A GIS-based assessment of the Byzantine water supply system of Constantinople

Citation for published version:

Digital Object Identifier (DOI):
10.2166/ws.2017.062

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Water Science and Technology: Water Supply

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A GIS-based assessment of the Byzantine water supply system of Constantinople

F. Ruggeri*, M. Crapper**, J. R. Snyder* and J. Crow***

* School of Engineering, University of Edinburgh, The King’s Buildings, Thomas Bayes Road, Edinburgh, EH9 3FG, UK. (E-mail: F.Ruggeri@ed.ac.uk; Riley.Snyder@ed.ac.uk)
** Department of Mechanical and Construction Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne, NE1 8ST, UK. (E-mail: Martin.Crapper@northumbria.ac.uk)
*** School of History, Classics and Archaeology, University of Edinburgh, Old Medical School, Teviot Place, Edinburgh, EH8 9AG, UK. (E-mail: Jim.Crow@ed.ac.uk)

Abstract
Despite the extensive archaeological surveys carried out in the last decades, little attention has been paid to one of the longest water supply systems of ancient times - the Byzantine water infrastructure which fed Constantinople from the mid-late fourth century AD. This work uses modern satellite terrain data and Global Positioning System (GPS) data to assess this system and provide an improved description of its route, total length and gradient profile. 44 validated GPS Control Points were correlated with ASTER GDEM V2 digital satellite data and archaeological information in a Geographic Information System (GIS) environment. We concluded that the total length of the water supply system was 426 km, and possibly even 565 km if the fifth-century aqueduct continued in parallel all the way to Constantinople rather than merging with the fourth-century aqueduct. The gradient of the channels varied across their length, being steepest near the spring sources, with gradient mostly in the region of 5 m/km, and flattest at around 0.4 m/km in the most downstream section nearest the City. This reconstruction of the gradient profile provides valuable insight into the physical characteristics of the system, allowing future study of its hydraulic function.

Keywords
Roman Aqueduct; Water Supply; Constantinople; GIS; Length; Gradient.

INTRODUCTION
After becoming an imperial capital in 330 AD, Constantinople experienced significant population growth (Cappel 1991), leading to the City’s expansion across the historic peninsula (part of modern Istanbul). The second-century aqueduct of the former Byzantium soon became inadequate to fulfil water requirements of the new City (Mango 1995); therefore a new water supply system was constructed beginning in the mid-fourth century. The arrival of the new waters was reported in historical sources in 373 AD (Donaldson 1996, 54), and recent studies have suggested that the total length of this fourth-century aqueduct was over 270 km (Snyder 2013). Around thirty years later, the water supply started to be extended to exploit higher springs from the NW of Vize, with a new fifth-century aqueduct over 180 km long. The resulting water infrastructure was an intricate network of channels and bridges which continued to operate - with occasional disruptions - across the early and middle Byzantine era, until the mid-twelfth century, when it was reported to have been abandoned due to cumulative damage and decay (Crow et al. 2008, 21).
Despite its significance, the Byzantine water supply was largely ignored until Çeçen (1996) produced the first map showing the course of the channels based on interpolation from topographical maps and the fragmentary remains he observed. Further research, carried out by Crow et al. (2008), led to a greater appreciation of the extent of the infrastructure. Despite the archaeological work conducted so far, the physical configuration of the fourth and fifth century aqueducts has only been partially investigated. The course of the channels, last traced by Crow et al. (2008) on 10 m contour maps of Turkish Thrace produced by the British Army in 1944, ought to be reassessed using more recent data and software.

Moreover, very little is known about the gradient of the aqueducts, which governs their hydraulic function. So far, only an average gradient of 0.6-0.7 m/km has been proposed for the entire water supply system (Çeçen 1996, 208; Crow et al. 2008, 121). This average slope ought to be defined in much greater detail in the light of the latest archaeological findings. It is known that the gradient profile of Roman aqueducts was typically irregular, mainly as a result of travelling through valleys, hills and plains, but possibly also due to design strategies to regulate the flow for hydraulic purposes (Hodge 2002, 178-184; 216-221). Therefore a fuller understanding of the Constantinople’s water supply system will hugely benefit from the knowledge of local variations in slope occurring across its length.

This study discusses the integration of the latest archaeological surveying and satellite terrain data into a Geographical Information System (GIS) environment, with the aim of providing an improved description of the aqueducts’ route, quantifying their length and reconstructing their gradient profile, so as to support future investigations into the hydraulic behaviour of the system.

STUDY AREA

The Byzantine water supply system of Constantinople covered a vast area extending from the historic peninsula on the Bosphorus to the north-western district of Vize in the province of Kırklareli (Figure 1). The system roughly developed on a NW-SE axis, the most upstream fifth-century aqueduct bordering the south of the Istranja mountain range, and the fourth-century channels starting at Danamandıra and Pınarca. Both systems run south-eastwards towards Constantinople. The farthest spring in Pazarlı lies over 120 km away from Constantinople as the crow flies, while the fourth-century springs in Danamandıra and Pinarca are around 60 km from the City in a straight line.

The study area extends into the region of Turkish Thrace which flanks the Black Sea coast, and it is characterised by densely forested hills. The elevation of the water supply system ranges between 65 m A.S.L., taken as the channel entrance at the Land Walls of Constantinople (at modern Edirnekapi), and 235 m A.S.L. at its highest point in Pazarlı, to the NW of Vize.

METHOD

Archaeological data sets
The archaeological studies of Çeçen (1996) and Crow et al. (2008) provide the most up-to-date and comprehensive documentation of the surviving remains of the Byzantine water infrastructure. Evidence of the system outside the Walls of Constantinople includes remains of bridges and
channels. In total, 57 channel observations have been recorded between the fourth and fifth century lines. The fourth-century aqueduct was found to be a narrow conduit of width around 0.60-0.65 m from the springs to Kalfaköy, while the fifth-century line started as a narrow channel on average 0.75 m wide, and widened to c. 1.60 m after Safalaan, around 30 km before Balligerme. In the furthest downstream section past Kalfaköy, there are relatively few surviving channels, mostly around 0.85 m wide; however two of these, located south of Tayakadin, were reported to be 1.20 m and 1.50 m wide (Crow et al. 2008, 85; Crow & Maktav 2009, 52).

A total of 93 bridges have been identified along the system, either from the fourth or fifth century phase (Snyder 2011); these range from small single arch bridges to monumental structures, which mainly survive from the fifth-century expansion.

Figure 1. Map of the study area with topographical information, showing the Byzantine water supply lines: the fourth-century aqueduct line (in blue) and the fifth-century one (in red)

Global Positioning Systems (GPS) were used during previous surveys undertaken by Crow and his team; more information on these can be found in Maktav et al. (2009). The recorded GPS points track the location of 38 bridges and 27 channel sections along the entire system.

The best preserved and most documented part of the water supply is to the east of Danamandira. From the Balligerme Bridge, the fourth and the fifth century lines ran in parallel, but at different elevations, for a length of c. 51 km, gradually converging to the same level around Kalfaköy, some 140 km before the aqueduct entered Constantinople at the Theodosian Walls. Whether the two lines continued side by side from Kalfaköy to reach the City, or instead merged into a single
channel has not been resolved. Given the occasional wider channel observations in the Tayakadin
area and the hydraulic constriction that would result in combining the two channels into one
relatively narrow conduit, we are inclined to believe that parallel channels from Kalfaköy to the
City could have been a more reasonable arrangement, as it was originally suggested by Crow

Digital Elevation Model (ASTER GDEM V2)
A Digital Elevation Model (DEM) was required to reproduce the topographical features of the
study area. For this, the Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) GDEM V2 was employed. This was released in 2011 by NASA and the Ministry of
Economy, Trade, and Industry (METI) of Japan, and has a 1 arc-second grid resolution, equivalent
to approximately 30 m. The vertical resolution of ASTER GDEM V2 was assessed as a Root Mean
Square Error (RMSE) of 8.68 m against benchmark GPS points, and an absolute vertical accuracy
of 17.01 m was established at the 95% confidence level (ASTER GDEM Validation Team 2011).

The ASTER tiles N41E028 and N41E029 have been mosaicked into a single scene to cover the
full extent of the study area. The mosaicked original DEM was resampled to a cell resolution of
10×10 m with the creation of a Triangulated Irregular Network (TIN), which was then converted
into a raster format. The latter was used as the terrain elevation model for the current study.

Data integrations and GIS analysis
A series of selected Control Points and the terrain DEM have been georeferenced using ArcGIS
10.1 (ESRI) to trace the 3D route of the water supply system. The data integration process adopted
can be synthesized into the following steps.

Identification of Control Points. A total of 22 Control Points was identified for each of the fourth
and fifth century lines (44 in total); these have been used as benchmarks for the reconstruction of
the aqueducts’ route. The Control Points were selected from among the GPS survey data, where
the recorded elevation was in good agreement with the topographical altitude from the DEM. In
order to exclude possible sources of error, the elevation of the Control Points was assessed case
by case by comparing it with the terrain data, and with photographic and textual documentation of
the surviving evidence; as such, only a subset of all the GPS points available was considered
sufficiently accurate to be used as benchmark in the GIS analysis. The distribution of the Control
Points along the aqueducts varies according to the availability of field data: in the best documented
section between Ballıgerme and Kalfaköy, the average distance between benchmarks is in the
region of 7 km; overall, the minimum distance between Control Points is in the region of 1-2 km,
while the maximum ranges between 10 km and 40 km depending on the aqueduct section.

Reconstruction of the route between consecutive Control Points. For each section between two
consecutive Control Points, the channel route was traced following the contour lines of the DEM.
Then, given that the difference in elevation is known, the gradient of each section was calculated.
Whilst there is no guarantee that the channel did, in fact, have a uniform gradient between any two
given Control Point locations, the selected locations are assumed to be a reasonable guide in
identifying the extent of the changes in gradient along the aqueduct lines.

Reconciliation of the line against known bridges. Accounts of existing bridges have been used,
where available, to verify the proposed route of the lines. The positioning of a bridge is validated
by comparing its observed dimensions, i.e. the maximum height and top length, against the
topographical data of the surrounding terrain. A discussion of this method is presented in Case
Study 2 below.

Assumption of a typical gradient for tunnels. A number of tunnels are present along the network,
where the channel could have only continued by passing beneath a ridge, a feature common in
Roman aqueduct systems (Hodge 2002, 126-129). Whilst in some cases tunnels’ location can be
clearly identified by looking at the terrain topography, little archaeological evidence is available,
hence tunnel lengths and gradients had to be estimated. It is believed that tunnels were normally
built with a steeper slope to reduce sedimentation problems, since the cleaning operations were
more difficult in tunnels than elsewhere (Hodge 2002, 217). To take this into account, a slope of
1 m/km (0.001) was postulated for all the tunnels along the line, this being generally steeper than
the average gradient of the channels.

The following assumptions were made prior to performing the GIS analyses. Firstly, it was
postulated that the route of the water supply lines can reasonably be traced at ground level, where
this represents the invert (bed) gradient of the channels. The normal course of Roman aqueducts
followed the natural contours of the land, on or just below the surface, since channels were
typically built in low trenches, afterwards being covered over to protect them (Hodge 2002, 93-
94). In such cases, it is reasonable to assume that the channel invert level is merely shifted
underground by a constant height (that is the channel height, plus the vault thickness and soil
covering), this being why its bed gradient would be the same as at ground level - with the exception
of structures like bridges, tunnels or raised channels.

Secondly, it was assumed that the modern topographical data is a fair representation of the terrain
in the fourth and fifth centuries AD, neglecting the effects of anthropic modifications and/or
possible landscape modifications due to past seismic events or dissolution of limestone. In fact, it
is likely that such topographical variations would not be captured within the vertical accuracy of
the adopted DEM; in addition, the use of Control Points logged in the last decades justifies the use
of modern terrain data as a base map.

RESULTS

The lengths of the fourth and fifth century lines obtained from our analysis are shown in Table 1,
compared with the figures calculated by Snyder (2013) on the basis of the route proposed by Crow
et al. (2008). A numbering system of channels is adopted for clarity with the prefix IV representing
the fourth-century sections and V the fifth-century; in each case the suffix indicates a specific sub-
section of aqueduct channel.

Differences can be observed between the proposed reconstruction and the figures by Snyder
(2013). The fifth-century line resulted in a similar total length at around 180 km, but variances
were identified in the individual sections. On the other hand, the proposed fourth-century line is
around 22 km shorter than the earlier study: this discrepancy is mainly due to the different route
traced for the furthest downstream section IV-3 between the Kalfaköy Tunnel and Constantinople.
In fact, this area has yielded little archaeological information, so both the proposed and the
previous reconstruction should be considered mostly hypothetical. However, it should be noted
that the previous route might have been subject to a larger error due to an approximate interpolation
of 10 m contours used by Crow et al. (2008), while our proposed distance was obtained from a systematic analysis on a more detailed terrain map. Since the elevation of this line was unchanged, the additional 22 km of channel from Snyder (2013) would have a major impact on the gradient of section IV-3, which would be reduced even further: this would be critical for the system capacity because section IV-3 has the shallowest recorded gradient even for our proposed shorter distance, as explained below.

Our proposed total lengths of the Byzantine water supply system are 245.9 km and 180.3 km for the fourth and fifth century lines respectively. This indicates that the entire system would have been 426.2 km long if the two lines merged at Kalfaköy, which is 24.4 km shorter than the previous estimate. However, the consideration of a separate, parallel fifth-century channel in section IV-3 would add a further 138.3 km, reaching a total figure of 564.5 km.

Table 1. Lengths of the fourth and fifth century systems, proposed by the authors and by Snyder (2013)

<table>
<thead>
<tr>
<th>Section</th>
<th>Proposed Length (m)</th>
<th>Snyder (2013) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth-century line: Danamandıra to Constantinople</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Danamandıra to Kalfaköy Tunnel</td>
<td>IV-1</td>
<td>66,850</td>
</tr>
<tr>
<td>Kalfaköy Tunnel to Theodosian Walls</td>
<td>IV-3</td>
<td>138,276</td>
</tr>
<tr>
<td>Total (IV-1, IV-3)</td>
<td></td>
<td>205,126</td>
</tr>
<tr>
<td>Pınarca to Kalfaköy Tunnel</td>
<td>IV-2</td>
<td>40,787</td>
</tr>
<tr>
<td>Total (IV-1, IV-2, IV-3)</td>
<td></td>
<td>245,913</td>
</tr>
<tr>
<td>Fifth-century line: Pazarlı to Kalfaköy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pazarlı to Ballıgerme Bridge</td>
<td>V-1</td>
<td>121,633</td>
</tr>
<tr>
<td>Ballıgerme Bridge to Kalfaköy Tunnel</td>
<td>V-2</td>
<td>51,669</td>
</tr>
<tr>
<td>Total (V-1, V-2)</td>
<td></td>
<td>173,302</td>
</tr>
<tr>
<td>Paşa Springs to Ballıgerme Tunnel</td>
<td>V-3</td>
<td>6,981</td>
</tr>
<tr>
<td>Total (V-1, V-2, V-3)</td>
<td></td>
<td>180,283</td>
</tr>
<tr>
<td>System’s Total Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth and fifth century lines merging at Kalfaköy</td>
<td>Total (IV-1, IV-2, IV-3; V-1, V-2, V-3)</td>
<td>426,196</td>
</tr>
<tr>
<td>Fourth and fifth century lines as parallel systems</td>
<td>Total (IV-1, IV-2, IV-3; V-1, V-2, V-3, IV-3)</td>
<td>564,472</td>
</tr>
</tbody>
</table>

The gradients of the aqueduct lines have been studied for the first time through our GIS reconstruction. A breakdown of the estimated gradient for each line is shown in Table 2 and Table 3, where a further suffix is used in our numbering system to describe each channel segment in sequence from upstream to downstream. The calculation of average gradient for each aqueduct section in the tables does not include the most upstream segment near the springs (marked with an asterisk), being typically steeper than the rest of the aqueduct channels. It should be stressed that, due to the difficulty in identifying the exact elevation at the springs, gradients for these segments should be regarded as merely indicative; the proposed values may be refined if new survey campaigns were to be conducted. Nevertheless, from the available evidence it is possible to conclude that the intake channels had a significantly steeper gradient than the downstream channels.
As Table 2 indicates, the gradient of the fourth-century line varies quite significantly across the three sections, going from average values of c. 0.6 m/km in IV-1 and 0.9 m/km in IV-2, and becoming much flatter in the downstream section IV-3, mostly below 0.4 m/km. In this section, the shallowest slope is identified downstream of the Tayakadin tunnel (IV-3-2 to IV-3-3), at just 0.3 m/km for the last 90 km approaching the City. Steeper slopes can be identified in the first segments of sections IV-1 and IV-2, respectively at the water intakes from the springs of Danamandıra and Pınarca, with a maximum estimated figure of c. 5 m/km.

Table 2. Gradient of the fourth-century system

<table>
<thead>
<tr>
<th>Section</th>
<th>Elevation (m)</th>
<th>Distance (m)</th>
<th>Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-1-1 to IV-1-2 (*)</td>
<td>171-154</td>
<td>3,318</td>
<td>0.0051</td>
</tr>
<tr>
<td>IV-1-2 to IV-1-3</td>
<td>154-150</td>
<td>5,645</td>
<td>0.0007</td>
</tr>
<tr>
<td>IV-1-3 to IV-1-4</td>
<td>150-146</td>
<td>5,285</td>
<td>0.0008</td>
</tr>
<tr>
<td>IV-1-4 to IV-1-5</td>
<td>146-133</td>
<td>17,178</td>
<td>0.0008</td>
</tr>
<tr>
<td>IV-1-5 to IV-1-6</td>
<td>133-128</td>
<td>8,945</td>
<td>0.0006</td>
</tr>
<tr>
<td>IV-1-6 to IV-1-7</td>
<td>128-123</td>
<td>10,402</td>
<td>0.0005</td>
</tr>
<tr>
<td>IV-1-7 to IV-1-8</td>
<td>123-121</td>
<td>4,283</td>
<td>0.0005</td>
</tr>
<tr>
<td>IV-1-8 to IV-1-9</td>
<td>121-114.5</td>
<td>11,273</td>
<td>0.0006</td>
</tr>
<tr>
<td>IV-1-9 to IV-1-10</td>
<td>114.5-114</td>
<td>520</td>
<td>0.0010</td>
</tr>
<tr>
<td>Total/Average (*)</td>
<td>171-114</td>
<td>66,850</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

Section IV-2: Pınarca Springs to Kalfaköy Tunnel

<table>
<thead>
<tr>
<th>Section</th>
<th>Elevation (m)</th>
<th>Distance (m)</th>
<th>Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-2-1 to IV-2-2</td>
<td>152-144</td>
<td>6,486</td>
<td>0.0012</td>
</tr>
<tr>
<td>IV-2-2 to IV-2-3</td>
<td>144-135</td>
<td>9,530</td>
<td>0.0009</td>
</tr>
<tr>
<td>IV-2-3 to IV-2-4</td>
<td>135-133</td>
<td>2,005</td>
<td>0.0010</td>
</tr>
<tr>
<td>IV-2-4 to IV-2-5</td>
<td>133-131</td>
<td>2,178</td>
<td>0.0009</td>
</tr>
<tr>
<td>IV-2-5 to IV-1-10</td>
<td>131-114</td>
<td>20,587</td>
<td>0.0008</td>
</tr>
<tr>
<td>Total/Average</td>
<td>152-114</td>
<td>40,787</td>
<td>0.0009</td>
</tr>
</tbody>
</table>

Section IV-3: Kalfaköy Tunnel to Constantinople Walls

<table>
<thead>
<tr>
<th>Section</th>
<th>Elevation (m)</th>
<th>Distance (m)</th>
<th>Gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV-1-10 to IV-3-1</td>
<td>114-111</td>
<td>5,608</td>
<td>0.0005</td>
</tr>
<tr>
<td>IV-3-1 to IV-3-2</td>
<td>111-95</td>
<td>41,253</td>
<td>0.0004</td>
</tr>
<tr>
<td>IV-3-2 to IV-3-3</td>
<td>95-94</td>
<td>1,361</td>
<td>0.0007</td>
</tr>
<tr>
<td>IV-3-3 to IV-3-4</td>
<td>94-90</td>
<td>11,735</td>
<td>0.0003</td>
</tr>
<tr>
<td>IV-3-4 to IV-3-5</td>
<td>90-80</td>
<td>30,425</td>
<td>0.0003</td>
</tr>
<tr>
<td>IV-3-5 to IV-3-6</td>
<td>80-72</td>
<td>25,266</td>
<td>0.0003</td>
</tr>
<tr>
<td>IV-3-6 to IV-3-7</td>
<td>72-65.5</td>
<td>22,629</td>
<td>0.0003</td>
</tr>
<tr>
<td>Total/Average</td>
<td>114-65.5</td>
<td>138,276</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Note: the average gradient of Section IV-1 does not include the steep intake segment marked with an asterisk.
the short tributary from the Ergene springs. It should be highlighted that archaeological evidence for the Ergene and the Paşa channels is particularly scarce, therefore the proposed figures may not be a close representation of the actual gradient or length of the conduits.

Overall, it can be concluded that the gradient of the system was mostly below a figure of 1 m/km, with the exception of short steep stretches corresponding to the spring intake conduits. These account for less than the 10% of the total length of the system, and their gradient is mainly in the region of 5 m/km. For both aqueduct lines, the average gradient has shown a clear tendency to decrease from upstream to downstream, going from c. 1 m/km to 0.4 m/km closer to the City.

Case study 1: The Safalaan Tunnel

The spatial analyses performed in ArcGIS have supported the identification of tunnels along the system. This case study examines the fifth-century tunnel located to the south of Safalaan village. Despite the fact that no archaeological evidence has yet been found to document either an entrance.
or an exit, the need for this tunnel is confirmed by the topography of the site and the known channel observations. Remains of the channel have been located on the west and east side of the Safalaan ridge, respectively at an elevation of 171 m (Control Point V-1-9) and 164 m (Control Point V-1-10). It is evident that the channel could have only continued by tunnelling through the ridge, crossing from the Ergene watershed into the Binkılıç Deresi basin, since it would be extremely disadvantageous, as well as hydraulically unfeasible, to follow the contours on the surface on a different route.

Figure 2. Topographical map with indication of the possible route of the Safalaan Tunnel and the alternative route that has been disproved

Hypotheses have been made by the authors on the possible route of the Safalaan tunnel, as shown in Figure 2. As stated above, a gradient of 1 m/km was assumed for every tunnel along the system. Using this slope, the route of the tunnel was estimated by minimising its length and the consequent requirement for excavation. We suggest that the channel could have been built in a deeper trench (a few metres below the ground) to follow the route suggested by the contours on both sides of the ridge for a length of c. 1.1 km upstream of the tunnel (from elevation 170 to 169 m) and of c. 2 km downstream (from 166 to 164 m). In such a case, the main tunnel required to cross the crest of the ridge would have been c. 2.7 km long and between 10 m and 50 m deep. In the authors’ view, this solution would have probably been more practical than building the tunnel as a straight line regardless of the topography, which would have required a continuous tunnel c. 5 km long. However, due to the lack of archaeological evidence for the identification of the tunnel route, one cannot exclude that this tunnel was actually built as a straight line, either as a continuous bore or by using a multi-shaft approach.

Case Study 2: Bridge at Manganez Dere valley

This case study discusses the positioning of an aqueduct bridge by examining the Manganez Dere Bridge (K9 from Çeçen’s notation, where K stands for köprü, bridge). This is located on the fifth-century line, around 5 km downstream of the Safalaan Tunnel (see Case Study 1). The channel is
known to approach the Manganez Dere valley from the NW direction at an elevation of 161 m. It is on the east side of the valley that the first observation of a wider channel was encountered along the line, corresponding to Control Point V-1-11 (Figure 3). The fifth-century bridge has almost completely vanished, except for remains of the west abutment. The size of this, around 26 m long and up to 2 m high, suggests the existence of a monumental bridge, which was previously estimated as 80 m long and c. 10 m high (Crow et al. 2008, 42-43). However, more detailed analyses on the topography of the valley and the necessary elevation of the channel indicate that the combined length of the bridge, together with any approach embankments, would have needed to be over 250 m to cross the valley at the considered location (marked as “Bridge 1” in Figure 3).

Figure 3. Topographical map of the Manganez Dere valley with reconstruction of the bridge (K9)

Traces of a channel from the SW direction, identified as a tributary channel, were recorded by Crow et al. (2008, 43). An alternative interpretation is that these remains represent the route taken by the main aqueduct line, either at first construction or in a later period following repairs. This alternative route would follow the contours further to the south and cross the stream where a shorter bridge, c. 80 m long, would have been sufficient (see “Bridge 2” in Figure 3).

DISCUSSION

The proposed GIS-based reconstruction offers a validation for the figures suggested by previous works regarding the length of the water supply system of Constantinople (Crow et al. 2008; Snyder 2011; Snyder 2013). Despite being largely neglected in the accounts of Roman aqueducts, this infrastructure is remarkable. Our analysis shows the total length of the aqueduct system to be around 426 km with a junction between the fifth-century and fourth-century lines at Kalfaköy, and 138 km longer than this if the two aqueducts continued separately further downstream. This would result in a total length of c. 565 km which, combined with the estimated 47 km of the second-century line (Snyder 2013, 199), would amount to c. 611 km. In such a case, the aqueducts of Constantinople would have been much longer than the any other ancient water supply, including the one of Rome itself, which was built over seven centuries and had a total length of 502 km.
amongst eleven separate routes (Hodge 2002, 347). Moreover, our systematic assessment of the
aqueduct gradient has for the first time verified the feasibility of the whole water supply system
by confirming that it would have flowed downhill with a shallow gradient mostly below 1 m/km,
except for short steeper stretches close to the water sources.

CONCLUSIONS
An assessment of the route and the gradient of the Byzantine aqueduct system of Constantinople
was achieved through the integration of available archaeological and GPS data and modern
satellite contours. The results have confirmed most of the route proposed by previous works, and
demonstrated that the total length of channels could have been in the region of 426 km, and
possibly around 565 km when considering a dual channel all the way to the City. These figures
are far longer than any other water supply known from the Roman world. The gradient profile of
the aqueduct channels has been reconstructed for the very first time, and indicates that the bed
slope varied along the length of the system, being steepest at around 5 m/km near the spring
sources, and flattest at around 0.4 m/km in the most downstream section nearest the City. This
study significantly expands prior work on the Byzantine water supply system, by proposing a
robust characterisation of length and gradient, and providing the framework for future studies to
assess its hydraulic function.

ACKNOWLEDGEMENTS
The first version of this paper was presented at the 4th IWA International Symposium on Water and Wastewater
Technologies in Ancient Civilizations, September 17-19, 2016, Coimbra, Portugal. The authors acknowledge the
support of the Leverhulme Trust in carrying out this research, under grant agreement RPG-2013-410.

REFERENCES
ASTER GDEM Validation Team 2011 ASTER Global Digital Elevation Model Version 2 – Summary of Validation
Results, METI & NASA.
Crow J. 2007 The Infrastructure of a Great City: Earth, Walls and Water in late antique Constantinople. In:
Technology in Transition AD 300-650 (Late Antique Archaeology 4), L. Lavan, E. Zanini & A. Sarantis
Crow J., Bardill J. & Bayliss R. 2008 The Water Supply of Byzantine Constantinople. Society for the Promotion of
Roman Studies, Monograph 11, London, UK.
Donaldson M. D. 1996 A Translation of Jerome’s Chronicon with Historical Commentary. Mellen University Press,
Lewiston, USA.
Maktav D., Crow J., Kolay C., Yeğen B., Önöz B., Sunar F., Coşkun G., Karadagban M., Çakan M., Akar I., Uysal C.,
Gucluer D., Geze B. & İnce G. 2009 Integration of remote sensing and GIS for archaeological