Dynamic Resistance Measurement of a Four-tape YBCO Stack in a Perpendicular Magnetic Field

Citation for published version:

Digital Object Identifier (DOI):
10.1109/TASC.2017.2787178

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Applied Superconductivity
Dynamic Resistance Measurement of a Four-tape YBCO Stack in a Perpendicular Magnetic Field

<table>
<thead>
<tr>
<th>Journal:</th>
<th>EUCAS 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>EUCAS17-1LP3-11</td>
</tr>
<tr>
<td>Conference Manuscript Type:</td>
<td>Contributed Manuscript</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>18-Sep-2017</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Jiang, Zhenan; Victoria University of Wellington, Robinson Research Institute
Zhou, Wei; Beijing Jiaotong University, School of Electrical Engineering
Bumby, Chris; Victoria University of Wellington, Robinson Research Institute
Staines, Mike; Victoria University of Wellington, Robinson Research Institute;
LI, Quan; University of Edinburgh, School of Engineering
Badcock, Rodney; Victoria University of Wellington, Robinson Research Institute
Long, Nicholas; Victoria University of Wellington, Robinson Research Institute
Fangjin, J.; Beijing Jiaotong University, School of Electrical Engineering |
| Keywords: | AC loss < Superconducting Electric Power, AC Losses < Critical current and flux pinning < Properties, Hysteresis < Magnetization and time-dependent losses < Properties, 2G HTS Conductors < Coated conductors < Conductors |
Dynamic Resistance Measurement of a Four-tape YBCO Stack in a Perpendicular Magnetic Field

Abstract—Dynamic resistance occurs when HTS (high-temperature superconductor) coated conductors carry dc current under ac magnetic field. This dissipative effect can play critical role in many HTS applications. Here, we report on dynamic resistance measurements of a four-tape YBCO stack comprising 4 mm-wide coated conductors which experience an applied ac perpendicular magnetic field with an amplitude of up to 100 mT. Each tape within the stack carries the same dc current. The magnetic field amplitude, the frequency of the magnetic field, and the dc current magnitude are varied to investigate the influence of these parameters on the dynamic resistance. We find that the threshold field of the stack is significantly larger than that of a single tape when dc current is small, which we attribute to coherent shielding effects from circulating currents present in each wire in the stack.

Index Terms—Coated conductor, dynamic resistance, stack

I. INTRODUCTION

In many HTS (high-Tc superconductor) applications, such as rotating machines, magnets, flux pumps, and Superconducting Energy Storage Systems (SMES), HTS wires carry dc transport current under external ac magnetic fields [1]–[7]. When the amplitude of the external magnetic field is larger than a threshold amplitude, dynamic resistance occurs [8]–[11]. Dynamic resistance is a form of hysteretic ac loss, and results in a parasitic heat load on the cryogenic system. For some high-current applications, it is essential to assemble multiple HTS wires into stacks [12, 13]. Therefore, it is important to understand the dynamic loss characteristics of HTS stacks carrying dc current when exposed to an external ac magnetic field.

In previous works, we have measured dynamic resistance in single coated conductor wires exposed to perpendicular magnetic fields. We have developed a simple analytical approach which predicts the dynamic resistance which occurs in this case [14]–[16]. However, there have been no reports of dynamic resistance measurements in HTS stacks. In this work, we report on dynamic resistance measurements of a four-tape YBCO stack comprising 4 mm-wide coated conductors when exposed to ac perpendicular magnetic field. Each tape within the stack carries the same dc current, achieved by serial connection of the tapes. The magnetic field amplitude, the frequency of the magnetic field, and the dc current magnitude have been varied in order to investigate the influence of these parameters on the dynamic resistance. From our experimental results, we have extracted values for the threshold field and field-dependence of the measured dynamic resistance, for each experimental condition considered. We then compare these values with analytical expressions which describe the expected behavior of a single coated conductor wire.

II. EXPERIMENTAL METHOD

Fig. 1 shows a schematic of the experimental arrangement used in this work to measure dynamic resistance of a four-tape YBCO stack at 77 K. An ac magnet comprising two vertically stacked sets of racetrack coils was used to produce ac magnetic field amplitudes at the sample of up to 100 mT. Two different ac frequencies were employed [17]. The HTS stack was mounted on the flat machined surface of a G-10 sample holder and placed in the center of the magnet. The direction of the magnetic field was adjusted in order to ensure it was perpendicular to the wide-face of the stack. This was achieved through adjusting sample alignment to maximize the voltage signal in a single-turn pick-up coil on the surface of the sample holder. The coated conductor wires employed in this work were SuperPower Inc. copper stabilized SCS4050 wires [18]. Each tape was insulated from the other tapes in the stack using Kapton tapes and sheets, such that the distance between the neighboring superconductor layers was ~300 μm. Two sets of voltage taps were used as shown in Fig. 1. In the first set, a spiral loop was attached around each conductor. In the second set, two voltage taps were mounted on the center of each conductor and the four-pairs of voltage leads were extended to the outside after meeting at the center point of each conductor [19]. The distance between the voltage taps was 5 cm. Subsequent analysis of the experimental data showed that the voltage signals from the two sets of voltage taps were identical. The voltage signals from the spiral loops are shown throughout this work. The conductors in the stack were connected in series to ensure that the same transport...
current was flowing in each wire. The current leads between each wire were arranged so as to avoid magnetic coupling between the magnet and dc current circuits (as shown in the figure). The dc voltage output from the voltage taps was measured using a dc Hewlett Packard 34420A nanovolt-meter. The sample integration time (NPLC) of the nanovolt-meter was set at 10 power line cycles.

The I_c values of the four conductors before and after assembling the stack were measured, and are listed in Table I. The measured I_c values were reduced in the stack environment, due to the superposition of magnet fields generated by the other conductors in the stack [20].

![Dynamic Resistance Measurement and Voltage Tap Arrangement](image1.png)

Fig. 1. Experimental set-up for dynamic resistance measurement and voltage tap arrangement.

TABLE I

<table>
<thead>
<tr>
<th>I_c VALUES OF THE FOUR CONDUCTORS COMPRISING THE STACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>Self-field I_c (A)</td>
</tr>
<tr>
<td>I_c after assembling (A)</td>
</tr>
</tbody>
</table>

III. EXPERIMENTAL RESULTS

Figs 2 and 3 show the dynamic resistance, R_{dyn}, values for each tape within the stack measured at two different frequency and current values. In these figures R_{dyn} is normalized by frequency and plotted as a function of the magnetic field amplitude. It can be seen that in each case, dynamic resistance is negligible until the threshold magnetic field amplitude is exceeded. This is similar to the behavior observed in single coated conductors [14]. There is no obvious difference between the results at 67.89 Hz and 87.65 Hz for dc current values of 8.3 A and 24.8 A. This reflects the hysteretic nature of dynamic resistance in the stack. Similar results were also obtained at additional dc current values which are not shown in this paper.

![Dynamic Resistance Data](image2.png)

Fig. 2. Measured dynamic resistance in each conductor of the YBCO stack at 8.3 A for 67.89 Hz and 87.65 Hz, (a) T1, (b) T2, (c) T3, and (d) T4.

![Dynamic Resistance Data](image3.png)

Fig. 3. Measured dynamic resistance in each conductor of the YBCO stack at 24.8 A for 67.89 Hz and 87.65 Hz, (a) T1, (b) T2, (c) T3, and (d) T4.

Fig. 4 shows the measured dynamic resistance data obtained from each tape at 67.89 Hz, and using five different current values. The dynamic resistance values measured at each position within the stack are observed to very similar in all cases. This enables a single threshold field to be identified for the entire stack at each dc current value. These values were extracted from the x-axis intercept of linear fits of the measured data. The threshold values for the stack decrease with increasing dc...
current values. This trend is similar to that observed in dynamic resistance measurements of single coated conductor tapes [14–15].

In our previous work, we have shown that dynamic resistance in coated conductors exposed to perpendicular magnetic fields, can be well described by an analytical equation [14].

\[
R_{\text{dyn}} \cdot f \cdot l = \frac{4a}{I_{\text{cr}}} (B_a - B_{\text{th}}) \tag{1}
\]

where, \(I_{\text{cr}} \) is the self-field critical current of the conductor, \(l \) is the distance between the two voltage taps, and \(f \) is the frequency of the applied magnetic field. The threshold magnetic field, \(B_{\text{th}} \) is given by,

\[
B_{\text{th}} = B_{r}\left(1 - \frac{I_c}{I_{\text{cr}}}
ight) \tag{2}
\]

where \((1 - I_c/I_{\text{cr}})\) is the filling portion of dc current and \(B_{r}\) is effective penetration field [12, 14], which is equivalent to the field at the maxima of the Brandt and Indenbom equation for ac magnetization loss in a strip under perpendicular magnetic field [21]. This maxima field is obtained by analytical methods as, \(B_{r} = 2.4642\mu_{0}J_{c}\alpha/\pi\) [14, 15], where \(J_{c}\) is defined as \(I_{\text{cr}}/(t \times 2a)\).

Fig. 4 shows the calculated dynamic resistance value obtained from (1) and (2), for a single coated conductor which has a self-field \(I_c\) value of 96.4 A (the averaged self-field \(I_c\) of the conductors in Table 1). We denote this calculated value as ‘Single’ in the figure. Interestingly, we see that the measured \(B_{\text{th}}\) values for the stack are significantly larger than the single conductor. We attribute this to a shielding effect from circulating current present in each wire in the stack [12, 13]. This effect is more significant when the dc current value is small, and becomes weaker with increasing dc current. This is to be expected, as larger transport currents in each tape occupy a greater fraction of the wire’s total current-carrying capacity, thus reducing the total shielding currents flowing in each tape. Another notable observation is that the gradient values of the linear fits \(\Delta R_{\text{dyn}}/\Delta B_a\) for each tape of the stack are much bigger than expected for a single conductor. This might be due to \(I_c\) (\(B\)) dependence of the wires in the stack. Such effects have previously been observed in the dynamic resistance of single BSCCO wires under parallel magnetic fields [9].

Fig. 6 compares the experimentally obtained \(B_{\text{th}}\) values for the stack, and calculated \(B_{\text{th}}\) values for the single conductor
from (2), at various different dc current values. Once again this clearly illustrates that the B_{th} values of the stack are bigger than those for a single conductor throughout the range of current values investigated, due to the shielding effect. At $I_t = 8.4$ A, the B_{th} value for the stack is approximately 2.5 times that of a single conductor. However the B_{th} values in the stack decrease at a slightly faster rate than those for the single conductor, such that at $I_t = 71.4$ A, the B_{th} value of the stack is approximately 2 times that of the single conductor.

In Fig. 7, the experimentally obtained values for dR_{dyn}/dB_t of the stack are plotted, together with the theoretical gradient value of $4a/I_{c0}$ for the single conductor from (1). Values are plotted versus the dc current value, and there is some scattering about the average gradient value. We attribute this to imperfect fitting of the composite data shown in Fig. 4. The averaged gradient value in the figure is more than 2.5 times the theoretical value for the single conductor. The origin of this increased gradient is not entirely clear at this time, and detailed electromagnetic field analysis will be required in order to probe this further.

Frequency-normalized values of the dynamic resistance were obtained at two different frequencies and observed to be identical at all currents and fields studied. This confirms the hysteretic nature of the dynamic resistance measured in the stack.

Threshold field values for the stack were found to be much larger than those expected for a single coated conductor. We attribute this to a superimposed shielding field arising from the magnetization currents present in each wire in the stack. This shielding effect becomes weaker with increasing dc transport current, as the circulating currents supported within each conductor are reduced.

The gradient, dR_{dyn}/dB_t, of the linear fits to the composite data for the stack is found to be more than twice that expected for a single coated conductor wire. The reason for this is unclear at present. One possibility is that it may be due to the I_t (B) dependence of the conductors in the stack. A numerical electromagnetic analysis of flux motion within the stack is now required, to provide detailed understanding of these experimental results.

Acknowledgment

The authors thank Gennady Sidorov for preparing some experimental components.

References

