall, the data suggest that GGT is able to modulate the response of T cells in infection, likely through control of the extracellular availability of glutamine, which is required during activation.

A second example of a gastrointestinal bacterial protein that interferes with T cell metabolism comes from *Salmonella enterica* serovar Typhimurium, which has been reported to directly inhibit primary mouse T cells (55), and is thought to limit availability of asparagine to T cells (56). When assessing a number of cell surface expressed molecules, no
difference was noted in levels of CD69, CD25α, CD44, and CD62L in cells infected with S. Typhimurium compared to uninfected controls. However, in the presence of S. Typhimurium, neither IL-2 nor IFN-γ were produced with CD3 cross-linking (both these cytokines are up-regulated during T cell activation). Cytokine production was restored if the cells were separated from the bacteria in a transwell arrangement, indicating that direct contact with the bacteria was required for this effect. From here, the authors extended their observations, again using in vitro methods with primary mouse cells, showing that S. Typhimurium was able to down regulate surface expression the TCR β chain, resulting in decreased gene expression, intracellular and surface protein, at least partially explaining the mechanism targeted to inhibit T cell activation (57). Not only that, but this effect was only observed in the presence of live bacteria, as treatment with heat-inactivated bacteria abrogated this effect. The effects were shown to be unrelated to Type III secretion or the bacterial virulence plasmid. It was later shown that the protein responsible for this was L-asparaginase II (STM3106; asnB) (58). In a mouse model of bacterial persistence, the burden of bacteria was lower in mutants lacking L-asparaginase II, suggesting that this molecule may enable bacterial persistence by dampening the T cell-mediated immune response (58).

In contrast, in a screen of S. Typhimurium mutants in pigs, calves and chickens, a transposon insertion was not attenuating in the gut, albeit within 3-4 days after oral infection (59). Nonetheless, the characterization of the activity of the L-asparaginase II on T cells is a good example of how bacterial subversion can lead to insight into basic host cell biology. In this case these studies highlight the importance of asparagine as a nutrient in T cell metabolism and activation (60).

Interference in lymphocyte chemotaxis
The majority of T cell-interacting bacterial proteins appear to mainly exert effects on T cell activation, however, another strategy is to interfere with lymphocyte migration. For example, *Shigella* exhibit the ability to directly invade T cells and cause an inhibition in their chemokine-induced migration (61). *S. flexneri* are able to directly invade PMA-activated CD4+ T cells, but not unstimulated, unactivated, primary CD4+ cells, with substantially reduced responses to the chemoattractant CXCL12. CXCL12 signals through the chemokine receptor CXCR4, the expression of which was not perturbed in these experiments (61). The bacterial protein, IpgD, which can be secreted through the type III secretion apparatus (62), has been implicated as being responsible for this activity, by acting on the pool of intracellular phosphatidylinositol 4,5-bisphosphate (PIP2). Additionally, it would appear that IpgD is able to act intracellularly in the absence of any other bacterial effectors (61).

These observations have been verified experimentally *in vivo* in mice, revealing that *S. flexneri* target CD4+ T cells in the lymph node and confirming that invasion and migration arrest occur *in vivo* (63). This discrimination between activated and non-activated T cells could result in more specific targeting of activated T cells in the lamina propria rather than the lymphoid follicles in the intestinal mucosa, thus targeting those cells that might actively respond to infection. Further, a recent publication reported the ability of *Shigella* to inject effectors into T cells in the absence of subsequent invasion, and suggest that the majority of T cells are targeted by injection only, raising the possibility that the bacteria could use a “hit and run” strategy to affect lymphocytes (64).

Elimination of T cells

A further strategy that is shared with more than one bacterial genus is seen with the induction of apoptosis in T cells by the heat labile toxins, expressed by *E. coli* and *Vibrio cholerae*, although they appear to have slightly different specificity and mode of action between families and variants of the toxin. The heat labile toxins are structurally related bacterial toxins that induce diarrhea in humans and animals (65). These toxins are oligomers consisting of an A polypeptide bound to a pentameric array of B polypeptides. The toxic effects are determined by the cell surface binding specificity of the B pentamers, and the ADP ribosylating specificity of the A subunit (66). Cholera toxin (CT) produced by *V. cholerae* binds to the ganglioside GM1 on epithelial cells via its B subunits, and when it is trafficked to the cell cytosol, it catalyzes ADP ribosylation of adenylate cyclase, leading to increased intracellular cAMP causing water secretion and diarrhea (67). However, it has additional effects on other cells, including T cells. It was demonstrated some time ago that CT was able to induce apoptosis in CD8+ T cells, although at that time the implications during infection were unclear (68). More recently, it was confirmed that CT was able to decrease the numbers of CD8 cells, and that this was not due to either a downregulation of cell surface receptors, or selective proliferation of other cell types (69). Similarly, LTIIa from *E. coli* is also able to deplete CD8+ T cells, likely by induction of apoptosis via cross-linking of the ganglioside receptors, although this has not yet been explicitly demonstrated (69). In mice injected with LT, transient induction of apoptosis mediated by glucocorticoids was seen in all thymocyte subsets, although immature T cells were more affected than mature cells (70). This effect was dependent on route of administration, and demonstrated that in vitro treatment of cells did not entirely reflect the in vivo effects observed (70). In addition, the maturation state of the T cell appears to determine the mechanism of apoptosis triggered (71). Further, although CT does not appear to invoke apoptosis in CD4+ T cells, it
does appear to be able to inhibit activation, at least based on measurement of cell surface
expressed molecules (69).

There has been significant interest in using CT and LT as adjuvants in vaccination, and
understanding how it is able to steer T cell responses provides insight in how to better
improve vaccination, or to engineer non-toxic derivatives that are able to promote its
adjuvancy (72–75).

To our knowledge, there is only one other protein from a gastrointestinal bacterial
pathogen reported to have the ability to invoke apoptosis in T cells. This is the YpkA protein
of Yersinia, which is a multidomain protein with kinase activity. Expression of YpkA from a
mammalian expression vector transfected in Jurkat T cells induced significant apoptosis (76),
however, its role during infection is unclear.

Concluding remarks
It is evident from the examples above that gastrointestinal bacterial pathogens have
evolved diverse strategies to modulate lymphocyte function. However, the biological
significance of such activity during infection remains challenging to dissect, particularly for
factors that play additional roles in colonization. For such factors, the T lymphocyte
response to infection by a null mutant relative to the isogenic parent will be affected by the
magnitude and duration of exposure to bacterial antigens. One strategy to overcome this is
to use ligated intestinal loop models and recover intraepithelial lymphocytes exposed to
bacterial strains or their products in situ (e.g. (77)). Although, it can be challenging to
stimulate such cells to proliferate ex vivo and loop models often hold large numbers of
laboratory-cultured bacteria over the mucosa for a limited time, and thus do not simulate
the normal progression of gastrointestinal infection. It is noteworthy that attenuation of
mutants lacking some lymphocyte inhibitory factors is detected before one may anticipate
that adaptive responses have been generated, and further research is needed to understand
their impact on early pro-inflammatory responses and lymphocyte migration in vivo.
Further, for many of these proteins, little is known about their effects on T cells of specific
subsets and differentiation states. Knowledge of which might provide further insight into
their impact and timing of action during infection.
While some of the strategies outlined here rely on direct contact between the
pathogen and lymphocytes (e.g. via Type III secretion), in many cases inhibition relies on
diffusion of soluble proteins to meet their target cell type. Some of the factors described are
active in extremely low concentrations (e.g. lymphostatin acts in the femtomolar range;
(16)) and the extent to which lymphocytes in circulation are affected requires study. It is
evident from the ability of Shiga toxins to cause endothelial damage in kidney glomeruli that
proteins produced by gastrointestinal pathogens in the gut can act distally.
While the molecular basis of the activity of some lymphocyte inhibitory factors is
well understood (e.g. VacA, YopH, IpgD), for others a need exists to identify their cellular
targets and how their modification produces the observed phenotype. Such studies have
the potential to yield novel insights into both the basis of pathogenesis, but also the cellular
pathways and factors governing lymphocyte activation and function. With an understanding
of the mode of action of inhibitory factors, it may also become feasible to design new
treatments. For example, with the knowledge that Helicobacter may use γ-
-glutamyltranspeptidase to restrict lymphocyte activation via interference in glutamate
metabolism, researchers have recently demonstrated that oral glutathione supplementation
can reduce gastric pathology and inflammation due to *H. suis* in gerbils (78). The extent to
which this is a consequence of altered T lymphocyte function requires further study.

It is striking that relatively little direct duplication of strategies to inhibit lymphocyte
function has been identified across bacterial genera. Nevertheless, the vast quantities of
sequence data now generated for pathogens will facilitate the identification of homologs of
lymphocyte inhibitory factors that may be relevant in other diseases and differ in
mechanism. For example, a family of proteins homologous to lymphostatin occur in diverse
Chlamydia species of veterinary and public health importance and share predicted
glycosyltransferase motifs (79).

In addition to evaluating the value of lymphocyte inhibitory factors as subunit
vaccines or as targets for novel inhibitors, merit exists in exploring the therapeutic potential
of such molecules for disorders associated with lymphocyte proliferation or activity. A
challenge of such will be ensuring specific targeting of pathology-associated lymphocytes
without deleterious effects on immune function.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge strategic investment from the Biotechnology and
Biological Sciences Research Council (references BB/J004227/1 and BB/P013740/1).

FIGURES

FIGURE 1: GALT and T cell distribution in the intestine
Immune responses in the intestine are mainly controlled by gut associated lymphoid tissue (GALT), including the Peyer's patches, mesenteric lymph nodes and isolated lymphoid follicles in the mucosa and lamina propria. The mucosa is also studded with intraepithelial lymphocytes. Naïve T cells can be recruited from the circulation to lymphoid organs in the intestines, where they can be activated.

FIGURE 2: Summary of T cell interacting bacterial proteins and their targets

The majority of bacterial proteins that interact with T cells are directed at modifying activation/proliferation, however, there are some proteins that affect chemotaxis and apoptosis. Where the key affected molecules are known, these are indicated, however, the details of a number of molecules remain unknown. Bacterial protein names are bounded by gray boxes. sAg= superantigen (Staphylococcus), CT= cholera toxin (Vibrio cholera), GGT= gamma glutamyl transferase (H. pylori, C. jejuni), IpgD= invasion plasmid gene D (Shigella), LifA= lymphocyte inhibiting factor A (E. coli), LT= heat labile toxin (E. coli), STM3106= asparaginase (Salmonella), APC= antigen presenting cell, MHC= major histocompatibility complex.

REFERENCES

2. Santos AS, Finlay BB. 2015. Bringing down the host: Enteropathogenic and

25. Sundrud MS, Torres VJ, Unutmaz D, Cover TL. 2004. Inhibition of primary human T cell proliferation by Helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc Natl Acad Sci 101:7727–7732.

39. de la Puerta ML, Trinidad AG, Rodríguez M del C, Bogetz J, Sánchez Crespo M,

Yankelevich B, Soldatenkov VA, Hodgson J, Polotsky AJ, Creswell K, Mazumder A.

novel mutant cholera toxin adjuvant that can be efficiently produced in genetically manipulated *Vibrio cholerae*. Vaccine 34:2121–2128.

