Interpreting the Paris climate Target

Citation for published version:
Schurer, A, Cowtan, K, Hawkins, E, Mann, ME, Scott, V & Tett, S 2018, 'Interpreting the Paris climate Target' Nature Geoscience. DOI: 10.1038/s41561-018-0086-8

Digital Object Identifier (DOI):
10.1038/s41561-018-0086-8

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Nature Geoscience

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 16. Feb. 2019
Interpreting the Paris climate target

A. P. Schurer¹*, K. Cowtan², E. Hawkins³, M. E. Mann⁴, V. Scott¹, S. F. B. Tett¹

¹. School of GeoSciences, University of Edinburgh, Crew Building, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK.
². Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
³. NCAS-Climate, Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
⁴. Department of Meteorology and Atmospheric Science & Earth and Environmental Systems Institute, Pennsylvania State University, State College, Pennsylvania 16802, USA.

*Corresponding Author: A.Schurer@ed.ac.uk

To the editor – In the 2015 UNFCCC Paris Agreement, article 2 targets “Holding the increase in global temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit […] to 1.5°C […] recognising that this would significantly reduce the risks and impacts of climate change”. Different interpretations of the precise meaning of the phrases “increase in global temperature” ² and “pre-industrial” ³ could have large effects on mitigation requirements and corresponding social, policy, and political responses. Here we suggest that levels of current global mean surface warming since pre-industrial times higher than those derived by Millar et al.⁵ could have been calculated using alternative, but equally valid assumptions as the ones made by those authors.

In Millar et al⁴, an observational dataset (HadCRUT4)⁵ was used to estimate current levels of anthropogenic warming above 1861-1880 (0.93°C as of 2015) and thereby determine the amount of warming remaining before the 1.5°C target is reached. HadCRUT4, in common with most datasets, calculates global mean surface temperature (GMST) as a blend of surface air temperature (SAT) measurements over land and sea surface temperatures (SSTs) over the ocean. It only has partial global coverage, limited to where the observations exist. As such, data from the Arctic, which has been found to be warming much faster than the global mean, are not included. By choosing to use this observational dataset Millar et al.⁵ have implicitly assumed a definition of GMST that is restricted to observational coverage, measured as a blend of SATs and SSTs. In addition, they assume that 1861-1880 is representative of pre-industrial conditions as used in the UNFCCC ‘Structured Expert Dialogue’ (SED)⁶. However, this approach has potential shortcomings. For example, when model simulations are processed in a similar way to the observations, they show less warming with the SED method, compared to an alternative approach where complete global coverage of SAT is assumed. It therefore seems likely that the SED approach underestimates the warming that has actually occurred in global air temperatures⁷. In addition, changes in GMST could have been calculated from a different baseline. As industrialisation was already under way by the late 19th century, an earlier period could be more appropriate for a pre-industrial baseline.

The sensitivity of observed warming in 2010-2016 to these choices is highlighted in figure 1 which estimates the effect of calculating: (1) warming for total global coverage rather than
for the coverage for which observations are available; (2) warming using SATs over all the
globe instead of the observational blend of SSTs and SATs; (3) warming from a pre-
industrial, instead of a late 19th century, baseline. The effect of observational coverage is
estimated in two ways. First, we compare HadCRUT4 to a dataset that uses identical
temperature information but fills in missing data with a kriging statistical technique8;
alternatively, we calculate a correction factor from CMIP5 model simulations to convert
spatially incomplete temperatures to full global coverage. A factor to convert the observed
blend of SSTs and SATs to a fully SAT product is also calculated from the range of CMIP5
model simulations7. Finally, we estimate additional warming associated with placing the pre-
industrial baseline further back in time, using model simulations of the period 1400-18009; an
observational-based estimate9 gives a similar result.

We conclude that alternative assumptions that are equally valid as those made in Millar et al5
lead to estimated higher levels of present-day GMST warming compared to pre-industrial
conditions. Each of the factors considered above adds approximately 0.1°C of warming to the
estimate in ref. 5 (Figure 1). Millar et al.5 show (their Tables 1, 2) that an additional 0.3°C
warming to date would halve the remaining carbon budget, which highlights the high
sensitivity of carbon budgets to definitions of GMST.

Millar et al. then used climate models (using full coverage of SAT) to calculate the remaining
budget of carbon emissions consistent with keeping GMST within 1.5°C above preindustrial
level, using their observed estimate of current warming. Projections have been tied to more
recent observations instead of using model simulations to assess past warming, as in earlier
studies3,10, because it reduces the impact of uncertainty in past radiative forcing for future
projections. Negotiators at the time when the Paris Agreement text was finalised6 were aware
of this approach; however, it mixes different definitions of GMST. These inconsistencies may
not have been explicitly discussed and have only been fully investigated subsequently9. We
explore the implications of this approach in Figure 2 using model simulations with strong
mitigation (RCP2.6). The simulations display a difference of approximately 0.25°C by 2050-
2060 between the typically model-derived GMST values (SATs for complete coverage) and a
GMST calculated to mimic observations (blended SATs and SSTs with partial coverage). In
addition, if one definition is used for past GMST warming and a different one for projected
GMST warming, as in Millar et al4 and IPCC AR510, then the final results will be dependent
on the period when the two are joined. For example, the choice of the year 2015 in Millar et
al. leads to final temperatures close to the blended partial coverage definition, because in this
case most of the warming has occurred in the past. Mixing different definitions of GMST
could also lead to misleading findings about the carbon budget remaining. In Figure 1 in
Millar et al, results from model simulations (SATs, full global coverage) are used to calculate
the warming for a given level of cumulative carbon emissions and then the current observed
warming (blended, partial coverage – shown by the black cross) combined with actual
emissions is used to re-align the graph to calculate the remaining carbon budget. This is in
effect a correction of the modelled estimate based on the observations. However,
approximately 0.2°C of the difference between the two approaches can be explained by the
different definitions of GMST (Fig 2).

Crucially, in order for the temperature targets in the Paris Agreement to be as meaningful as
possible, the amount of mitigation required to cap GMST needs to be linked to the impacts
expected at that level of warming. It is here that ambiguity surrounding the definition of
GMST is most problematic. For example, the impacts of 1.5°C global warming on Australia
were calculated with a GMST estimate based on SATs with complete coverage11, contrary to Millar et al.’s assumptions, and other impact studies also used different definitions12.

We therefore recommend that a clear definition of GMST change is agreed, so that mitigation actions required to limit climate change impacts are assessed using self-consistent information. This would prevent apparently contradictory results due to differing interpretations.

References

1. Adoption of the Paris Agreement FCCC/CP/2015/10/Add.1 (UNFCCC, 2015).
Figures

Figure 1 – Present global temperatures relative to 1.5°C above pre-industrial temperatures. Kernel density estimates and 5-95% range of the observed warming: (a) HadCRUT4 (a dataset with partial coverage) (b) HadCRUT4 scaled to full global coverage using a ratio calculated in model simulations, (c) Cowtan and Way (a dataset which has been in-filled using kriging). Panels show observed GMST warming since 1850-1900 with published uncertainty (blue), GMST warming estimated as SATs over whole globe (green), observed GMST with anomalies from for a true pre-industrial baseline (orange), and SATs with pre-industrial baseline (purple). All conversion factors are calculated using model CMIP5 simulations with RCP2.6 projections.

Figure 2 – Global temperature for CMIP5 model simulations with RCP2.6 projections. Multi-model ensemble mean temperature for SATs for complete global coverage (red) and for a blend of SATs and SSTs with masked coverage, mimicking HadCRUT4 (purple), where future projections are masked with the mean HadCRUT4 coverage in 2000-2009. To mimic the use of observed temperature for the past and projected model temperatures for the future, different coloured lines show results when the two are joined together in different periods. Shaded box in main panel shows where Millar et al tied the past observations to future projections. Double headed arrow and accompanying value indicate difference between red and purple lines in 2015 and dot shows the anthropogenic warming (0.93°C – Millar et al) in 2015. Additional arrows indicate GMST for the HadCRUT4 approach when the models (SAT, full coverage) passes 1.5°C and vice versa. The p>0.66 GMST model range in 2050-2060 is shown in the right panel.