A maximal restriction theorem and Lebesgue points of functions in $F(L^p)$

Citation for published version:
Müller, D, Ricci, F & Wright, J 2019, 'A maximal restriction theorem and Lebesgue points of functions in $F(L^p)$', Revista Matemática Iberoamericana.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Revista Matemática Iberoamericana

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A maximal restriction theorem
and Lebesgue points of functions in \( \mathcal{F}(L^p) \)

Detlef Müller, Fulvio Ricci and James Wright

Abstract. Fourier restriction theorems, whose study had been initiated by E. M. Stein, usually describe a family of a priori estimates of the \( L^q \)-norm of the restriction of the Fourier transform of a function \( f \) in \( L^p(\mathbb{R}^n) \) to a given subvariety \( S \), endowed with a suitable measure. Such estimates allow to define the restriction \( Rf \) of the Fourier transform of an \( L^p \)-function to \( S \) in an operator theoretic sense. In this article, we begin to investigate the question what is the “intrinsic” pointwise relation between \( Rf \) and the Fourier transform of \( f \), by looking at curves in the plane, for instance with non-vanishing curvature. To this end, we bound suitable maximal operators, including the Hardy-Littlewood maximal function of the Fourier transform of \( f \) restricted to \( S \).

1. Introduction

The restriction problem for the Fourier transform in \( \mathbb{R}^n \) was introduced by E. M. Stein, who proved the first result in any dimension [2, p. 28], later improved by the sharper Stein-Tomas method [5]. Since then more and more sophisticated techniques have been introduced to attack the still open problems in this area, concerning the maximal range of exponents for which the restriction inequality holds.

In two-dimensions, the restriction estimate for the circle had been proved already, in an almost optimal range of exponents, by Fefferman and Stein [2, p. 33]. Shortly later, sharp estimates were obtained by Zygmund [8] for the circle and by Carleson and Sjölin [1] and Sjölin [3] for a class of curves including strictly convex \( C^2 \) curves.

The present paper does not mean to proceed along these lines, but rather to propose a reflection on the measure-theoretic meaning of the restriction phenomenon and possibly suggest some related problems.

Mathematics Subject Classification (2010): 42B10, 42B25.
Keywords: Fourier restriction, maximal functions.
A restriction theorem is usually meant as a family of \textit{apriori} inequalities

\begin{equation}
\| \hat{f}_\varepsilon \|_{L^p(S, \mu)} \leq C \| f \|_{L^p(\mathbb{R}^n)},
\end{equation}

where \( f \in \mathcal{S}(\mathbb{R}^n) \), \( S \) is a surface with appropriate curvature properties, and \( \mu \) a suitably weighted finite surface measure on \( S \). The validity of such an inequality implies the existence of a bounded restriction operator \( \mathcal{R} : L^p(\mathbb{R}^n) \rightarrow L^q(S, \mu) \) such that \( \mathcal{R}f = \hat{f}_\mu \) when \( f \) is a Schwartz function.

In general terms our question is: assuming that (1.1) holds, what is the “intrinsic” pointwise relation between \( \mathcal{R}f \) and \( \hat{f} \) for a general \( L^p \)-function \( f \)?

A partial answer follows directly from the restriction inequality. Assume that (1.1) holds for given \( p, q \). This forces the condition \( p < 2 \), so that \( \hat{f} \in L^{p'} \). Fix an approximate identity \( \chi_\varepsilon(x) = \varepsilon^{-n}\chi(x/\varepsilon) \) with \( \chi \in \mathcal{S}(\mathbb{R}^n) \), \( \int \chi = 1 \). Then, with \( \psi = \mathcal{F}^{-1}\chi \),

\[ \hat{f} * \chi_\varepsilon = \hat{f}\psi(\varepsilon) \]

is well defined on \( S \) and coincides with \( \mathcal{R}(f\psi(\varepsilon)) \). Moreover, \( f\psi(\varepsilon) \rightarrow f \) in \( L^p(\mathbb{R}^n) \), so that \( (\hat{f} * \chi_\varepsilon)_\varepsilon \rightarrow \mathcal{R}f \) in \( L^q(S, \mu) \). Hence, for a subsequence \( \varepsilon_k \rightarrow 0 \), the \( \chi_{\varepsilon_k} \)-averages of \( f \) converge pointwise to \( \mathcal{R}f \) \( \mu \)-a.e.

It is natural to ask if the limit over all \( \varepsilon \) exists \( \mu \)-a.e. We give positive answers in two dimensions to this and related questions.

We recall that, for a curve \( S \) in the plane, necessary conditions on \( p, q \) for having (1.1) are \( p < \frac{4}{3} \) and \( p' \geq 3q \) and that they are also sufficient when \( S \) is \( C^2 \) with nonvanishing curvature and \( \mu \) is the arclength measure, or, more generally, when \( S \) is just \( C^2 \) and convex, and \( \mu \) is the affine arclength measure [3]. Notice that the two measures differ by a factor comparable to the \( \frac{1}{3} \) power of the curvature, so that the affine arclength is concentrated on the set of points with nonvanishing curvature and ordinary arclength is damped near these points.

**Theorem 1.1.** Let \( S \) be a \( C^2 \) regular curve in \( \mathbb{R}^2 \) and \( f \in L^p(\mathbb{R}^2) \).

(i) Assume that \( 1 \leq p < \frac{4}{3} \) and let \( \chi \in \mathcal{S}(\mathbb{R}^2) \) with \( \int \chi = 1 \). Then, with respect to arclength measure, for almost every \( x \in S \) at which the curvature does not vanish, \( \lim_{\varepsilon \to 0} (\hat{f} * \chi_\varepsilon)(x) = \mathcal{R}f(x) \).

(ii) Assume that \( 1 \leq p < \frac{8}{7} \). Then, with respect to arclength measure, almost every \( x \in S \) at which the curvature does not vanish is a Lebesgue point for \( \hat{f} \) and the regularized value of \( \hat{f} \) at \( x \) coincides with \( \mathcal{R}f(x) \).

To be more explicit, the latter statement says that at \( \mu \)-almost every \( x \in S \),

\[ \lim_{r \to 0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |\hat{f}(y) - \mathcal{R}f(x)| \, dy = 0, \]

where \( B_r(x) \) denotes the Euclidean ball in \( \mathbb{R}^2 \) of radius \( r > 0 \) centered at \( x \).

Several questions remain open, regarding extensions to less regular curves, to other values of \( p \) in the range \( \frac{8}{7} \leq p < \frac{4}{3} \), or to higher dimensions. We just
mention here that, in dimension $d \geq 3$, our method gives results for a class of curves including $\Gamma(t) = (t, t^2, \ldots, t^d)$.

Theorem 1.1 is a direct consequence of certain “maximal restriction theorems” concerning restrictions to $S$ of truncated maximal functions of the Fourier transform. Since maximal restriction inequalities may also have an intrinsic interest, we go beyond what is strictly needed to deduce Theorem 1.1 and consider (truncated) two-parameter maximal functions, such as the strong maximal function, relative to any coordinate system in $\mathbb{R}^2$.

In Theorem 2.1 below we prove that, for a convex $C^2$ curve, the two-parameter maximal operator defined in (2.1), is $L^p - L^q$ bounded for $p, q$ in the full range of validity of the restriction theorem, with the $L^q$-norm on $S$ relative to affine arc-length measure.

In Corollary 2.3 we deduce the same $L^p - L^q$ estimates, but in the smaller range $p < \frac{8}{7}$, for the truncated strong maximal function, which does not only control averages of $\hat{f}$, but also those of $|\hat{f}|$.

Notice that the convexity condition imposed in Theorem 2.1 can be removed in passing to the more qualitative Theorem 1.1 since, for a general $C^2$ regular curve, the subset of points of nonvanishing curvature is a countable union of disjoint convex sub-arcs.

The proof of Theorem 2.1 is based on the Kolmogorov-Seliverstov-Plessner linearization method [7, Ch. XIII]. This leads to proving uniform estimates for a family of linear operators to which a modification of the basic approach of [1, 8] for curves in $\mathbb{R}^2$ can be applied. For this reason our method is limited to the two-dimensional context. Unfortunately, the usual $TT^\ast$ method of Stein-Tomas does not seem to be applicable, even for the Hardy-Littlewood maximal function.

We would like to point the reader to a recent paper of M. Vitturi [6], where a maximal restriction theorem is proved for the sphere in dimension $n \geq 3$, with $p \leq 4/3$ (resp. $p \leq 8/7$).

2. The strong maximal function of $\hat{f}$ along a curve

Let $S = \{\Gamma(t) : t \in I\}$, where $\Gamma$ is a $C^2$ curve in $\mathbb{R}^2$ with nonnegative signed curvature, i.e., with $\kappa(t) = \det(\Gamma', \Gamma'')(t) \geq 0$. Denote by $d\mu(t) = \kappa^3(t) dt$ the pull-back to $I$ of the affine arclength measure on $S$.

We assume for simplicity that $S$ is parametrized by the $x$-coordinate as $\Gamma(x) = (x, \varphi(x))$, i.e., that $S$ is the graph of a convex $C^2$ function $\varphi$ on a bounded interval $I$. Notice that the measure $\mu$ is concentrated on the set where $\kappa = \varphi'' > 0$.

We consider the two-parameter maximal function of $\hat{f}$ along a curve

$$
(2.1) \quad Mf(x) = \sup_{0 < \varepsilon' < \varepsilon'' < 1} \left| \int \hat{f}(x + s, \varphi(x) + t) \chi_{\varepsilon'}(s) \chi_{\varepsilon''}(t) ds dt \right|
$$

where $\chi_{\varepsilon'}(\cdot) = \varepsilon^{-1} \chi(\cdot/\varepsilon)$, with $\chi \in \mathcal{S}(\mathbb{R})$, even, with $\int \chi = 1$.

Theorem 2.1 also holds if $\chi \otimes \chi$ is replaced by a general $\chi \in \mathcal{S}(\mathbb{R}^2)$, because this can be expanded into a rapidly decreasing series $\sum_j \chi'_j \otimes \chi''_j$. 

1
Theorem 2.1. The inequality

\[ \|\mathcal{M}f\|_{L^p(I,\mu)} \leq C_p \|f\|_{L^p(\mathbb{R}^2)} , \]

holds for \( 1 \leq p < \frac{1}{q} \) and \( p' \geq 3q \).

Proof. We may and shall assume \( f \in \mathcal{S}(\mathbb{R}^2) \) and, since \( \mu \) is finite, \( p' = 3q \) by Hölder’s inequality. We linearize \( \mathcal{M} \) by defining, for fixed measurable functions \( \varepsilon'(x), \varepsilon''(x) \) on \( I \) with values in \((0,1)\),

\[
\mathcal{R}_{\varepsilon',\varepsilon''} f(x) = \int f(x+s,\varphi(x)+t)\chi_{\varepsilon'}(s)\chi_{\varepsilon''}(t) \, ds \, dt
\]

(2.3) \[
= \int f(\xi,\eta) e^{-i(\xi x + \eta \varphi(x))} \chi_{\varepsilon'}(s)\chi_{\varepsilon''}(t) \, ds \, dt \, d\xi \, d\eta
\]

The formal adjoint of \( \mathcal{R}_{\varepsilon',\varepsilon''} \) is

\[
\mathcal{E}_{\varepsilon',\varepsilon''} \mathcal{R}_{\varepsilon',\varepsilon''} g(\xi,\eta) = \mathcal{R}_{\varepsilon',\varepsilon''} \mathcal{E}_{\varepsilon',\varepsilon''} g(\xi,\eta)
\]

(2.4) \[
= \int \hat{\varepsilon}(\xi) \hat{\varepsilon''}(\eta) e^{i(\xi x + \eta \varphi(x))} g(x) \kappa^\frac{1}{2}(x) \, dx .
\]

It suffices to prove the inequality

\[ \|\mathcal{E}_{\varepsilon',\varepsilon''} g\|_{L^p(\mathbb{R}^2)} \leq C_p \|g\|_{L^p(I,\mu)} , \quad g \in C_0^\infty(I) , \]

uniformly in the functions \( \varepsilon'(x), \varepsilon''(x) \). We introduce a truncation in \( \xi \) and \( \eta \), in order to gain decay at infinity for \( \mathcal{E}_{\varepsilon',\varepsilon''} \mathcal{E}_{\varepsilon',\varepsilon''} \). Fixing another function \( \chi_0 \) smooth on \( \mathbb{R} \), supported in \([-2,2]\) and equal to 1 on \([-1,1]\), we define, for \( \lambda \gg 1 \),

(2.6) \[
\mathcal{E}_{\varepsilon',\varepsilon''} \mathcal{E}_{\varepsilon',\varepsilon''} g(\xi,\eta) = \chi_0(\frac{\xi}{\lambda}) \chi_0(\frac{\eta}{\lambda}) \int \hat{\varepsilon}(\xi) \hat{\varepsilon''}(\eta) e^{i(\xi x + \eta \varphi(x))} g(x) \kappa^\frac{1}{4}(x) \, dx .
\]

It will then suffice to prove (2.5) with \( \mathcal{E}_{\varepsilon',\varepsilon''} \) replaced by \( \mathcal{E}_{\varepsilon',\varepsilon''} \), uniformly in \( \varepsilon'(x), \varepsilon''(x) \) and \( \lambda \).

We start from the identity

\[ \|\mathcal{E}_{\varepsilon',\varepsilon''} g\|_{L^p(\mathbb{R}^2)} = \|\mathcal{E}_{\varepsilon',\varepsilon''} g\|_{L^p(\mathbb{R}^2)}^{\frac{1}{2}} \]

(2.7) \[
\|\mathcal{E}_{\varepsilon',\varepsilon''} g\|_{L^p(\mathbb{R}^2)}^{\frac{1}{2}} = \|\mathcal{E}_{\varepsilon',\varepsilon''} g\|_{L^p(\mathbb{R}^2)}^{\frac{1}{2}} .
\]

If \( U \) is the open subset of \( I \) where \( \kappa(x) > 0 \), the measure \( \mu \) is concentrated on \( U \), so we have

\[
(\mathcal{E}_{\varepsilon',\varepsilon''} g)(\xi,\eta) = \chi_0(\frac{\xi}{\lambda}) \chi_0(\frac{\eta}{\lambda}) \int_{U^2} \hat{\varepsilon}(\xi) \hat{\varepsilon''}(\eta) e^{i(\xi x + \eta \varphi(x))} g(x) \kappa^\frac{1}{2}(x) \, dx \, dy
\]

(2.8) \[
= \chi_0(\frac{\xi}{\lambda}) \chi_0(\frac{\eta}{\lambda}) \int_{U^2} \hat{\varepsilon}(\xi) \hat{\varepsilon''}(\eta) e^{i(\xi x + \eta \varphi(x))} g(x) \kappa^\frac{1}{2}(x) \, dx \, dy .
\]
Lemma 2.2. For $\varphi$ follows from the convexity of $\varphi$ that the map $\Phi(x, y) = (\varphi(x) + \varphi(y))$ is injective on each of the subsets $U^2 = \{(x, y) \in U^2 : x \leq y \}$ and that $\det \Phi(x, y) = \varphi'(y) - \varphi'(x) \neq 0$ on $U^2$.

With $A = \Phi(U_+) = \Phi(U_-)$, we set, for $z = (z_1, z_2) \in A$,

\[
(x_{\pm}(z), y_{\pm}(z)) = (\Phi(x, z))^{-1}(z)
\]

\[
\varepsilon'^{\pm}(z) = \varepsilon'(x_{\pm}(z)), \quad \varepsilon''^{\pm}(z) = \varepsilon''(y_{\pm}(z))
\]

\[
G_{\pm}(z) = \frac{G_0(x_{\pm}(z), y_{\pm}(z))}{|\varphi'(x_{\pm}(z)) - \varphi'(y_{\pm}(z))|}
\]

Then

\[
E_{\varepsilon^{(\pm)}}^\lambda g(\xi, \eta)^2 = \lambda_0^2 \left( \frac{\xi}{\lambda} \right) \lambda_0^2 \left( \frac{\eta}{\lambda} \right) \sum_{\pm} \int_{A} \hat{x}(\varepsilon'^{\pm}(z)\xi) \hat{x}(\varepsilon''^{\pm}(z)\eta) \hat{x}(\varepsilon'^{\pm}(z)\xi) \hat{x}(\varepsilon''^{\pm}(z)\eta)e^{i(z_{\pm} + \eta_{\pm})} G_{\pm}(z) dz .
\]

We are so led to consider the operator

\[
T_2^\lambda G(\xi, \eta) = \lambda_0^2 \left( \frac{\xi}{\lambda} \right) \lambda_0^2 \left( \frac{\eta}{\lambda} \right) \int_{A} \hat{x}(\varepsilon'_1(z)\xi) \hat{x}(\varepsilon''_1(z)\eta) \hat{x}(\varepsilon'_2(z)\xi) \hat{x}(\varepsilon''_2(z)\eta)e^{i(z_{\pm} + \eta_{\pm})} G(z) dz ,
\]

for arbitrary measurable functions $\varepsilon = (\varepsilon'_1, \varepsilon''_1, \varepsilon'_2, \varepsilon''_2)$ on $A$ with values in $(0, 1)^4$ and arbitrary continuous functions $G$ on $A$.

Lemma 2.2. For $1 \leq p \leq 2$, $T_2^\lambda$ is bounded from $L^p(A)$ to $L^p(\mathbb{R}^2)$, uniformly in $\varepsilon$ and $\lambda$.

Proof. The statement is trivial for $p = 1$.

For $p = 2$ we prove the equivalent statement that $(T_2^\lambda)^* T_2^\lambda : L^2(A) \rightarrow L^2(A)$.

We have

\[
(T_2^\lambda)^* T_2^\lambda G(z) = \int_A K_2^\lambda(z, w)G(w) dw ,
\]

where, for $(z, w) \in A^2$,

\[
K_2^\lambda(z, w) = \int_{\mathbb{R}^2} e^{-i(\xi, \eta) \cdot (z - w)} \lambda_0^2 \left( \frac{\xi}{\lambda} \right) \lambda_0^2 \left( \frac{\eta}{\lambda} \right) \hat{x}(\varepsilon'_1(z)\xi) \hat{x}(\varepsilon''_1(z)\eta) \hat{x}(\varepsilon'_2(z)\xi) \hat{x}(\varepsilon''_2(z)\eta) d\xi d\eta .
\]
Let
\[
\varepsilon'(z, w, \lambda) = \max \{ \varepsilon'_1(z), \varepsilon'_2(z), \varepsilon'_1(w), \varepsilon'_2(w), \lambda^{-1} \}
\]
\[
\varepsilon''(z, w, \lambda) = \max \{ \varepsilon''_1(z), \varepsilon''_2(z), \varepsilon''_1(w), \varepsilon''_2(w), \lambda^{-1} \}.
\]

Using iteratively the property that, given two Schwartz functions \(f, g\) on \(\mathbb{R}\), the product \(f(at)g(bt)\) can be expressed as \(h((a \vee b)t)\) with each Schwartz norm \(\|h\|_N = \max_{|t| \leq N} \sup_x (1 + |x|)^N |\partial^N h(x)|\) controlled by the same norm of \(f\) and \(g\), we can write
\[
\lambda_0^4 \left( \frac{\xi}{\lambda} \right) \hat{\chi}(\varepsilon'_1(z) \xi) \hat{\chi}(\varepsilon'_2(z) \xi) \hat{\chi}(\varepsilon'_1(w) \xi) \hat{\chi}(\varepsilon'_2(w) \xi) = \psi'_{z, w, \lambda}(\varepsilon'(z, w, \lambda) \xi)
\]
\[
\lambda_0^4 \left( \frac{\eta}{\lambda} \right) \hat{\chi}(\varepsilon''_1(z) \eta) \hat{\chi}(\varepsilon''_2(z) \eta) \hat{\chi}(\varepsilon''_1(w) \eta) \hat{\chi}(\varepsilon''_2(w) \eta) = \psi''_{z, w, \lambda}(\varepsilon''(z, w, \lambda) \eta),
\]
with \(\psi'_{z, w, \lambda}, \psi''_{z, w, \lambda} \in \mathcal{S}(\mathbb{R})\) uniformly bounded in each Schwartz norm.

Then
\[
K^2(z, w) = \frac{1}{\varepsilon'(z, w, \lambda) \varepsilon''(z, w, \lambda)} \tilde{\psi}'_{z, w, \lambda}(\frac{z_1 - w_1}{\varepsilon'(z, w, \lambda)} \tilde{\psi}'_{z, w, \lambda}(\frac{z_2 - w_2}{\varepsilon''(z, w, \lambda)}),
\]
so that, for every \(N\), we have the uniform bound
\[
|K^2(z, w)| \leq C_N \frac{1}{\varepsilon'(z, w, \lambda) \varepsilon''(z, w, \lambda)} \left( 1 + \frac{|z_1 - w_1|}{\varepsilon'(z, w, \lambda)} \right)^{-N} \left( 1 + \frac{|z_2 - w_2|}{\varepsilon''(z, w, \lambda)} \right)^{-N}.
\]

We now make a double partition of \(A^2\), depending on which of the three parameters \(z, w, \lambda\) determines the value of \(\varepsilon'\) and \(\varepsilon''\) respectively:
\[
A^2 = E'_1 \cup E'_2, \quad A^2 = E''_1 \cup E''_2,
\]
such that
\[
\varepsilon'(z, w, \lambda) = \begin{cases} 
\varepsilon'_1(z) \text{ or } \varepsilon'_2(z) \text{ or } \lambda^{-1} & \text{on } E'_1 \\
\varepsilon'_1(w) \text{ or } \varepsilon'_2(w) & \text{on } E'_2
\end{cases}, \quad \varepsilon''(z, w, \lambda) = \begin{cases} 
\varepsilon''_1(z) \text{ or } \varepsilon''_2(z) \text{ or } \lambda^{-1} & \text{on } E''_1 \\
\varepsilon''_1(w) \text{ or } \varepsilon''_2(w) & \text{on } E''_2
\end{cases}.
\]

On any intersection \(E'_j \cap E''_k = E_{jk}\), each of \(\varepsilon'\) and \(\varepsilon''\) depends on only one of the variables \(z, w\). We decompose
\[
|(T_{z,w}^2)^* T_{z,w}^2 G(z)| \leq \sum_{j,k=1}^2 \int_A 1_{E_{jk}}(z, w) |K^2(z, w)| G(w) \, dw
\]
\[
= \sum_{j,k=1}^2 U_{jk} |G(z)|,
\]
In the case \(j = k = 1\) we have
\[
U_{11} |G(z)| \leq C \int_A \frac{1}{\varepsilon'(z) \varepsilon''(z)} \left( 1 + \frac{|z_1 - w_1|}{\varepsilon'(z)} \right)^{-2} \left( 1 + \frac{|z_2 - w_2|}{\varepsilon''(z)} \right)^{-2} |G(w)| \, dw
\]
\[
\leq CM_0 G(z),
\]
where $M_s$ denotes the strong maximal function in $\mathbb{R}^2$. Hence $U_{11}$ is bounded on $L^2$.

In the case $j = k = 2$, it is sufficient to observe that $U_{j2}$ has the same form as $U_{11}$ to obtain the same conclusion.

Suppose now that $j \neq k$, say $j = 1, k = 2$, i.e., with $\varepsilon'$ depending on $z$ and $\varepsilon''$ on $w$. Then, extending $G$ to be $0$ on $\mathbb{R}^2 \setminus A$,

$$U_{12}|G|(z) \leq C \int_A \frac{1}{\varepsilon''(z) \varepsilon''(w)} \left(1 + \left|\frac{z_1 - w_1}{\varepsilon''(z)}\right|^{-2} \left(1 + \left|\frac{z_2 - w_2}{\varepsilon''(w)}\right|^{-2}\right) |G(w)| \, dw$$

$$= C \int_{\mathbb{R}} \frac{1}{\varepsilon''(z)} \left(1 + \left|\frac{z_1 - w_1}{\varepsilon'(z)}\right|^{-2} \left(\int_{\mathbb{R}} \frac{1}{\varepsilon''(w)} \left(1 + \left|\frac{z_2 - w_2}{\varepsilon''(w)}\right|^{-2}\right) |G(w_1, w_2)| \, dw_2\right) \, dw_1$$

$$= C \int_{\mathbb{R}} \varepsilon'(z) \left(1 + \left|\frac{z_1 - w_1}{\varepsilon'(z)}\right|^{-2} (T|G|)(w_1, z_2) \, dw_1$$

$$\leq C M_1(T|G|)(z_1, z_2),$$

where $M_1 f(z_1, z_2)$ denotes the one-dimensional Hardy-Littlewood maximal function of $f(\cdot, z_2)$ evaluated at $z_1$ and

$$Tf(w_1, z_2) = \int_{\mathbb{R}} \frac{1}{\varepsilon''(w)} \left(1 + \left|\frac{z_2 - w_2}{\varepsilon''(w)}\right|^{-2}\right) f(w_1, w_2) \, dw_2.$$ 

In analogy with the previous case, the operator $T^*$,

$$T^* h(w_1, z_2) = \int_{\mathbb{R}} \varepsilon''(w) \left(1 + \left|\frac{z_2 - w_2}{\varepsilon''(w)}\right|^{-2}\right) h(w_1, z_2) \, dw_2,$$

is dominated by

$$\sup_{0 < \varepsilon < 1} \int_{\mathbb{R}} \frac{1}{\varepsilon} \left(1 + \left|\frac{z_2 - w_2}{\varepsilon}\right|^{-2}\right) |h(w_1, z_2)| \, dw_2 = M_2 h(w_1, z_2),$$

where $M_2$ being now the Hardy-Littlewood maximal operator in the second variable. It follows that $T$, and hence $U_{12}$, is bounded on $L^2$ and this proves the statement for $p = 2$.

The conclusion for $1 < p < 2$ follows by Riesz-Thorin interpolation.

We go back to the proof of Theorem 2.1, recalling that we are assuming $p' = 3q$. Observing that $p'/2 > 2$ and combining together (2.7), (2.9) and Lemma 2.2, we have

$$\|\varepsilon''_{\lambda'} g\|_{L^p(\mathbb{R}^2)} \leq C \left(\|G_+\|_{L^{r}(A)} + \|G_-\|_{L^{r}(A)}\right)^{\frac{1}{2}},$$

with $G_\pm$ as in (2.8) and $r = (p'/2)' = \frac{p}{2-p}$. To express the right-hand side in terms of the original function $g$, we find that

$$\|G_+\|_{L^{r}(A)} = \int_A \left|\frac{G_0(x_+(z), y_+(z))}{\varphi'(x_+(z)) - \varphi'(y_+(z))}\right|^r \, dz$$

$$= \int_{U^+_+} \frac{|G_0(x, y)|^r}{|\varphi'(x) - \varphi'(y)|^{r-1}} \, dx \, dy$$

$$= \int_{U^+_+} \frac{|g(x)|^r |g(y)|^r}{|\varphi'(x) - \varphi'(y)|^{r-1}} \kappa(x)^{\frac{r-1}{2}} \kappa(y)^{\frac{r-1}{2}} \, dx \, dy.$$

A maximal restriction theorem
Making the change of variables

\[ u = \varphi'(x), \quad v = \varphi'(y), \]

and setting \( x(u) = (\varphi')^{-1}(u), \ y(v) = (\varphi')^{-1}(v) \), we obtain that

\[
\|G_+\|_{L^r(A)} = \int_{\varphi'(U_+)} \frac{|g(x(u))| |g(y(v))|}{|u - v|^\frac{r}{r-1}} \kappa(x(u))^{\frac{3}{2} - 1} \kappa(y(v))^{\frac{3}{2} - 1} \, du \, dv.
\]

Notice that \( 1 \leq r < 2 \), so that we can interpret, up to a constant factor, the integral as the pairing \( \langle I_f f, f \rangle \), where \( I^\alpha \) denotes fractional integration of order \( \alpha \) and \( f(u) = |g(x(u))|^{\frac{3}{2}} \kappa(x(u))^{\frac{3}{2} - 1} \). By the Hardy-Littlewood-Sobolev inequality,

\[
\|G_+\|_{L^r(A)} \leq C_p \|f\|_{L^q((\varphi'(U_+)))}^2,
\]

with \( s = \frac{2}{3 - p} \). The same estimate holds for \( G_- \), so that, for this value of \( s \),

\[
\|\mathcal{E}_{\varphi', v'} g\|_{L^r(\mathbb{R}^2)} \leq C_p \|f\|_{L^q((\varphi'(U_+))}^2
\]

\[
= C_p \left( \int_{\varphi'(U)} |g(x(u))|^{\frac{2r}{3} - \frac{r}{2}} \kappa(x(u))^{\frac{3}{2} - 1} \, du \right)^{\frac{2r}{3} - \frac{r}{2}}
\]

\[
= C_p \left( \int_{U} |g(x)|^{\frac{2r}{3} - \frac{r}{2}} \kappa(x) \, du \right)^{\frac{2r}{3} - \frac{r}{2}}
\]

But \( \frac{2r}{3} - \frac{r}{2} = (p'/3)' = q' \) with \( q \) as in the statement of the theorem. \( \square \)

Consider now the truncated strong maximal function of \( \widehat{f} \),

\[
(2.13) \quad \mathcal{M}^+ f(x) = \sup_{0 < \varepsilon, \varepsilon' < 1/4} \frac{1}{4 \varepsilon \varepsilon'} \int_{|s| < \varepsilon, |t| < \varepsilon'} |\widehat{f}(x + s, \varphi(x) + t)| \, ds \, dt, \quad x \in I.
\]

From Theorem 2.1 we obtain the following inequality for \( \mathcal{M}^+ \) for a more restricted range of \( p \).

**Corollary 2.3.** The inequality

\[
(2.14) \quad \|\mathcal{M}^+ f\|_{L^q(I, \mu)} \leq C_p \|f\|_{L^p(\mathbb{R}^2)}, \quad f \in S(\mathbb{R}^2),
\]

holds for \( 1 \leq p < \frac{8}{3} \) and \( p' \geq 3q \).

**Proof.** As before, we assume \( p' = 3q \). Let \( h = f \ast f^* \), where \( f^*(x, y) = \widehat{f}(-x, -y) \). Then \( \widehat{h} = |\widehat{f}|^2 \), so that \( \|h\|_r \leq \|f\|_p^2 \), with \( r = \frac{p}{2 - p} < 4/3 \). Then, for \( s \) such that
Corollary 3.1. Let $B$ denote the disk of radius $\varepsilon$ centered at 0.

Adapting standard arguments, cf. [4], we obtain the following reformulation of Theorem 1.1 (ii), where $\phi$ denotes the disk of radius $\varepsilon$ centered at 0.

We may restrict ourselves to a subset of $C$. Fefferman: [2]

L. Carleson, P. Sjölin: [1]


References


Received ??

DETLEF MÜLLER: Christian-Albrechts-Universität zu Kiel, Mathematisches Seminar, Ludewig-Meyn-Str. 4, D-24118 Kiel, Germany.
E-mail: mueller@math.uni-kiel.de

FULVIO RICCI: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy.
E-mail: fulvio.ricci@sns.it

JAMES WRIGHT: School of Mathematics and Maxwell Institute for Mathematical Sciences University of Edinburgh, Edinburgh EH9 3FD, Scotland.
E-mail: J.R.Wright@ed.ac.uk