The divisibility of a^n-b^n by powers of n

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Integers

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
THE DIVISIBILITY OF $a^n - b^n$ BY POWERS OF n

Kálmán Győry

gyory@math.klte.hu

Chris Smyth

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ, UK.
c.smyth@ed.ac.uk

Received: 9/14/09, Revised: 2/26/10, Accepted: 3/10/10, Published: 7/16/10

Abstract

For given integers a, b and $j \geq 1$ we determine the set $R_{a,b}^{(j)}$ of integers n for which $a^n - b^n$ is divisible by n^j. For $j = 1, 2$, this set is usually infinite; we determine explicitly the exceptional cases for which a, b the set $R_{a,b}^{(j)} (j = 1, 2)$ is finite. For $j = 2$, we use Zsigmondy’s Theorem for this. For $j \geq 3$ and $\gcd(a, b) = 1$, $R_{a,b}^{(j)}$ is probably always finite; this seems difficult to prove, however.

We also show that determination of the set of integers n for which $a^n + b^n$ is divisible by n^j can be reduced to that of $R_{a,b}^{(j)}$.

1. Introduction

Let a, b and j be fixed integers, with $j \geq 1$. The aim of this paper is to find the set $R_{a,b}^{(j)}$ of all positive integers n such that n^j divides $a^n - b^n$. For $j = 1, 2, \ldots$, these sets are clearly nested, with common intersection $\{1\}$. Our first results (Theorems 1 and 2) describe this set in the case that $\gcd(a, b) = 1$. In Section 4 we describe (Theorem 15) the set in the general situation where $\gcd(a, b)$ is unrestricted.

Theorem 1. Suppose that $\gcd(a, b) = 1$. Then the elements of the set $R_{a,b}^{(1)}$ consist of those integers n whose prime factorization can be written in the form

$$n = p_1^{k_1} p_2^{k_2} \ldots p_r^{k_r} \quad (p_1 < p_2 < \cdots < p_r, \ all \ k_i \geq 1),$$

where $p_i \mid (a^{n_i} - b^{n_i})$ ($i = 1, \ldots, r$), with $n_1 = 1$ and $n_i = p_1^{k_1} p_2^{k_2} \ldots p_{i-1}^{k_{i-1}}$ ($i = 2, \ldots, r$).

In this theorem, the k_i are arbitrary positive integers. This result is a more explicit version of that proved in Győry [5], where it was shown that if $a - b > 1$ then for any positive integer r the number of elements of $R_{a,b}^{(1)}$ having r prime factors is infinite. The result is also essentially contained in [11], which described...
the indices \(n \) for which the generalized Fibonacci numbers \(u_n \) are divisible by \(n \). However, we present a self-contained proof in this paper.

On the other hand, for \(j \geq 2 \), the exponents \(k_i \) are more restricted.

Theorem 2. Suppose that \(\gcd(a, b) = 1 \), and \(j \geq 2 \). Then the elements of the set \(R_{a,b}^{(j)} \) consist of those integers \(n \) whose prime factorization can be written in the form (1), where

\[
p_1^{(j-1)k_1} \text{ divides } \begin{cases} a - b & \text{if } p_1 > 2; \\ \lcm(a - b, a + b) & \text{if } p_1 = 2, \end{cases}
\]

and \(p_i^{(j-1)k_i} | a^{n_i} - b^{n_i} \), with \(n_i = p_1^{k_1} p_2^{k_2} \ldots p_i^{k_i-1} (i = 2, \ldots, r) \).

Again, the result was essentially contained in [5], where it was proved that for \(a - b > 1 \) and for any given \(r \), there exists an \(n \in R_{a,b}^{(j)} \) with \(r \) distinct prime factors. Further, the number of these \(n \) is finite, and all of them can be determined. The paper [5] was stimulated by a problem from the 31st International Mathematical Olympiad, which asked for all those positive integers \(n > 1 \) for which \(2^n + 1 \) was divisible by \(n^2 \). (For the answer, see [5], or Theorem 16.)

Thus we see that construction of \(n \in R_{a,b}^{(j)} \) depends upon finding a prime \(p_i \) not used previously with \(a^{n_i} - b^{n_i} \) being divisible by \(p_i^{j-1} \). This presents no problem for \(j = 2 \), so that \(R_{a,b}^{(2)} \), as well as \(R_{a,b}^{(1)} \), are usually infinite. See Section 5 for details, including the exceptional cases when they are finite. However, for \(j \geq 3 \) the condition \(p_i^{j-1} | a^{n_i} - b^{n_i} \) is only rarely satisfied. This suggests strongly that in this case \(R_{a,b}^{(j)} \) is always finite for \(\gcd(a, b) = 1 \). This seems very difficult to prove, even assuming the ABC Conjecture. A result of Ribenboim and Walsh [10] implies that, under ABC, the powerful part of \(a^n - b^n \) cannot often be large. But this is not strong enough for what is needed here. On the other hand, \(R_{a,b}^{(j)} (j \geq 3) \) can be made arbitrarily large by choosing \(a \) and \(b \) such that \(a - b \) is a powerful number. For instance, choosing \(a = 1 + (q_1 q_2 \ldots q_s)^{j-1} \) and \(b = 1 \), where \(q_1, q_2, \ldots, q_s \) are distinct primes, then \(R_{a,b}^{(j)} \) contains the \(2^n \) numbers \(q_1^{\varepsilon_1} q_2^{\varepsilon_2} \ldots q_s^{\varepsilon_s} \) where the \(\varepsilon_i \) are \(0 \) or \(1 \). See Example 6 in Section 7.

In the next section we give preliminary results needed for the proof of the theorems. We prove them in Section 3. In Section 4 we describe (Theorem 15) \(R_{a,b}^{(j)} \) where \(\gcd(a, b) \) is unrestricted. In Section 5 we find all \(a, b \) for which \(R_{a,b}^{(2)} \) is finite (Theorem 16). In Section 6 we discuss the divisibility of \(a^n + b^n \) by powers of \(n \). In Section 7 we give some examples, and make some final remarks in Section 8.
2. Preliminary Results

We first prove a version of Fermat’s Little Theorem that gives a little bit more information in the case $x \equiv 1 \pmod{p}$.

Lemma 3. For $x \in \mathbb{Z}$ and p an odd prime we have

$$x^{p-1} + x^{p-2} + \cdots + x + 1 \equiv \begin{cases} p \pmod{p^2} & \text{if } x \equiv 1 \pmod{p}; \\ 1 \pmod{p} & \text{otherwise}. \end{cases} \quad (2)$$

Proof. If $x \equiv 1 \pmod{p}$, say $x = 1 + kp$, then $x^j \equiv 1 + jkp \pmod{p^2}$, so that

$$x^{p-1} + x^{p-2} + \cdots + x + 1 \equiv p + kp \sum_{j=0}^{p-1} j \equiv p \pmod{p^2}. \quad (3)$$

Otherwise

$$x(x-1)(x^{p-2} + \cdots + x + 1) = x^p - x \equiv 0 \pmod{p}, \quad (4)$$

so that for $x \not\equiv 1 \pmod{p}$ we have $x(x^{p-2} + \cdots + x + 1) \equiv 0 \pmod{p}$, and hence

$$x^{p-1} + x^{p-2} + \cdots + x + 1 \equiv x(x^{p-2} + \cdots + x + 1) + 1 \equiv 1 \pmod{p}. \quad (5)$$

□

The following is a result of Birkhoff and Vandiver [2, Theorem III]. It is also special case of Lucas [9, p. 210], as corrected for $p = 2$ by Carmichael [3, Theorem X].

Lemma 4. Let $\gcd(a, b) = 1$ and p be prime with $p \mid (a-b)$. Define $t > 0$ by $p^t \mid (a-b)$ for $p > 2$ and $2^t \mid \text{lcm}(a-b, a+b)$ if $p = 2$. Then for $\ell > 0$

$$p^{t+\ell} \parallel (a^{p^\ell} - b^{p^\ell}). \quad (6)$$

On the other hand, if $p \nmid a-b$ then for $\ell \geq 0$

$$p \nmid a^{p^\ell} - b^{p^\ell}. \quad (7)$$

Proof. Put $x = a/b$. First suppose that p is odd and $p^t \mid (a-b)$ for some $t > 0$. Then as $\gcd(a, b) = 1$, b is not divisible by p, and we have $x \equiv 1 \pmod{p^t}$. Then from

$$a^p - b^p = (a-b)b^{p-1}(x^{p-1} + x^{p-2} + \cdots + x + 1) \quad (8)$$
we have by Lemma 3 that \(p^{t+1} \|(a^p - b^p) \). Applying this result \(\ell \) times, we obtain (6).

For \(p = 2 \), we have \(p^{t+1} \|a^2 - b^2 \) and from \(a^2 \equiv b^2 \equiv 1 \pmod{8} \), we obtain \(2^1 \|(a^4 - b^4) \), and so \(p^{t+2} \|(a^4 - b^4) \). An easy induction then gives the required result.

Now suppose that \(p \nmid (a - b) \). Since \(\gcd(a, b) = 1 \), (7) clearly holds if \(p \mid a \) or \(p \mid b \), as must happen for \(p = 2 \). So we can assume that \(p \) is odd and \(p \nmid b \). Then \(x \equiv 1 \pmod{p} \) so that, by Lemma 3 and (8), we have \(p \nmid (a^p - b^p) \). Applying this argument \(\ell \) times, we obtain (7).

For \(n \in R_a^{(j)} \), we now define the set \(P_{a,b}^{(j)}(n) \) to be the set of all prime powers \(p^k \) for which \(np^k \in R_a^{(j)} \). Our next result describes this set precisely. (Compare with \([11, \text{Theorem ~1(a)}]\)).

Proposition 5. Suppose that \(j \geq 1 \), \(\gcd(a, b) = 1 \), \(n \in R_a^{(j)} \) and

\[
a^n - b^n = 2^{e_2} \prod_{p > 2} p^{e_p}, \quad n = \prod_p p^{k_p} \tag{9}
\]

and define \(e_2 \) by \(2^{e_2} \| \gcd(a^n - b^n, a^n + b^n) \). Then

\[
P^{(1)}(n) = \bigcup_{p|a^n - b^n} \{p^k, k \in \mathbb{N}\}, \tag{10}
\]

and for \(j \geq 2 \)

\[
P_{a,b}^{(j)}(n) = \bigcup_{p: p^{j-1} | a^n - b^n} \left\{p^k : 1 \leq k \leq \left\lfloor \frac{e_p - jk_p}{j-1} \right\rfloor \right\}. \tag{11}
\]

Note that \(e_2 \) is never 1. Consequently, if \(2m \in R_a^{(2)} \), where \(m \) is odd, then \(4m \in R_a^{(2)} \). Also, \(2 \in R_a^{(j)} \) for \(j \leq 3 \) when \(a - b \) is even.

Proof. Taking \(n \in R_a^{(j)} \) we have, from (9) and the definition of \(e_2 \), that \(jk_p \leq e_p \) for all primes \(p \). Hence, applying Lemma 4 with \(a, b \) replaced by \(a^n, b^n \) we have for \(p \) dividing \(a^n - b^n \) that for \(\ell > 0 \)

\[
p^{e_p + \ell} \|(a^{np^\ell} - b^{np^\ell}). \tag{12}
\]

So \((np^\ell)^j | (a^{np^\ell} - b^{np^\ell})\) is equivalent to \(j(k_p + \ell) \leq e_p + \ell \), or \((j - 1)\ell \leq e_p - jk_p \). Thus we obtain (10) for \(j \geq 2 \), with \(\ell \) unrestricted for \(j = 1 \), giving (10).

On the other hand, if \(p \nmid (a^n - b^n) \), then by Lemma 4 again, \(p^\ell \nmid (a^{np^\ell} - b^{np^\ell}) \), so that certainly \((np^\ell)^j \nmid (a^{np^\ell} - b^{np^\ell}). \)
We now recall some facts about the order function ord. For \(m \) an integer greater than 1 and \(x \) an integer prime to \(m \), we define \(\text{ord}_m(x) \), the order of \(x \) modulo \(m \), to be the least positive integer \(h \) such that \(x^h \equiv 1 \pmod{m} \). The next three lemmas, containing standard material on the ord function, are included for completeness.

Lemma 6. For \(x \in \mathbb{N} \) and prime to \(m \), we have \(m | (x^n - 1) \) if and only if \(\text{ord}_m(x) | n \).

Proof. Let \(\text{ord}_m(x) = h \), and assume that \(m | (x^n - 1) \). Then as \(m | (x^h - 1) \), also \(m | (x^{\text{gcd}(h,n)} - 1) \). By the minimality of \(h \), \(\text{gcd}(h,n) = h \), i.e., \(h | n \). Conversely, if \(h | n \) then \((x^h - 1) | (x^n - 1) \), so that \(m | (x^n - 1) \).

Corollary 7. Let \(j \geq 1 \). We have \(n^j | (x^n - 1) \) if and only if \(\text{gcd}(x,n) = 1 \) and \(\text{ord}_{n^j}(x) | n \).

Lemma 8. For \(m = \prod_p p^{l_p} \) and \(x \in \mathbb{N} \) and prime to \(m \) we have

\[
\text{ord}_m(x) = \text{lcm}_p \text{ord}_{p^{l_p}}(x).
\]

Proof. Put \(h_p = \text{ord}_{p^{l_p}}(x) \), \(h = \text{ord}_m(x) \) and \(h' = \text{lcm}_p h_p \). Then by Lemma 6 we have \(p^{l_p} | (x^{h'} - 1) \) for all \(p \), and hence \(m | (x^{h'} - 1) \). Hence \(h | h' \). On the other hand, as \(p^{l_p} | n \) and \(m | (x^h - 1) \), we have \(p^{l_p} | (x^h - 1) \), and so \(h_p | h \), by Lemma 6. Hence \(h' = \text{lcm}_p h_p | h \).

Now put \(p_\star = \text{ord}_p(x) \), and define \(t > 0 \) by \(p^t \| (x^{p_\star} - 1) \).

Lemma 9. For \(\gcd(x,n) = 1 \) and \(\ell > 0 \) we have \(p_\star | (p - 1) \) and \(\text{ord}_{p^\ell}(x) = p^{\text{max}(\ell - 1,0)} p_\star \).

Proof. Since \(p | (x^{p-1} - 1) \), we have \(p_\star | (p - 1) \), by Lemma 6. Also, from \(p^\ell | (x^{\text{ord}_{p^\ell}(x)} - 1) \) we have \(p | (x^{\text{ord}_{p^\ell}(x)} - 1) \), and so, by Lemma 6 again, \(p_\star = \text{ord}_p(x) | \text{ord}_{p^\ell}(x) \). Further, if \(\ell \leq t \) then from \(p^\ell | (x^{p_\star} - 1) \) we have by Lemma 6 that \(\text{ord}_{p^\ell}(x) | p_\star \), so \(\text{ord}_{p^\ell}(x) = p_\star \). Further, by Lemma 4 for \(u \geq t \)

\[
P^u \| ((x^{p^u - t p_\star}) - 1),
\]

so that, taking \(u = \ell \geq t \) and using Lemma 6, \(\text{ord}_{p^\ell}(x) | p^{\ell - t} p_\star \). Also, if \(t \leq u < \ell \), then, from (14), \(x^{p^u - t p_\star} \not\equiv 1 \pmod{p^\ell} \). Hence \(\text{ord}_{p^\ell}(x) = p^{\ell - t} p_\star \) for \(\ell \geq t \).
Corollary 10. Let \(j \geq 1 \). For \(n = \prod_p p^{k_p} \) and \(x \in \mathbb{N} \) prime to \(n \) we have \(n^j \mid x^n - 1 \) if and only if \(\gcd(x, n) = 1 \) and

\[
\text{lcm}_p p^{k'_p} \mid \prod_p p^{k_p}.
\]

(15)

Here the \(k'_p = \max(jk_p - t_p, 0) \) are integers with \(t_p > 0 \).

Note that \(p_* \), \(k'_p \) and \(t_p \) in general depend on \(x \) and \(j \) as well as on \(p \).

What we actually need in our situation is the following variant of Corollary 10.

Corollary 11. Let \(j \geq 1 \). For \(n = \prod_p p^{k_p} \) and integers \(a, b \) with \(\gcd(a, b) = 1 \) we have \(n^j \mid a^n - b^n \) if and only if \(\gcd(n, a) = \gcd(n, b) = 1 \) and

\[
\text{lcm}_p p^{k'_p} \mid \prod_p p^{k_p}.
\]

(16)

Here the \(k'_p = \max(jk_p - t_p, 0) \) are integers with \(t_p > 0 \).

In this corollary, the \(x \) used to define \(p_* \) and \(t = t_p \) (see after Lemma 8) is chosen to satisfy \(bx \equiv a \pmod{n^j} \). The result is then easily deduced from Corollary 10.

By contrast with Proposition 5, our next proposition allows us to divide an element \(n \in R^{(j)}_{a,b} \) by a prime, and remain within \(R^{(j)}_{a,b} \).

Proposition 12. Let \(n \in R^{(j)}_{a,b} \) with \(n > 1 \), and suppose that \(p_{\text{max}} \) is the largest prime factor of \(n \). Then \(n/p_{\text{max}} \in R^{(j)}_{a,b} \).

Proof. Suppose \(n \in R^{(j)}_{a,b} \), so that (15) holds, with \(x = a/b \), and put \(q = p_{\text{max}} \). Then, since for every \(p \) all prime factors of \(p_* \) are less than \(p \), the only possible term on the left-hand side that divides \(q^{k_q} \) on the right-hand side is the term \(q^{k_q} \). Now reducing \(k_q \) by 1 will reduce \(k'_q \) by at least 1, unless it is already 0, when it does not change. In either case (15) will still hold with \(n \) replaced by \(n/q \), and so \(n/q \in R^{(j)}_{a,b} \). \(\square \)

Various versions and special cases of Proposition 12 for \(j = 1 \) have been known for some time, in the more general setting of Lucas sequences, due to Somer [12, Theorem 5(iv)], Jarden [7, Theorem E], Hoggatt and Bergum [6], Walsh [14], André-Jeannin [1] and others. See also Smyth [11, Theorem 3].

In order to work out for which \(a, b \) the set \(R^{(j)}_{a,b} \) is finite, we need the following classical result. Recall that \(a^n - b^n \) is said to have a primitive prime divisor \(p \) if the prime \(p \) divides \(a^n - b^n \) but does not divide \(a^k - b^k \) for any \(k \) with \(1 \leq k < n \).
Theorem 13 (Zsigmondy [15]). Suppose that a and b are nonzero coprime integers with $a > b$ and $a + b > 0$. Then, except when

- $n = 2$ and $a + b$ is a power of 2
 or
- $n = 3$, $a = 2$, $b = -1$
 or
- $n = 6$, $a = 2$, $b = 1$,

$a^n - b^n$ has a primitive prime divisor.

(Note that in this statement we have allowed b to be negative, as did Zsigmondy. His theorem is nowadays often quoted with the restriction $a > b > 0$ and so has the second exceptional case omitted.)

3. **Proof of Theorems 1 and 2**

Let $n \in R_{a,b}^{(j)}$ have a factorisation (1), where $p_1 < p_2 < \cdots < p_r$ and all $k_i > 0$. First take $j \geq 1$. Then, by Proposition 12, $n/p_r^{k_r} = n_r \in R_{a,b}^{(j)}$, and hence

$$(n/p_r^{k_r})/p_r^{k_r-1} = n_{r-1}, \quad \ldots \quad p_1^{k_1} = n_2, \quad 1 = n_1$$

are all in $R_{a,b}^{(j)}$. Now separate the two cases $j = 1$ and $j \geq 2$ for Theorems 1 and 2 respectively. Now for $j = 1$ Proposition 5 gives us that $p_i \mid a^{n_i} - b^{n_i}$ ($i = 1, \ldots, r$), while for $j \geq 2$ we have, again from Proposition 5, that

$$p_1^{(j-1)k_1} \text{ divides } \begin{cases} a - b & \text{if } p_1 > 2; \\ \lcm(a - b, a + b) & \text{if } p_1 = 2, \end{cases}$$

and $p_i^{(j-1)k_i} \mid a^{n_i} - b^{n_i}$ ($i = 2, \ldots, r$). Here we have used the fact that $\gcd(p_i, n_i) = 1$, so that if $p_i^{k_i} \mid (a^{n_i} - b^{n_i})/n_i^2$ then $p_i^{k_i} \mid a^{n_i} - b^{n_i}$ (i.e., we are applying Proposition 5 with all the exponents k_p equal to 0.)

4. **Finding $R_{a,b}^{(j)}$ When $\gcd(a, b) > 1$.**

For $a > 1$, define the set \mathcal{F}_a to be the set of all $n \in \mathcal{N}$ whose prime factors all divide a. To find $R_{a,b}^{(j)}$ in general, we first consider the case $b = 0$.

Proposition 14. We have $R_{a,0}^{(1)} = R_{a,0}^{(2)} = F_a$, while for $j \geq 3$ the set $R_{a,0}^{(j)} = F_a \setminus S_a^{(j)}$, where $S_a^{(j)}$ is a finite set.

Proof. From the condition $n^j \mid a^n$, all prime factors of n divide a, so $R_{a,0}^{(j)} \subseteq F_a$, say $R_{a,0}^{(j)} = F_a \setminus S_a^{(j)}$. We need to prove that $S_a^{(j)}$ is finite. Suppose that $a = p_1^{k_1} \ldots p_r^{k_r}$, with p_1 the smallest prime factor of a. Then $n = p_1^{k_1} \ldots p_r^{k_r}$ for some $k_i \geq 0$. From $n^j \mid a^n$ we have

$$k_i \leq \frac{a_i}{j} p_1^{k_1} \ldots p_r^{k_r} \quad (i = 1, \ldots, r).$$ \hfill (17)

For these r conditions to be satisfied it is sufficient that

$$\sum_{i=1}^{r} k_i \leq \frac{\min_{i=1}^{r} a_i}{j} p_1^{\sum_{i=1}^{r} k_i}.$$ \hfill (18)

Now (18) holds if $j = 1$ or 2, as in this case, from the simple inequality $k \leq 2^{k-1}$ valid for all $k \in \mathbb{N}$, we have

$$\sum_{i=1}^{r} k_i \leq \frac{1}{2^{\sum_{i=1}^{r} k_i}} \leq \frac{\min_{i=1}^{r} a_i}{j} p_1^{\sum_{i=1}^{r} k_i}.$$ \hfill (19)

Hence $S_a^{(j)}$ is empty if $j = 1$ or 2.

Now take $j \geq 3$, and let $K = K_a^{(j)}$ be the smallest integer such that $Kp_1^{-K} \leq \left(\min_{i=1}^{r} a_i \right) / j$. Then (18) holds for $\sum_{i=1}^{r} k_i \geq K$, and $S_a^{(j)}$ is contained in the finite set $S'' = \{ n \in \mathbb{N}, n = p_1^{k_1} \ldots p_r^{k_r} : \sum_{i=1}^{r} k_i < K \}$. (To compute $S_a^{(j)}$ precisely, one need just check for which r-tuples (k_1, \ldots, k_r) with $\sum_{i=1}^{r} k_i < K$ any of the r inequalities of (17) is violated.)

One (at first sight) curious consequence of the equality $R_{a,0}^{(1)} = R_{a,0}^{(2)}$ above is that $n \mid a^n$ implies $n^2 \mid a^n$.

Now let $g = \gcd(a, b)$ and $a = a_1 g, b = b_1 g$. Write $n = G n_1$, where all prime factors of G divide g and $\gcd(n_1, g) = 1$. Then we have the following general result.

Theorem 15. The set $R_{a,b}^{(j)}$ is given by

$$R_{a,b}^{(j)} = \{ n = G n_1 : G \in \mathcal{F}_g, n_1 \in R_{a_1, b_1}^{(j)} \setminus \mathcal{F}_{a_1, b_1}^{(j)} \text{ and } \gcd(g, n_1) = 1 \} \setminus R,$$ \hfill (20)
where R is a finite set. Specifically, all $n = Gn_1 \in R$ have $1 \leq n_1 < j/2$ and
\[G = q_1^{\ell_1} \cdots q_m^{\ell_m}, \]
where
\[\sum_{i=1}^{m} \ell_i < R_g^{(j)}. \]
Here the q_i are the primes dividing g, and $R_g^{(j)}$ is the constant in the proof of Proposition 14 above.

Proof. Supposing that $n \in R_{a,b}^{(j)}$ we have
\[n^j \mid a^n - b^n \]
and so $n^j \mid g^n (a_1^n - b_1^n)$. Writing $n = Gn_1$, as above, we have
\[n_1^j \mid (a_1^G)^{n_1} - (b_1^G)^{n_1} \]
and
\[G^j \mid g^{Gn_1} ((a_1^G)^{n_1} - (b_1^G)^{n_1}). \]
Thus (23) holds with n, a, b replaced by n_1, a_1^G, b_1^G. So we have reduced the problem of (23) to a case where $\gcd(a, b) = 1$, which we can solve for n_1 prime to g, along with the extra condition (25). Now, from the fact that $R_{g,0}^{(2)} = F_g$ from Proposition 14, we have $G^j \mid g^G$ and hence $G^j \mid g^{Gn_1}$ for all $G \in F_g$, provided that $n_1 \geq j/2$. Hence (25) can fail to hold for all $G \in F_g$ only for $1 \leq n_1 < j/2$.

Now fix n_1 with $1 \leq n_1 < j/2$. Then note that by Proposition 14, $G^j \mid g^{Gn_1}$ and hence (23) holds for all $G \in F_g \setminus S$, where S is a finite set of G’s contained in the set of all G’s given by (21) and (22).

Note that (taking $n_1 = 1$ and using (25)) we always have $R_{g,0}^{(j)} \subset R_{a,b}^{(j)}$. See example in Section 7.

5. When Are $R_{a,b}^{(1)}$ and $R_{a,b}^{(2)}$ Finite?

First consider $R_{a,b}^{(1)}$. From Theorem 1 it is immediate that $R_{a,b}^{(1)}$ contains all powers of any primes dividing $a - b$. Thus $R_{a,b}^{(1)}$ is infinite unless $a - b = \pm 1$, in which case $R_{a,b}^{(1)} = \{1\}$. This was pointed out earlier by André-Jeannin [1, Corollary 4].

Next, take $j = 2$. Let us denote by $P_{a,b}^{(2)}$ the set of primes that divide some $n \in R_{a,b}^{(2)}$ and, as before, put $g = \gcd(a, b)$.
Theorem 16. The set $R_{a,b}^{(2)} = \{1\}$ if and only if a and b are consecutive integers, and $R_{a,b}^{(2)} = \{1,3\}$ if and only if $ab = -2$. Otherwise, $R_{a,b}^{(2)}$ is infinite.

If $R_{a/g,b/g}^{(2)} = \{1\}$ (respectively, $= \{1,3\}$) then $\mathcal{P}_{a,b}^{(2)}$ is the set of all prime divisors of g (respectively, $3g$). Otherwise $\mathcal{P}_{a,b}^{(2)}$ is infinite.

For coprime positive integers a, b with $a - b > 1$, the infiniteness of $R_{a,b}^{(2)}$ already follows from the above-mentioned results of [5].

The application of Zsigmondy’s Theorem that we require is the following.

Proposition 17. If $R_{a,b}^{(2)}$ contains some integer $n \geq 4$ then both $R_{a,b}^{(2)}$ and $\mathcal{P}_{a,b}^{(2)}$ are infinite sets.

Proof. First note that if $a = 2, b = 1$ (or more generally $a - b = \pm 1$) then by Theorem 2, $R_1^{(2)} = \{1\}$. Hence, taking $n \in R_{a,b}^{(2)}$ with $n \geq 4$ we have, by Zsigmondy’s Theorem, that $a^n - b^n$ has a primitive prime divisor, p say. Now if $p \mid n$ then, by applying Proposition 12 as many times as necessary we find $p \mid n'$, where $n' \in R_{a,b}^{(2)}$ and now p is the maximal prime divisor of n'. Hence, by Proposition 12 again, $n'' = n'/p \in R_{a,b}^{(2)}$ and so, from $n' = pn''$ and Proposition 5 we have that $p \mid a^{n''} - b^{n''}$, contradicting the primitivity of p.

Now using Proposition 5 again, $np \in R_{a,b}^{(2)}$. Repeating the argument with n replaced by np and continuing in this way we obtain an infinite sequence

$$n, \ \ np, \ \ np_1, \ \ np_1p_2, \ \ldots, \ \ np_1p_2\ldots p_\ell, \ \ldots$$

of elements of $R_{a,b}^{(2)}$, where $p < p_1 < p_2 < \cdots < p_\ell < \ldots$ are primes. \hfill \Box

Proof of Theorem 16. Assume $\gcd(a,b) = 1$, and, without loss of generality, that $a > 0$ and $a > b$. (We can ensure this by interchanging a and b and/or changing both their signs.) If $a - b$ is even, then a and b are odd, and $a^2 - b^2 \equiv 1 \pmod{2^{t+1}}$, where $t \geq 2$. Hence $4 \in R_{a,b}^{(2)}$, by Proposition 5, and so both $R_{a,b}^{(2)}$ and $\mathcal{P}_{a,b}^{(2)}$ are infinite sets, by Proposition 17.

If $a - b = 1$ then $R_{a,b}^{(2)} = \{1\}$, as we have just seen, above.

If $a - b$ is odd and at least 5, then $a - b$ must either be divisible by 9 or by a prime $p \geq 5$. Hence 9 or p belong to $R_{a,b}^{(2)}$, by Proposition 5, and again both $R_{a,b}^{(2)}$ and $\mathcal{P}_{a,b}^{(2)}$ are infinite sets, by Proposition 17.

If $a - b = 3$ then $3 \in R_{a,b}^{(2)}$, and $a^3 - b^3 = 9(b^2 + 3b + 3)$. If $b = -1$ (and $a = 2$, $ab = -2$) or -2 (and $a = 1$, $ab = -2$) then $a^3 - b^3 = 9$ and

$$L \equiv 1 \pmod{2^{t+1}}.$$
so, by Theorem 2, so \(R^{(2)} = \{1, 3\} \). Otherwise, using \(\gcd(a, b) = 1 \) we see that \(a^3 - b^3 \geq 5 \), and so the argument for \(a - b \geq 5 \) but with \(a, b \) replaced by \(a^3, b^3 \) applies.

\[\square\]

6. The Powers of \(n \) Dividing \(a^n + b^n \)

Define \(R^{(j)}_{a, b} \) to be the set \(\{n \in \mathbb{N} : n^j \text{ divides } a^n + b^n\} \). Take \(j \geq 1 \), and assume that \(\gcd(a, b) = 1 \). (The general case \(\gcd(a, b) \geq 1 \) can be handled as in Section 4.)

We then have the following result.

Theorem 18. Suppose that \(j \geq 1 \), \(\gcd(a, b) = 1 \), \(a > 0 \) and \(a \geq |b| \). Then

(a) \(R^{(1)}_{a, b} \) consists of the odd elements of \(R^{(1)}_{a, -b} \), along with the numbers of the form \(2n_1 \), where \(n_1 \) is an odd element of \(R^{(1)}_{a^2, -b^2} \);

(b) If \(j \geq 2 \) the set \(R^{(j)}_{a, b} \) consists of the odd elements of \(R^{(j)}_{a, -b} \) only.

Furthermore, for \(j = 1 \) and 2, the set \(R^{(j)}_{a, b} \) is infinite, except in the following cases:

- If \(a + b \) is 1 or a power of 2, \((j, a, b) \neq (1, 1, 1) \), when it is \(\{1\} \);
- \(R^{(1)}_{1, 1} = \{1, 2\} \);
- \(R^{(2)}_{2, 1} = \{1, 3\} \).

Proof. If \(n \) is even and \(j \geq 2 \), or if \(4 | n \) and \(j = 1 \), then \(n^j | a^n + b^n \) implies that \(4 | a^n + b^n \), contradicting the fact that, as \(a \) and \(b \) are not both even, \(a^n + b^n \equiv 1 \) or \(2 \) (mod 8). So either

- \(n \) is odd, in which case \(n^j | a^n + b^n \) is equivalent to finding the odd elements of the set \(R^{(j)}_{a, -b} \);

or

- \(j = 1 \) and \(n = 2n_1 \), where \(n_1 \) is odd, and belongs to \(R^{(1)}_{a^2, -b^2} \).

Now suppose that \(j = 1 \) or 2. If \(a + b \) is \(\pm 1 \) or \(\pm 2^i \) for some \(i > 0 \), then, by Theorem 2, all \(n \in R^{(j)}_{a, b} \) with \(n > 1 \) are even, so for \(j = 2 \) there are no \(n > 1 \) with \(n^j | a^n + b^n \) in this case. Otherwise, \(a + b \) will have an odd prime factor, and so at least one odd element greater than 1. By Theorem 16 and its proof, we see that \(R^{(2)}_{a, b} \) will have infinitely many odd elements unless \(a(-b) = -2 \), i.e., \(a = 2 \), \(b = 1 \) (using \(a > 0 \) and \(a \geq |b| \)).
For $j = 1$ there will be infinitely many n with $n \mid a^n + b^n$, except when both $a + b$ and $a^2 + b^2$ are 1 or a power of 2. It is an easy exercise to check that, this can happen only for $a = b = 1$ or $a = 1, b = 0$. \hfill \Box$

If $g = \gcd(a, b) > 1$, then, since $R_{a, b}^{(j)}$ contains the set $R_{g, 0}^{(j)}$, it will be infinite, by Proposition 14. For $j \geq 3$ and $\gcd(a, b) = 1$, the finiteness of the set $R_{a, b}^{(j)}$ would follow from the finiteness of $R_{a, b}^{(j)}$, using Theorem 16(b).

7. Examples

The set $R_{a, b}^{(j)}$ has a natural labelled, directed-graph structure, as follows: take the vertices to be the elements of $R_{a, b}^{(j)}$, and join a vertex n to a vertex np as $n \rightarrow_p np$, where $p \in P^{(j)}(a, b)$. We reduce this to a spanning tree of this graph by taking only those edges $n \rightarrow_p np$ for which p is the largest prime factor of np. For our first example we draw this tree (Figure 1).

1. Consider the set

$$R_{3, 1}^{(2)} = \{1, 2, 4, 20, 220, 1220, 2420, 5060, 13420, 14740, 23620, 55660, 145420, 147620, 162140, 237820, 259820, 290620, 308660, 339020, 447740, 847220, 899140, 1210220, \ldots \}$$

(sequence A127103 in Neil Sloane’s Integer Sequences website). Now

$$3^{20} - 1 = 2^4 \cdot 5^2 \cdot 11^2 \cdot 61 \cdot 1181,$$

showing that $P_{3, 1}^{(2)}(20) = \{11, 11^2, 61, 1181\}$. Also

$$3^{220} - 1 = 2^4 \cdot 5^2 \cdot 11^3 \cdot 23 \cdot 61 \cdot 67 \cdot 661 \cdot 1181 \cdot 1321 \cdot 3851 \cdot 5501 \cdot 177101 \cdot 570461 \cdot 659671 \cdot 24472341743191 \cdot 560088668384411 \cdot 927319729649066047885192700193701,$$

so that the elements of $P_{3, 1}^{(2)}(220)$ less than $10^6/220$, needed for Figure 1, are

$$11, 23, 61, 67, 661, 1181, 1321, 3851.$$
Figure 1: Part of the spanning tree for $R^{(2)}_{3,1}$, showing all elements below 10^6.

2. Now

$$R^{(2)}_{3,-1} = \{1, 2, 3, 4, 6, 12, 21, 42, 52, 84, 156, 186, 372, \ldots \},$$

whose odd elements give

$$R^{(2)+}_{5,-1} = \{1, 3, 21, 609, 903, 2667, 9429, 26187, \ldots \}.$$

See Section 6.

3. We have

$$R^{(2)+}_{3,2} = R^{(2)}_{3,-2} = \{1, 5, 55, 1971145, \ldots \},$$

as all elements of $R^{(2)}_{3,-2}$ are odd. Although this set is infinite by Theorem 16, the next term is $1971145p$ where p is the smallest prime factor of $3^{1971145} + 2^{1971145}$ not dividing 1971145. This looks difficult to compute, as it could be very large.

4. We have

$$R^{(2)}_{4,-3} = R^{(2)+}_{4,3} = \{1, 7, 2653, \ldots \}.$$

Again, this set is infinite, but here only the three terms given are readily computable. The next term is $2653p$ where p is the smallest prime factor of $4^{2653} + 3^{2653}$ not dividing 2653.

5. This is an example of a set with more than one odd prime as a squared factor in elements of the set, in this case the primes 3 and 7. Every element greater
than 9 is of one of the forms 21m, 63m, 147m, or 441m, where m is prime to 21;

\[R^{(2)}_{11,2} = \{1, 3, 9, 21, 63, 147, 441, 609, 1827, 4137, 4263, 7959, \\
8001, 12411, 12789, 23877, 28959, 35931, 55713, 56007, \\
86877, 107793, 119973, 167139, 212541, 216237, 230811, \\
232029, 251517, 359919, 389403, \ldots \}. \]

6. \(R^{(4)}_{27001,1} = \{1, 2, 3, 5, 6, 10, 15, 30 \} \). This is because 27001 – 1 = \(2^3 \cdot 3^3 \cdot 5^3 \), and none of 27001\(^n \) – 1 has a factor \(p^3 \) for any prime \(p \) > 5 for any \(n = 1, 2, 3, 5, 6, 10, 15, 30 \).

7. \(R^{(3)}_{19,1} = \{1, 2, 3, 6, 42, 1806 \} \)? Is this the entire set? Yes, unless \(19^{1806} - 1 \) is divisible by \(p^2 \) for some prime \(p \) prime to 1806, in which case 1806\(p \) would also be in the set. But determining whether or not this is the case seems to be a hard computational problem.

8. \(R^{(4)}_{56,2} \), an example with gcd\((a, b) > 1 \). It seems highly probable that

\[R^{(4)}_{56,2} = (\mathcal{F}_2 \setminus \{2, 4, 8\}) \cup (3\mathcal{F}_2) \\
= 1, 3, 6, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, \ldots \]

However, in order to prove this, Theorem 15 tells us that we need to know that \(28^\ell \not\equiv 1 \mod p^3 \) for every prime \(p > 3 \) and every \(\ell > 0 \). This seems very difficult! Note that \(R^{(4)}_{28,0} = \mathcal{F}_2 \setminus \{2, 4, 8\} \) and \(R^{(4)}_{28,1} = \{1, 3\} \).

8. Final Remarks

1. By finding \(R^{(j)}_{a,b} \), we are essentially solving the exponential Diophantine equation \(x^jy = a^x - b^x \), since any solutions with \(x \leq 0 \) are readily found.

2. It is known that

\[R^{(1)}_{a,b} = \left\{ n \in \mathbb{N} : n \text{ divides } \frac{a^n - b^n}{a - b} \right\}. \]

See [11, Proposition 12] (and also André-Jeannin [1, Theorem 2] for some special cases.) This result shows that \(R^{(1)}_{a,b} = \{n \in \mathbb{N} : n \text{ divides } u_n \} \), where the \(u_n \) are the generalized Fibonacci numbers of the first kind defined by the recurrence \(u_0 = 1, u_1 = 1 \), and \(u_{n+2} = (a + b)u_{n+1} - abu_n (n \geq 0) \). This provides a link between Theorem 1 of the present paper and the results of [11].
The set \(R_{a,b}^{(1)+} \) is a special case of a set \(\{ n \in \mathbb{N} : n \text{ divides } v_n \} \), also studied in [11]. Here \((v_n) \) is the sequence of generalized Fibonacci numbers of the second kind. For earlier work on this topic see Somer [13].

3. Earlier and related work. The study of factors of \(a^n - b^n \) dates back at least to Euler, who proved that all primitive prime factors of \(a^n - b^n \) were \(\equiv 1 \pmod{n} \). See [2, Theorem 1]. Chapter 16 of Dickson [4] is devoted to the literature on factors of \(a^n \pm b^n \).

More specifically, Kennedy and Cooper [8] studied the set \(R_{10,1}^{(1)} \). André-Jeannin [1, Corollary 4] claimed (erroneously – see Theorem 18) that the congruence \(a^n + b^n \equiv 0 \pmod{n} \) always has infinitely many solutions \(n \) for \(\gcd(a, b) = 1 \).

References

