Age vectors vs. axes of intraspeaker variation for vowel formants in North American and Scottish English

Citation for published version:
Thomas, E, Mielke, J, Fruehwald, J, Holley, J, McAulliffe, M, Sonderegger, M, Stuart-Smith, J, Dodsworth, R & Kendall, T 2018, 'Age vectors vs. axes of intraspeaker variation for vowel formants in North American and Scottish English' LabPhon 16, Lisbon, Portugal, 19/06/18 - 22/06/18, .
Introduction

We examine vowel formant variation in several natural speech corpora of North American and United Kingdom English. Labov (1994) has suggested that a speaker’s tokens of a particular vowel will be aligned along an axis coinciding with the direction that vowel is shifting diachronically in a given community. We compare the direction of change in apparent time with the axis of intraspeaker variation of several vowel phonemes, in order to test this assertion. This is an opportunity to use Polyglot (McAuliffe et al. 2017, Figure 1) for large-scale vowel analysis. This is phase one of a project which will measure dozens of English corpora from both sides of the Atlantic.

Data

We measured 547,344 stressed vowels from six speech corpora:
- Santa Barbara corpus subsets (Western U.S. and Northern Cities, Du Bois et al. 2000)
- Raleigh corpus (Raleigh, North Carolina, U.S. urban South, Dodsworth and Kohn 2012)
- Buckeye corpus (Columbus, Ohio, U.S. North Midland, Pitt et al. 2007)
- International Corpus of English, Canadian subset (ICE-CAN) (Canada, Greenbaum and Nelson 1996)
- Sounds of the City corpus (Glasgow, Scotland, Stuart-Smith 2014)
- Scottish Corpus of Texts and Speech (SCOTS) (Scotland, Anderson et al. 2007)

The analysis is limited to words that are not known to have been involved in context-sensitive change in any of the dialects under study; determined using UNISYN (Fitt 2000).

Methods

- Polyglot was used to measure F1 and F2 at the nucleus (1/3 time point) of each vowel.
- Optimal formant measurements for each token were selected in a FAVE-like (Rosenfelder et al. 2011) manner using prototypes for each category. The first pass was based on corrected and pruned measurements of the same corpora, and then the prototypes were re-estimated for each speaker’s data five times.
- Selected formant measurements were normalized using the Lobanov method (Lobanov 1971). Speaker medians for various vowel categories are shown in Figure 2.

Age vectors (thick arrows in Figure 3) were calculated using the mean normalized F1 and F2 measurements for the oldest and youngest generation within each corpus (young vs. old for Buckeye, birth year before 1950 vs. after 1967 for Raleigh and SCOTS, older and 1980s middle-aged vs. 1980s-2000s young for Sounds of the City, birth year before vs. after 1950 for ICE-CAN, and age at recording over vs. under 35 for Santa Barbara.

Axes of intraspeaker variation (dotted line segments in Figure 3) were found by performing a principal component analysis for F1 and F2 for each speaker-vowel combination with at least 20 tokens. The loadings were used to calculate the angle of the main axis of variation for each speaker-vowel combination. These were averaged across speakers within each regionally-defined group. The length of each line segment represents the mean standard deviation of vowel variation along the axis.

Acknowledgments

The U.S. portion of this project is supported by NSF grant SMA-1730479, the Canadian portion of this project is supported by SSHRC and NSERC, and the U.K. portion of this project is supported by AHRC and ESRC. The map is courtesy of the National Library of Scotland. Thanks also to Arlie Coles and Rachel Macdonald.

Data

We measured 547,344 stressed vowels from six speech corpora:
- Santa Barbara corpus subsets (Western U.S. and Northern Cities, Du Bois et al. 2000)
- Raleigh corpus (Raleigh, North Carolina, U.S. urban South, Dodsworth and Kohn 2012)
- Buckeye corpus (Columbus, Ohio, U.S. North Midland, Pitt et al. 2007)
- International Corpus of English, Canadian subset (ICE-CAN) (Canada, Greenbaum and Nelson 1996)
- Sounds of the City corpus (Glasgow, Scotland, Stuart-Smith 2014)
- Scottish Corpus of Texts and Speech (SCOTS) (Scotland, Anderson et al. 2007)

The analysis is limited to words that are not known to have been involved in context-sensitive change in any of the dialects under study; determined using UNISYN (Fitt 2000).

Methods

- Polyglot was used to measure F1 and F2 at the nucleus (1/3 time point) of each vowel.
- Optimal formant measurements for each token were selected in a FAVE-like (Rosenfelder et al. 2011) manner using prototypes for each category. The first pass was based on corrected and pruned measurements of the same corpora, and then the prototypes were re-estimated for each speaker’s data five times.
- Selected formant measurements were normalized using the Lobanov method (Lobanov 1971). Speaker medians for various vowel categories are shown in Figure 2.

Age vectors (thick arrows in Figure 3) were calculated using the mean normalized F1 and F2 measurements for the oldest and youngest generation within each corpus (young vs. old for Buckeye, birth year before 1950 vs. after 1967 for Raleigh and SCOTS, older and 1980s middle-aged vs. 1980s-2000s young for Sounds of the City, birth year before vs. after 1950 for ICE-CAN, and age at recording over vs. under 35 for Santa Barbara.

Axes of intraspeaker variation (dotted line segments in Figure 3) were found by performing a principal component analysis for F1 and F2 for each speaker-vowel combination with at least 20 tokens. The loadings were used to calculate the angle of the main axis of variation for each speaker-vowel combination. These were averaged across speakers within each regionally-defined group. The length of each line segment represents the mean standard deviation of vowel variation along the axis.

Bibliography

- Pitt, David. 2000. Documentation and use guide to canadian voice and body-lexical. UBC.