Generalized Profile-Guided Iterator Recognition

Citation for published version:

Digital Object Identifier (DOI):
10.1145/3178372.3179511

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Accepted author manuscript

Published In:
Proceedings of the 27th International Conference on Compiler Construction (CC2018)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Generalized Profile-Guided Iterator Recognition

Stanislav Manilov
S.Z.Manilov@sms.ed.ac.uk
University of Edinburgh
United Kingdom

Christos Vasiladiotis
C.Vasiladiotis@sms.ed.ac.uk
University of Edinburgh
United Kingdom

Björn Franke
bfranke@inf.ed.ac.uk
University of Edinburgh
United Kingdom

Abstract

Iterators prescribe the traversal of data structures and determine loop termination, and many loop analyses and transformations require their exact identification. While recognition of iterators is a straightforward task for affine loops, the situation is different for loops iterating over dynamic data structures or involving control flow dependent computations to determine the next data element. In this paper we propose a compiler analysis for recognizing loop iterators code for a wide class of loops. We initially develop a static analysis, which is then enhanced with profiling information to support speculative code optimizations. We have prototyped our analysis in the LLVM framework and demonstrate its capabilities using the SPEC CPU2006 benchmarks. Our approach is applicable to all loops and show that we can recognize iterators in, on average, 88.1% of over 75,000 loops using static analysis alone, and up to 94.9% using additional profiling information. Existing techniques perform substantially worse, especially for C and C++ applications, and cover only 35–44% of the loops. Our analysis enables advanced loop optimizations such as decoupled software pipelining, commutativity analysis and source code rejuvenation for real-world applications, which escape analysis and transformation if loop iterators are not recognized accurately.

CCS Concepts • Software and its engineering → Compilers;

Keywords • Loop iterators, loop analysis

1 Introduction

Advanced compiler optimization [43] is largely concerned with the optimization of loops as the largest proportion of time executing a program is spend in loops, where small per-iteration improvements multiply to greater overall effect. In fact, mathematical frameworks – such as the polyhedral model [6] – underpinning loop optimization and parallelization have been specifically designed to capture loop behavior for analysis and transformation. Central to loop analysis is knowledge of loop iterators, which determine the iteration ranges of loops, are updated in every iteration and prescribe how data structures are traversed. Whereas recognition of loop iterators for Fortran-style do-loops is trivial and can be accomplished using syntactic pattern matching, most compilers employ some variation of induction variable recognition at the intermediate representation level to capture a wider range of iterators resulting from a multitude of idioms and programming styles.

While advanced loop optimizations have been developed in the academic literature their deployment in commercial or open-source compilers such as LLVM has been hampered by the fact that real-world source code often defeats existing compiler analyses. Our generalized iterator recognition analysis developed in this paper represents a critical step towards enabling development and application of novel loop transformations, applicable to wider range of loops.

It is possibly surprising that different interpretations of what constitutes a loop iterator have been developed in the compiler and programming language communities. For example, in the polyhedral model underpinning many loop transformations each loop iteration within loop nest is modelled as a lattice point inside a polytope describing the loop iteration space. A loop iterator is then an enumerator for point vector with integer valued components with bounds representing the faces of the loop limiting polytope. In comparison, in the object-oriented programming community iterators are objects, which enable a programmer to traverse a container data structure, e.g. a list. Iterators are objects instantiated from iterator classes, which implement a common interface and provide possibly complex functionality through method invocations on iterator objects and abstract the implementation details of how exactly a data structure is traversed from the programmer. In this paper we aim to develop a generalized notion of loop iterators, which is not restricted to affine loops or data structure traversals using
object-oriented iterator objects, but applicable to the widest possible range of loops.

Based on our generalized definition of loop iterators we develop a static analysis, which can be readily integrated in a compiler framework such as LLVM without relying on external tools. We then enhance this static analysis to incorporate profiling information to overcome inherent limitations, e.g. data dependence analysis is undecidable in general [40]. We show how profiling information can complement static analysis to enable more aggressive iterator recognition, i.e. fewer loop instructions are marked as “iterator code” and more as “payload”. This can be useful for e.g. speculative optimizations, which benefit from a potentially larger loop payload and can better cope with “unsafe” information.

We evaluate the usefulness of our generalized iterator definition and analysis by its ability to separate loops into iterator code and loop “payload”. For this we have developed an LLVM analysis pass and applied to the entire SPEC CPU2006 benchmark suite, including integer and floating-point applications written in C, C++ and Fortran. In total, we cover over 75,000 loops representing real-world applications. We show that iterator recognition can be applied to all loops and is able to successfully recognize iterators in the vast majority of cases. In particular, our iterator recognition can separate iterators from non-affine loops, which escape traditional analysis.

1.1 Motivating Examples and Use Cases

To motivate the technique developed in this paper we consider three loop analyses and transformations, which have in common that each of them can benefit from improved separation of code constituting the loop iterator from the rest of the code, forming the per-iteration “payload” of the loop.

Consider the affine loop in Figure 1, where the iterator \(i \) can be trivially recognized using syntactic pattern matching\(^1\). Optimizing and parallelizing compilers typically rely on the recognition of basic loop iterators to enable further analyses and transformations [29]. Induction variables induced by the surrounding loop (not present in this example) can be identified and substituted by closed form expressions using techniques developed in e.g. [35, 36].

Now consider the example in Figure 2. This loop traverses a recursive data structure – a singly-linked list – and applies a local update to each element of the list. It is clear that this loop does not have a natural iterator in the sense of an integer value loop index incremented by a fixed amount in every iteration [36], but instead a pointer is updated and checked. Such pointer chasing iterators can be recognized using ad-hoc pattern matching [39] or using an algorithm developed as part of DSWP+ [22, 45]. Following successful recognition of the loop iterator, highlighted in the example, the loop can be parallelized using a decoupled software pipelining (DSWP) approach.

An alternative use of iterator recognition is in source code rejuvenation [34], where the loop from Figure 2 may be converted to the form shown in Figure 3, where the user-defined singly-linked list and its traversal have been replaced with an STL list container and its hidden iterator methods, another common programming language abstraction of iterators offered by the C++ programming language. Generalized iterator recognition (together with shape analysis [47] and abstract data structure recognition [12]) enables this kind of loop transformation aimed at raising code abstraction.

Our third example in Figure 4 is a code excerpt showing breadth-first graph search implemented in the C++ programming language. Conceptually, the loop spanning lines 15–30 of this example is similar to the loop in the pointer-chasing loop in Figure 2, but now the code makes use of STL’s list container to store lists of adjacent nodes (adj) and a queue of nodes (queue) needed for BFS traversal. Within the loop, methods for checking and updating the iterator are invoked. Additionally, the loop contains an inner loop in lines 24–29 with its own iterator and further conditional inner control flow, adding to the complexity of the code contributing to the traversal of the graph data structure. Conceptually, we can say that a BFS graph iterator involves a queue and operations on it as well as an additional loop to enqueue newly discovered nodes, which matches our expectations for this algorithm.

In this example, we can separate out the output statements in line 18, which do not contribute to the loop traversal and its termination, and we therefore consider to form the

\(^1\)Please note that examples in this paper are shown using C/C++ source code for ease of illustration, whereas the techniques and their implementations operate on internal representations such as LLVM IR and are language agnostic (with exception of source code rejuvenation in Figure 3).
for iterator recognition are limited in their ability to process non-affine iterators. As a result, success of advanced loop transformations which require separation of loop iterator code from the payload is hampered. What is needed is a technique capable of processing real-world codes employing a broad range of different styles of loop iterators, which may make use of user-defined data structures, STL or Boost containers and iterators, and complex control flow alike.

1.2 Contributions

In this paper we propose a new definition of generalized loop iterators, which subsumes various existing notions of iterators. We then develop a novel iterator recognition algorithm, which can be used to separate iterator code from the loop “payload”. We develop two versions of our iterator recognition algorithm: (a) based on static analysis only, which is fast, but conservative, and (b) using additional profiling information to enable more aggressive speculative optimizations. We evaluate our LLVM prototype implementation against the SPEC CPU2006 benchmark suite and demonstrate its ability successfully recognize more loop iterators than any other technique.

2 Background

Affine Iterators. In compiler theory iterators are typically associated with structured for-loops, where a normalized loop iterates over a sequence of consecutive integer numbers between affine lower and upper bounds. The iteration space of such a loop or loop nest is an ordered set of loop iterations, in which each iteration is represented by a point (i_1, \ldots, i_n) for a loop nest of depth n. Loop iterators are then the space represented by a column vector $I = [i_1, \ldots, i_n]^T$, and loop ranges form a system of inequalities $LB_i(i_1, \ldots, i_{n-1})^T \leq i_n \leq UB_i(i_1, \ldots, i_{n-1})^T$, where LB_i and UB_i are lower and upper loops bounds, respectively, at nesting level k.

RDS/DSWP Loop Partitioning. Parallelization of RDS loops is the main concern of DSWP [39]. Traversals of a RDS are matched against a syntactic pattern. Specifically, DSWP searches for load instructions that are data dependent on previous instances of the same instruction. These induction pointer loads (IPL) form the kernel of the traversal slice [31]. IPLs can be identified using augmented techniques for identifying induction variables [16, 31]. This relatively simple approach works well for one-dimensional pointer-chasing loops, but fails beyond that.

A more sophisticated technique for detecting cycling dependences in loops has been developed in [22, 32, 45] as part of DSWP+. It comprises an algorithm for systematic separation of dependence cycles, some of which may be involved in loop iterators. However, DSWP+ does not make any attempt to recognize iterators. Instead, all dependence cycles are treated equal. In Section 3 we extend this algorithm with the ability to extract the specific instructions and variables,
which form the loop iterator while marking up the remaining code as “payload”.

Object-oriented Iterators. Iterators have a different meaning in the OOP community [7, 27] where constructs such as C++ STL iterators are considered. Specifically, in C++ an iterator is any object that, pointing to some element in a range of elements (e.g. a container), has the ability to iterate through the elements of that range using a set of operators (with at least the increment (++) and dereference (*) operators). Using existing compiler techniques these iterators escape analysis and transformation.

Iteratorless and Unseparable Loops. Not all loops have iterators, which naturally advance the position in an iteration space or data structure. For example, consider a spin-lock loop, which spins until a flag is set by e.g. an interrupt handler or in another thread. In some cases iterators cannot be separated from a distinct loop “payload”. An example of such an unseparable loop is a linear search in a linked list.

3 Methodology

In this section we present our methodology for iterator recognition. Initially, we will provide an overview and create an intuitive understanding of iterators before we develop a formal definition of our concept of iterators. This is followed by a static analysis for iterator recognition, which – as a useful addition for speculative loop transformation – is subsequently complemented with profiling information to significantly enhance its capability to separate iterator code. Finally, we share insights from our LLVM prototype implementation.

3.1 Definitions

Intuitively, a loop iterator is a variable (or a set of variables), which is updated in every iteration of a loop and is involved in controlling loop exits, e.g. as part of a conditional expression. This intuitive understanding is captured in the following definition:

Definition 3.1. Generalized Loop Iterator. A generalized loop iterator is a minimal set of variables and operations manipulating these variables, which form a Strongly Connected Component (SCC) in the Program Dependence Graph (PDG) and exhibit a loop-carried dependence of distance 1. Furthermore, this SCC has no incoming edges from other SCCs in the PDG.

For this definition we exploit that conditional expressions controlling loop exits will introduce control dependencies to every operation contained in the loop body. Since we are also interested in variables, which are updated in every loop iteration, we are looking for data dependencies in the other direction, i.e. from update operations in the loop body towards read operations in loop termination expressions. Together these dependences will form a loop-carried dependence cycle or, more generally, a SCC in the PDG. Other operations may depend on this SCC, but it is the dominant SCC of operations, which does not depend on any other operations and variables that determines loop termination and thus constitutes the loop iterator.

In counted or affine loops the conventional iterator is intuitively covered by our definition as it is this variable (often i) and its updates and checks, that form the dominant SCC controlling execution of the remaining loop operations, which in turn form the loop “payload”. Similarly, iterators of pointer-chasing loops are covered by the same definition as pointer updates and checks introduce a cyclic dependence relation on which the remaining loop body depends. However, our definition also covers STL-like iterators, which are updated and checked in every single loop iteration, possibly involving calls to methods in other classes, which necessitate the use of inter-procedural analysis for their identification.

Abstraction and generalization of the properties of a loop iterator in our definition allows us to develop an iterator recognition analysis operating on the compiler IR, thus enabling a source-language agnostic approach.

3.2 Static Analysis

Our analysis for determining loop iterators involves three stages closely following Definition 3.1:

1. PDG construction. We assume the IR provides us with a Control Flow Graph (CFG) in Static Single Assignment (SSA) form (Figure 5a). We apply the algorithm from [11] to construct the Control Dependence Graph (CDG) of the loop. Additionally, we combine the implicit def-use chain present in the intermediate representation with a static dependence analysis of memory accesses based on [19] to build the Data Dependence Graph (DDG) of the loop. We produce the PDG by combining the CDG and DDG (Figure 5b).

2. Determine SCCs. Once we have the program dependence graph of a loop, we determine its strongly connected components. We build a directed acyclic graph (DAG) connecting the SCCs using Kosaraju’s algorithm [2].

3. Dominant SCC and iterator recognition. Finally, we take the dominant SCC, i.e. the one that has no incoming edges in the SCC DAG. This dominant SCC represents the loop iterator and we label instructions represented by the SCC as “iterator instructions” and variables involved as “iterator variables” (Figure 5c). Inspection of the properties of these iterator instructions and variables reveals that together they satisfy Definition 3.1 by construction, showing that we have indeed recognized the loop iterator.

3.3 Incorporating Profiling Information

Conservatism of the static analysis used as part of the construction of the DDG in section 3.2 is a limiting factor. May dependences introduce spurious dependence relations, which may not materialize for any program execution on valid input data. We now investigate how incorporating profiling
entry

[54x738]Generalized Profile-Guided Iterator Recognition CC’18, February 24–25, 2018, Vienna, Austria

exit

17:

s = queue.front();

18:

cout ≪ s ≪ " ";

19:

queue.pop_front();

24a:

i = adj[s].begin()

queue.empty() 15:

i == adj[s].end() 24b:

visited[i] 25:

visited[i] = true;

queue.push_back(i);

26:

27:

++i 24c:

(a) CFG.

(b) Corresponding PDG.

(c) SCCs of the PDG. The green SCC has no incoming edges and constitutes the iterator.

Figure 5. CFG, PDG & SCC for the while-loop in Fig. 4.

information obtained from instrumentation and execution of the target program can be used to improve iterator recognition. We use a profiling technique similar to [49] to capture data dependences.

Clearly, any approach relying on profiling information for the computation of data dependences is prone to errors such as missing a dependence, which did not materialize in a specific execution trace, but could well occur in another [46]. However, there is still benefit in incorporating such unsafe information for two reasons: (a) we can determine an upper bound, which enables us to quantify the scope for improvements of static analyses, and (b) some transformations, e.g. speculative parallelization [33], are inherently resilient against data dependence violations and can benefit from more aggressive loop transformations.

In principle, we complement our PDG construction algorithm (stage 1 above) with profiling information similar to [24], i.e. for each of the statically detected may data dependences we refer to profiling information to resolve this may dependence as either must dependence or no dependence, based on whether or not a dependence was observed in the execution profile. The remaining stages of the algorithm remain unchanged.

We expect users to profile their applications using representative, but reduced data sets, e.g. [14], and focusing their efforts on those parts of the program relevant to their targeted transformation in order to avoid excessive profiling costs.

3.4 Implementation

We have implemented a prototype of our technique as an analysis pass in the LLVM compiler infrastructure. This allows us to analyze all of the SPEC CPU2006 benchmarks, since there are LLVM front-ends available for C/C++ (clang) and Fortran (flang). The LLVM IR is a CFG in SSA form as needed by the technique. Standard LLVM analyses allow for detecting loops in this graph and promoting memory accesses to virtual registers and thus simplifying the IR.

Instrumentation & Profiling. In order to collect memory access information about a subject program, we apply a context aware memory profiler. This begins with building a complete call graph of the program and computing context offsets for function calls. When these context offsets are accumulated for a given stack trace (i.e. a sequence of function calls) the result is always a context identifier that is unique for the given stack trace. We handle groups of recursive functions and indirect function calls. The former we do by reducing the call graph to a SCC DAG and assigning a unique context ID to every SCC: the calls within the recursive groups have offsets of zero (see Figure 6). The latter – by adding calls to the runtime that indicate indirect function calls and function returns and keeping a stack of indirect calls at runtime.

Figure 6. Handling recursion robustly. The strongly connected component in Figure 6a is represented by a single node in the contracted graph in Figure 6b. The resulting graph does not contain any further cycles, i.e. it is a DAG.

Once this map from function calls to context offsets is computed we instrument each call with calls to the runtime to advance and then restore the context ID. Once this is done we instrument all memory accesses with a call to a runtime function that records the instruction ID and the address that is accessed.

Lastly, we also instrument loops, since we want to know which iterations triggered a dependence and across which loop nesting level did the dependence occur. For this, we instrument loop entering and loop exiting edges in the CFG as well as loop backedges.

Once instrumentation is complete we execute the program and collect a profile that consists of a list of the dependences and the code coverage. Each dependence is described by its type (RAW, WAW, WAR); source and target instructions; source and target contexts; and list of loop iteration counters. Iteration counters are obtained by counting the number of times a backedge was encountered, rather than relating to our complex notion of iterators that we are trying to extract.
Incorporating Profiling Information. Once the profiling information is collected, we incorporate it back in the analysis to augment the static analysis results. Because we need to map unique contexts back to the functions in which they occur, we need to explicitly build the tree of all possible context IDs. This is the Call Tree (CT) of the program (see Figure 7a), with unique context IDs associated with each node.

![Call Tree (CT)](image)

(a) CT.

Path 1: main → foo
Path 2: main → foo → bar
Path 3: main → foo → qux

(b) Identical paths.
(c) Prefix of another path.
(d) Paths with common prefix.

Figure 7. Comparing the paths from the root of the CT to the instructions in an observed dependence is necessary in order to decide which instructions to associate with the dependence.

The size of the CT is asymptotically exponential in the number of distinct functions in the program, so it is impossible to construct in an efficient manner. For this reason we implement a lazy tree access procedure, which builds only parts of the tree which are required to compute the nodes for context IDs which have actually been observed during the profiling run. The results are cached, so that the same part of the tree does not need to be computed twice. This puts a limit on the complexity of the analysis and ensures that the number of nodes in the tree that will be explicitly computed will be at most the number of contexts seen during the profiling run, which is less than exponential.

With the CT built, for each dependence in the gathered profile we compute the paths from the root of the CT to the context in which the source and target instructions of the dependence were encountered. By taking the longest common prefix of these two paths we find the appropriate instructions to build the dependence between:

1. Between two memory instructions, if the paths are the same (instructions are part of the same function: Fig. 7b);
2. Between a memory instruction and a call instruction, if one path is a prefix of the other (one instruction happens before a function call in the function in which the other instruction belongs to: Figure 7c);
3. Between two call instructions, if no path is a prefix of the other (the memory instructions happen before different function calls within the same function: Figure 7d).

PDG Construction. Each of the dependences encountered during profiling is added to the PDG built by static analysis, where may dependences are treated as absent dependences for the purpose of enabling aggressive, speculative transformation, but are re-inserted as encountered. In our evaluation we discuss the impact of resolving statically determined may dependence, which have not been covered by profiling, as either must dependence (=conservative lower bound) or no dependence (=aggressive upper bound).

4 Evaluation

While iterator recognition is central to driving non-affine loop transformations we evaluate its usefulness by determining its capability of separating loops into iterator code and payload. We prefer this direct measurement of its analytic power over e.g. measuring the impact on a particular loop optimization as this avoids bias introduced by transformation itself or details of the target platform.

Experimental Set-up. We evaluate our methodology for iterator recognition and separation against SPEC CPU2006 application benchmarks. We include all integer and floating-point benchmarks covering codes written in C, C++ and Fortran. In order to limit the time required for profiling we have chosen to use the test input data set, as we found out there is no justified improvement from using the reference input data set instead.

We use an LLVM implementation (version 3.9) of our technique as described in the previous section. For our iterator recognition pass we conduct two experiments: (a) we rely on static analysis only for PDG construction, and (b) we use both static analysis and additional profiling information obtained from running an instrumented version of the benchmarks, where we feed back profiling information to the dependence analysis pass of the LLVM compiler. The host system uses four AMD Opteron 6376 CPUs and has 1TB of RAM available.

For each benchmark we report the total number of loops, the number of loops with affine iterators identified by Polly [20], the number of statically separable loops by our iterator recognition technique, and the number of separable loops using additional profiling information.

Results. We present our main results in Table 1. We show results for > 75 000 loops across all SPEC CPU2006 applications, both integer and floating-point, grouped by programming language (C, C++ and Fortran). For each benchmark we report the total number of loops, the number of affine loops and their percentage of the total number of loops, the number and percentage of statically separable loops using our technique, and the number and percentage of dynamically separable loops. Since profiling with standard data sets does not guarantee that a particular loop is executed, we report a range, i.e. a lower and an upper bound, for each benchmark.
Table 1. Results for the SPEC CPU2006 benchmarks, grouped by programming language. For each benchmark we provide the total number of loops and how many of them have affine iterators. We compare this to our generalized iterator recognition pass when driven (a) by static dependence analysis and (b) profile-guided dependence analysis indicating lower and upper bounds, respectively. We observe that our novel iterator recognition pass can identify and separate substantially more loop iterators – for either programming language – than what is possible with affine iterator recognition alone. Profiling information always increases the number of separable loops, in particular for the C++ benchmarks.

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Loops</th>
<th>Affine Iterators</th>
<th>Statically Separable</th>
<th>Separable After Profiling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>%</td>
<td>#</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>lower bound (Φ%)</td>
<td>upper bound (Φ%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Σ (11, 671)</td>
<td>(43, 33)</td>
<td>(11, 495)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>(8, 118)</td>
<td>(8, 126)</td>
<td>(8, 817)</td>
</tr>
<tr>
<td></td>
<td>C++</td>
<td>(6, 214)</td>
<td>(43, 35)</td>
<td>(56, 94)</td>
</tr>
<tr>
<td></td>
<td>Fortran</td>
<td>(5, 246)</td>
<td>(10, 80)</td>
<td>(14, 98)</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>(11, 671)</td>
<td>(43, 33)</td>
<td>(11, 495)</td>
</tr>
<tr>
<td></td>
<td>C++</td>
<td>(6, 214)</td>
<td>(43, 35)</td>
<td>(56, 94)</td>
</tr>
<tr>
<td></td>
<td>Fortran</td>
<td>(5, 246)</td>
<td>(10, 80)</td>
<td>(14, 98)</td>
</tr>
</tbody>
</table>
percentage can be as low as 33.7%, whereas for 444.namd
88.0% of its loops are statically separable. Lower separability
figures for C++ applications can be attributed to following
two reasons: (a) the C++ applications comprise fewer separ-
able loops, and (b) C++ applications are harder to analyse
statically using the analyses provided in the LLVM compiler.

Some of the non-separable loops in C++ applications are
carried by the programming language’s specified require-
ment for zero initialization of arrays, where each element is
zero-initialized. It is also known that some of the C++ appli-
cations in the SPEC CPU2006 suite contain a large number of
non-natural and multi-exit loops [42], which defeat LLVM’s
static analysis. We have also observed that LLVM’s ability to
disambiguate accesses to fields and members in structures
(and classes) is limited, e.g. in 473.astar.

Impact of Profiling Information. For cases where static
analysis already enables iterator separation for e.g. > 98% of
all loops there is obviously limited scope for improvement
(other than minimizing iterator instructions). This is the
case for most Fortran and C benchmarks, although there
are a number of notable exceptions. While only 191 out of
238 loops are statically separable for 401.bzip2 profiling
enables separation of, at least, 235 loops, thus increasing
recognition from 80.3% to 98.7%.

For C++ applications with their lower number of separable
loops and iterators profiling improves separability by, on
average, 5% (lower bound) and up to 24%. For 450.soplex,
for example, static analysis enables separation of 59.7% of all
loops, whereas profiling contributes to an increase of greater
than 10% and up to almost 26% depending on whether a
conservative or aggressive scheme is used.

Coping with Limited Profiling Coverage. Profiling incurs
a substantial overhead and it is in the interest of the user
to reduce the time for profiling. This can be achieved by
using a smaller input data set, e.g. the test instead of the
ref data set for SPEC CPU2006. However, a typical data set
often does not fully exercise every code path, i.e. there is
limited loop coverage. We found that the test input data
set for SPEC CPU2006 covered, on average, only 19% of all
loops (see Figure 8).

We see that profiling information has a substantial im-
 pact on the ability to separate iterators, especially for the
C++ applications. These findings suggest that profiling with
standard data sets is not ideal, but a more targeted approach
supported by techniques from the field of software testing,
e.g. automated test case generation [3], should be considered,
but this is beyond the scope of this paper.

Evaluation of Iterator Size and Complexity. Consider the
three diagrams in Figure 9, where we plot the distribution of
relative iterator sizes and their frequency across the SPEC
CPU2006 benchmarks, broken down by programming lan-
guage (C, C++, Fortran). We make two interesting observa-
tions: (a) Iterator sizes are not uniformly distributed, and (b)
the distribution of iterator sizes varies significantly for the
three programming languages used in the benchmark suite.

For the C benchmarks we observe a bimodal distribution
of iterator sizes, where iterators are either very small (around
5-10% of loop instructions) or large (around 85% of loop in-
structions). The situation is different for Fortran codes, where
the vast majority of iterators is small. The C++ applications
exhibit the same bimodal trait as the C codes, but the peaks
at the lower and higher end of the scale are less distinct.

Further inspection of the iterators reveals that small iter-
ators are typically affine or near-affine iterators, which only
require a few instructions to update and compare. Larger
iterators often comprise control flow.

Analysis and Profiling Overhead. Static analysis needs to
consider pairwise all instructions contained in a loop for de-
pendence testing (using LLVM’s DependenceAnalysis pass),
resulting in $O(n^2)$ complexity. This is an LLVM restriction
and a different implementation of LLVM’s dependence anal-
ysis could improve this algorithmic complexity substantially.
However, for most of the SPEC CPU2006 applications analy-
ysis is reasonably fast and only adds a few seconds to the over-
all compilation time. A notable exception is the 416.game
application, which with its 2M+ IR instructions and 17.5M+
static dependences spread over 21k+ loops, takes almost 11
minutes to analyse statically. None of the C or C++ bench-
marks takes longer than 30 seconds to analyse, though, and
most of them can be processed in under 10 seconds.

Profiling naturally incurs a much greater overhead than
static analysis. For example, profiling of the SPEC CPU2006
applications using the test data set requires several min-
utes and up to several hours. In our (somewhat naïve) setup,
the overhead resulting from instrumented execution of a
program yields, on average, a 760× slowdown (compared to
289× of the technique in [26], which exhibits far more con-
ceptual and practical restrictions). This is clearly prohibitive
in a continuous edit-compile-test cycle or on very large data
sets. However, these are not the envisaged use cases of our
profiling technique. Instead, the preferred application as
enabler of one-off transformations is inherently more tolerant
to the observed profiling overhead in exchange for greater
accuracy.

Use in Commutativity Based Parallelization. As an ex-
ample of its usefulness to enable novel loop transformations
we have applied iterator recognition to drive a dynamic com-
mutativity based parallel loop detection method inspired by
[41], which also uses machine learning to select profitable
loops for OpenMP parallelization [44]. This loop paralleliza-
tion approach critically relies on iterator recognition for
handling of both affine and non-affine loops, possibly
comprising traversals of dynamic data structures.
We have discussed existing notions of iterators in Section 2 and provided examples of code transformations enabled by iterator recognition in Section 1.1. Loop concepts and iterators are as old as the oldest high-level programming languages [17] and have received particular attention in polyhedral loop analysis and programming language design. Loop identification [38] is the general problem of finding loops in programs. It is often based on Tarjan’s interval-finding algorithm and is an essential step in performing various optimizations and transformations, but it is not concerned with identifying loop iterators. Decidability of termination of several variants of simple integer loops, without branching in the loop body and with affine constraints as the loop guard (and possibly a precondition) has been considered in [5]. Whilst this work is related to iterator recognition, it follows decision theoretical approach. Reducible and irreducible loops are subject of [21]. Efficient symbolic analysis of chains of recurrences supporting induction recognition...
is presented in [13]. Pointer-based array traversals are analyzed and transformed to closed form array expressions in [15]. Static analysis is employed in [9] to determine loop iteration counts using polytope-based loop evaluation and program slicing. A constraint based approach to recognition of reductions is presented in [18], where a wide class of reductions including their loop iterators is recognized in the LLVM framework. However, generalized iterators as presented in this paper are beyond the scope of their work. In [28] a technique for computing SSA-PDGs and their SCCs is introduced, but no attempt is made to extract their dominating SCC as a loop iterator. Instead, all SCCs are treated equal and merged in the graph to coarsen the granularity of potential parallel regions by applying typed fusion.

HELIX [8, 30] is a speculatively parallelizing compiler, which would benefit from iterator recognition. While HELIX applies parallelizing loop transformations, it relies on normalizable loops (equivalent to while loops), but it does not attempt to separate loop iterator code. Instead, HELIX monitors all loop carried data dependences without further distinction. In [37] automatic parallelization of loops that iterate over user-defined containers that have interfaces similar to the lists, vectors and sets in the C++ STL is demonstrated. However, this approach relies on the user inserting OpenMP directives into a serial program and, effectively, marking up loop iterators. Partitioning of heap-allocated data structures and transformation of pointer-manipulating programs is a concern for high-level synthesis supporting FPGA design flows. Separation logic is used in [48] for static analysis and transformation enabling parallelization of programs with dynamic data structures and pointer-based memory accesses.

An early framework supporting profile-guided data dependence analysis and subsequent loop parallelization was developed in [44], but it has only been applied to a selection of benchmarks. A more scalable and efficient data dependence profiling methodology was presented in [26], which experiences slowdowns in the same order of magnitude as our technique, but suffers from more restrictions. In [25] another data dependence profiling technique is developed, which reduces slowdowns to around 150x, but does not overlay dependence to a dynamic call graph, but only merges dependences in a static call graph. An online dynamic dependence analysis is shown in [23].

6 Summary and Conclusions

In this paper we have developed a generalized notion of loop iterators, which enables compiler-based iterator recognition. This in itself is an enabling analysis, which supports novel code transformations including loop optimization, parallelization and general loop rewriting. In particular, iterator recognition enables the development of new loop transformations targeting non-affine loops, which in some domains make up the majority of loops. We show that static analysis works well for C and Fortran, but complex C++ code benefits from additional profiling. We have demonstrated that our approach to iterator recognition works in practice and our LLVM prototype implementation is capable of separating a substantially larger number of loops and iterators than previous techniques based on our evaluation against the full SPEC CPU2006 suite. Future work will focus on integrating our technique with advanced loop parallelization.

References

