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Alan Bundy Department of Artificial Intelligence,
Edinburgh University, Edinburgh EH1 2QL, U.K.

ABSTRACT

We report the discovery of an unexpected connection between the invention
of the concept of uniform convergence and the occurs check in the unification
algorithm. This discovery suggests the invention of further interesting con-
cepts in analysis and a technique for automated concept formation. Part of
this technique has been implemented.

The discovery arose as part of an attempt to understand the role of proof
analysis in mathematical reasoning, so as to incorporate it into a computer
program. Silver (1986) and Mitchell (1983) have investigated the automatic
analysis of model proofs in order to extract and learn knowledge about con-
trolling search, including the knowledge of new concepts. We focus on the
analysis and correction of faulty proofs or ‘poofs’™® especially where that cor-
rection involves the invention of new mathematical concepts.

A classic example of where the analysis of a poof leads to a new concept
is the invention, by Weierstrass, Seidel, Cauchy and others, of uniform
convergence as a result of an analysis of Cauchy’s poof that the limit of a

* A ‘poof’, according to one of my mathematics lecturers, is a proof with something vital
missing.
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convergent series of continuous functions is itself continuous. The correction
consists of substituting in the theorem the new concept of ‘uniformly con-
vergent’ for ‘convergent’. We will investigate this example. The bug in
Cauchy’s poof is a violation of the occurs check. This observation suggests
a technique for automatically correcting the proof and this leads to the
concept of uniform convergence. The correction technique involves search.
Other branches in the search space lead to alternative corrections and alter-
native concepts, one of which seemed interesting to me and turns out to have
been discovered by the mathematician, Ascoli.

1. INTRODUCTION

Lakatos (1976) emphasizes the importance of poof analysis for discovering
hidden lemmas and hence correcting poofs, defining new concepts,
generalizing theories, etc. For instance, he relates how the concept of a
polyhedron was defined and refined by analysis of poofs of Euler’s theorem
and how the concept of uniform convergence was defined by analysing
Cauchy’s poof that the limit of a convergent series of continuous functions
is itself continuous. Poof analysis ensures that the new concepts it suggests
will be useful, because they will help change a poof into a proof. Thus a
poof analyser provides information to guide the process of concept forma-
tion, which is otherwise an explosive one. Such guidance can be provided
by heuristic search based on ‘interestingness’ values (Lenat, 1982), but
human concept formation is often problem driven, and poof analysis offers
an alternative, problem driven, concept formation technique.

Such a poof analyser could also be an important ingredient of an artificial
mathematics teacher, i.e. a program which reads student’s solutions and
discovers errors. DEBUGGY, (Burton, 1982), is an example of such a
diagnosis program in the area of elementary arithmetic.

As a prelude to building such a poof analyser we investigate the example
discussed by Lakatos—the invention of uniform convergence from an
analysis of Cauchy’s poof. This lends itself to formal analysis more easily
than the poofs of Euler’s theorem. We first give the informal poof and then
translate it into a resolution/paramodulation poof in order to locate the
bug. This turns out to be a missing occurs check in a unification. We discuss
how the poof can be fixed up by re-ordering quantifiers to remove the
dependencies that caused the unification failure. The effect is to replace
‘convergent’ by ‘uniformly convergent’ in the hypothesis of the theorem.
We discuss alternative, systematic ways of fixing the poof leading to other
concepts. Then we describe the partial automation of the process. Finally,
we discuss how the technique may be used to disambigute the meaning of
a sentence during natural language understanding.

2. THE INFORMAL POOF

First the ‘gist of Cauchy’s proof’ that the limit of a convergent series of
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continuous functions is itself continuous, quoted, slightly modified, from
Lakatos (1976).
Let f(x) = XiZofi(x) be a convergent series of continuous functions and,
for any n, define s,(x) = Z/Lofi(x) and rn(x) = ZiZ s 1 fi(X).
Given any ¢ > 0:
there is a §, such that for any b, if |b| < §, then

|sn(x+b) —sn(x)| <5
(there is such a § because of the continuity of s,(x)): @)
there is an M, such that |r,(x)| <& forall n > M
(there is such an M because of the convergence of Z{2fi(x)): (ii)
there is an M', such that |r.,(x+ b) < ¢ for all n > M’
(there is such an M’ because of the convergence of 2o fi(x + b)): (iii)
Hence we can infer that:
| f(x+5) = f(X)| = | sn(x+B) + ra(x + b) — sn(xX) = ra(x) |
< [sn(x+5) = sa(x)| + |ra(x)| + | ra(x+b)|
<3 forallb<d Q.E.D.

This kind of semi-formal, ‘mathematese’, is typical of the notation used in
human proofs. In order to locate the bug automatically it is necessary to
translate it into a formal notation which can be proof checked. We chose
a resolution/paramodulation type proof for this, although other types
would be equally suitable.

3. THE FORMAL POOF AND THE IDENTIFICATION OF THE BUG

In this formal version we use the PROLOG convention that variables begin
with an upper case letter and constants with a lower case letter. When
Skolemizing a variable we preserve the name, but demote the first letter
from upper to lower case.

The definition of convergence for ZiZofi(x) is:

el

VXVE>O0IMVYN2M| 3 fi(x)|<E (iv)

N+1
and the definition of continuity for f(x) is:
VXVE>03A>0VB|B|<A— |f(X+B)- f(X)|<E )
Thus the translations of (i), (ii) and (iii), to clausal form are:
E>0-6EFE,X,N)>0 (vi)
E>0& |B|<8(E,X,N)—> |s(N,X+B)-s(N,X)| <E (vii)
E>0&NZ2mE,X)- |r(N,X)| <E , (viii)



54 ARTIFICIAL INTELLIGENCE AND ITS APPLICATIONS
E>0&N>2m(E,X+B)— |r(N,X+B)|<E (ix)
from which we can infer:

E>0& |B|<8(E,X,N)&N>m(E,X)&N > m(E, X + B)
| f(X+B)- f(X)| <3.E x)

The goal is to prove f(X) continuous, which after negation and transla-
tion to clausal form gives:

>0 (xi)
A>0-1]bA)| <A (xii)
A>0& | f(x+bA) - f(x)| <&~ (xiii)

After cosmetic paramodulation with U = 3. (U/3), (xiii) resolves with (x)
to produce

8(/3, x, N)>0&
§/3>0& | b((/3, x,N))| < 8(¢/3, x, N) &
N> m(s/3,x) & N > m(g/3, x + b(5(s/3, x, N))) > (xiv)

With the aid of U> 0 - U/3 > 0, we can use (vi), (xi) and (xii) to resolve
the first three literals away leaving the rump:

N> m(s/3, x) & N > m(/3, x + b(3(/3, x, N))) » (xv)

These almost resolve with — Y > Y, but the presence of N on the right-
hand side of the second literal causes the occurs check to fail. In fact,
counter-examples can be found to the second literal.

4. CORRECTING THE POOF

Now to fix up the poof. The occurs check would not fail if N were not con-
tained in m(¢/3, x + b(8(¢/3, x, N))) and it would not be so contained if m
were a unary Skolem function dependent only on ¢/3. Locating the in-
troduction of m in the definition of convergence of f, we see that m would
have the required argument structure if the quantifier order were changed
to:

©

VE>0IMVXVYN>2M| 3 fiX)|<E (xvi)
i=

N+1

but this is the definition of uniform convergence. We will call this the
m unary’ solution.
Now the rump goals are:

N> m(/3) &N > m(s/3)

which will resolve with — Y > Y to prove the theorem.
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However, m is not the only Skolem function surrounding the offending
occurrence of N, there are also 6 and b. Similar corrections can be made
by making 6 a binary function, independent of its third argument, N, or by
making b a constant, independent of 8(¢/3, x, N).

S. ALTERNATIVE CORRECTIONS—MAKING b A CONSTANT
The Skolem function b arises from the definition of continuity.
VXVE>03A>0VB|B|<A- | f(X+B)- f(X)|<E

when it is negated and Skolemised as the conclusion of the theorem. The
required correction involves putting the vB before the 3A to create a
concept 1 shall call weak continuity, because it is a weaker property than
continuity, i.e.

VXVE>0VB3IA>0|B|<A~ |f(X+B)- fX)|<E

However, this is a trivial property that holds for all functions. In particular
the square wave (the normal counter-example to Cauchy’s proof). This is
because we can choose A to depend on B. For instance, we can choose A
to be | B|/2, but anything guaranteed less than or equal to | B | will do. Now
| B| < A is always false, so weak continuity is always true.

In contrast to the make m unary case, the rump subgoals.

N2m(g/3, x) & N2 m(s/3,x+b)—

are not identical and cannot be resolved away with = Y > Y. However,
they can be resolved away with — max(Y, Z) > Y and — max(Y, Z)2 Z.

Hand checking indicates that this version of Cauchy’s proof is legal,
although the theorem it proves is trivial, since its conclusion is always true.

6. ALTERNATIVE CORRECTIONS—MAKING 5 A BINARY
FUNCTION

The Skolem function é arises from the lemma that s(V, X) is continuous
for all N, i.e.

VNeZVXVE>03A >0VB|B|<A— [sWN,X+B)—s(V,X)|<E

This makes & dependent on N, X and E. We can remove the dependence on
N by shifting VN after 3A to create a concept called equi-continuity by
Ascoli (Simmons, 1963, p. 126), i.e.

VXVE>03A>0VNEZVB|B| <A sV, X+B)—s(N,X)|<E

Tracing this lemma back in the proof we see that the family of f,s must also
be equi-continuous.

VXVE>03A>0VNe€ZVB|B| <A~ |f(N,X+B)- f(N,X)|<E
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The proof of the rump subgoals,
N2>2m(e/3,x) & N 2 m(g/3, x + b(8(s/3, x))) =

is similar to that in the make-b-constant solution, i.e. they are resolved
away with » max(Y,Z) > Y and —» max(Y,Z) > Z.

Hand checking of this version of Cauchy’s proof suggests that it is legal.
This version of the theorem seems to be a genuine and interesting addition
to the standard one suggested by the make-m-unary correction. It involves
a different, but independently interesting, concept: equi-continuity. I have
been unable to find any reference to it in the literature. Its proof is similar
to parts of the proof of Ascoli’s theorem. (Simmons, 1963, pp. 124—128),
but Ascoli’s theorem itself is different. This version of Cauchy’s theorem
seems too obvious not to have been previously discovered by someone, and
I would be grateful for any help in tracking it down.

7. THE AUTOMATION OF POOF ANALYSIS
What are the requirements for automating this process?

(a) Assuming that the initial representation of the poof is in mathe-
matical English (or ‘mathematese’), the program must compare
predicate calculus definitions like (iv) and (v) above with the
mathematese statements like (i), (ii) and (iii), to produce predicate
calculus versions like (vi), (vii), (viii) and (ix).

(b) the program must fill in gaps in the informal proof, e.g. derive the
lemmas (xiv) and (xv).

(c) The program must recognise failure, as at step (xv), and the reason
for it, i.e. occurs check failure.

(d) The program must be able to fix up failures by modifying the
theorem, e.g. by reordering the quantifiers in the definition of
convergence.

(d), above, has been implemented, by the author, in a Prolog program,
SEIDEL. The program takes a description of an occurs check bug in a poof,
and produces all those modifications of the original theorem which correct
the poof. The description of the occurs check bug consists of the variable,
Y, and term, f(Y), on which the unification attempt should have failed in
the original poof. SEIDEL finds a skolem function, sk, in f(Y), and marks
the argument place of sk which contains Y (suppose this is the nth place).
It recovers the formula, Fm, whose skolemization gave risk to sk and
modifies Fm to remove the dependence of sk on Y. SEIDEL searches, depth
first, for all such modifications.
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In the current version of SEIDEL, Fm has to be in prenex normal form,
i.e. a list of quantifiers, Prefix, followed by a quantifier free formula,
Matrix. Prefix must be of the following form:

.QX,..., RSk, ...

where Q is the quantifier governing variable X, and R is the quantifier
governing variable Sk. Sk is the variable which skolemizes to sk, and X is
its nth argument. If Fm is skolemized positively then R will be an existential
quantifier and Q a universal one. If Fm is skolemized negatively, then vice
versa.

The idea of the modification is to move the quantifiers in Prefix so that
Q X no longer appears to the left of R Sk. This will remove the dependence
of sk on its nth argument place and thus on Y. We try to do this in a way
that minimises the disruption to Fm, i.e. so that there is no unnecessary
modification.

Fm preserves its meaning under any permutation of similar quantifiers
within Prefix, i.e. two adjacent existential or two adjacent universal quan-
tifiers can be exchanged without affecting the meaning of the formula. This
device is used to minimise the subsequent disruption to Fm. That is, R Sk
is moved as far leftwards as possible within its group of R-type quantifiers,
and QX is moved as far rightwards as possible within its group of Q-type
quantifiers.

At this point RSk and QX may be adjacent. This happens in all the
examples in this paper. They may then be exchanged to remove the
dependence of sk on x. Otherwise, there are two minimal solutions: R Sk
may be moved leftwards to immediately left of Q X, or Q X may be moved
rightwards to immediately right of R Sk.

SEIDEL works correctly on the Cauchy poof, producing the concepts of
uniform convergence, weak continuity and equi-continuity.

This completes the description of the current state of SEIDEL. Further
work required includes: the removal of the restriction to prenex normal
form; the addition of other bug types and fixes; and the addition of
mechanisms for (a), (b) and (c) above.

— (a) looks feasible—it requires fairly straightforward natural language
understanding, perhaps using semantic grammars geared to
mathematese.

— (b) could be done using theorem proving with some length of proof
bound, say.

— (c¢) could be tricky—how do you know when failure is absolute and
not some limitation of the proof bound? Perhaps counter-examples
could be brought to bear here. If the poof comes with a global
counterexample then this can be used to test gaps—a la Gelernter
(1963).
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8. AN APPLICATION TO NATURAL LANGUAGE
UNDERSTANDING

The purpose of this section is to show that poof analysis, and even the
particular technique of quantifier swapping described above, may find
application outside of mathematics. We will try to demonstrate a use for
the technique in a very different area: disambiguating the meaning of
sentences in natural language understanding.

A classical ambiguous sentence in English is

Everybody loves somebody. (xviii)
This can be represented in Predicate Logic as:
31X vY{person(X & (person(Y) — loves(Y, X))} (xix)
or
VY aX{person(X) & (person(Y) — loves(Y, X))} (xx)

Suppose (xix) was intended by a speaker but (xx) was understood by the
hearer.
The speaker might go on to say

Therefore, someone loves themself. (xxi)

This does indeed follow from (xix) but not from (xx). The hearer may then
detect the problem by realising that (xxi) does not follow from his/her
understanding of (xviii). However, by relaxing the occurs check s/he can
generate a poof of (xxi) from (xviii).

In clausal form the hearer’s version of the poof is:

- person(x(Y)) from (xx) (xxii)

person(Y) — loves(Y, x(Y)) from (xx) (xxiii)

person(Z) & loves(Z, Z) > from the negation of (xxi) (xxiv)
person(x(Y)) — from (xxiii) and (xxiv)

from (xxv) and (xxii)

The faulty step is the unification of loves (Y, x(Y)) and loves(Z, Z), since
this violates the occurs check—one is not allowed to unify Y and x(Y). The
poof can be corrected by removing the dependance of the skolem function
x on the variable Y. Using the technique of section 7 this is done by
reversing the order of the quantifiers in (xx), which gives (xix). Thus using
poof analysis to correct the faulty argument reconstructs the correct transla-
tion of the ambiguous sentence.

This example has been run successfully on SEIDEL.
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9. CONCLUSION

Concept formation is an important area of research in Artificial intelligence
and a vital ingredient of a program for modelling the cognitive process in-
volved in mathematical reasoning. New concepts can easily be formed by
manipulation of old ones, but the search space is combinatorially explosive.
One way to guide the search through this space is to form concepts that
facilitate the solving of problems. We call this problem-driven concept-
formation.

Poof analysis is one technique for problem-driven concept-formation in
mathematics. We have investigated its application in a classic example—the
invention of uniform convergence. This investigation has suggested a
systematic technique for poof correction and concept formation, and led to
the discovery of alternative corrections and concepts. The technique has
also been applied to the problem of disambiguation in natural language
understanding. The technique has been partially implemented.
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