Masks2Metrics (M2M): A Matlab Toolbox for Gold Standard Morphometrics

Citation for published version:

Digital Object Identifier (DOI):
10.21105/joss.00436

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Open Source Software

Publisher Rights Statement:
This work is licensed under a Creative Commons Attribution 4.0 International License.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Masks2Metrics (M2M): A Matlab Toolbox for Gold Standard Morphometrics

Shadia Mikhael¹ and Calum Gray¹, ²

¹ Edinburgh Imaging, The Chancellor’s Building, 1st floor, FU303e, 49 Little France Crescent, Edinburgh, Scotland, UK, EH16 4SB. ² Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK.

Summary

Human brains undergo morphometric changes over a lifetime, from conception through to birth, infancy, adolescence, adulthood, and old age (Thambisetty et al. (2010); Madan and Kensinger (2016)). This is further compounded by the changes associated with various brain pathologies such as tumours (e.g. Bauer et al. (2013)) and dementia (e.g., B. C. Dickerson et al. (2011)). It is therefore essential to accurately and scientifically characterise such changes by using an array of morphologic measurements, for a better understanding of the natural progression of ageing and disease (Mills et al. (2016); Madan (2017)). While many existing brain image analysis tools (e.g., FreeSurfer (Fischl et al. (2004); Desikan et al. (2006)), BrainSuite (Shattuck and Leahy (2002)), and BrainVISA (Kochunov et al. (2012))) automatically compute such data from a 3-dimensional (3D) brain image, they lack the ability to do so for the equivalent manually-traced regions of interest (ROIs). This is all the more significant as such ROIs are considered as the gold standard, thus making knowledge of their metrics essential.

We have developed an automated Matlab-based tool, Masks2Metrics (Mikhael and Gray (2017)), that calculates three metrics for a given ROI in a 3D image: thickness, volume and surface area. An ROI is defined by a pair of binary masks (in NIfTI file format) representing its outer and inner borders, each of which are drawn continuously along one direction (x-, y- or z-axis). In the specific case of brain images, when the ROI describes a gyrus, its paired masks would correspond to grey matter (GM) and white matter (WM) curves. The paired ROI NIfTI (.nii) masks are expected to be of the form subj_roi_hem_gm/wmsegments.nii. For example, a pair corresponding to subject 1’s right SFG (superior frontal gyrus) would be 1_sfg_r_gm1.nii and 1_sfg_r_wm1.nii. A special feature of M2M is that multiple pairs, or segments, can be used rather than a single continuous ROI. These segments can be manually or automatically derived. The generated ROI metrics are grey matter thickness (GMth), grey matter volume (GMvol), and white matter surface area (WMsa), also classically calculated by popular existing automated tools (Fischl_2000; Shattuck_2002). Additionally, the ROI’s corresponding mean Fréchet (Ursell (2013)) and mean Modified Hausdorff Distance (SasiKanth (2011)) are calculated and saved as matrices.

M2M is freely available on GitHub at https://github.com/Edinburgh-Imaging/Masks2Metrics under a GNU General Public License, along with external code that is called by the tool. It can be downloaded into ‘Masks2Metrics’ folder, added to the list of Matlab paths, and consequently run by calling ‘masks2metrics’ with the appropriate input and output parameters. As part of the tool’s wiki, we provide a sample 3-segment ROI outlining part of a subject’s superior frontal gyrus for demonstration purposes. The gyrus was manually segmented over a 3D image acquired by a Magnetic Resonance Imaging (MRI) machine.
This tool not only provides invaluable gold standard data for the brain imaging field, but equally so for any other field investigating morphometrics of manually and automatically-derived 3D ROIs represented as paired binary masks.

Authors and Affiliations

Shadia Mikhael, Edinburgh Imaging, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
Calum Gray, Edinburgh Imaging and Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK.

Contributors

Maria del C. Valdés Hernández, Edinburgh Imaging, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
Corne, Hoogendoorn, Toshiba Medical Visualization Systems Edinburgh, Edinburgh, UK.
Cyril R. Pernet, Edinburgh Imaging, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.

References


