Age vectors vs. axes of intraspeaker variation for vowel formants in North American and Scottish English

Citation for published version:
Thomas, E, Mielke, J, Fruehwald, J, Holley, J, McAulliffe, M, Sonderegger, M, Stuart-Smith, J, Dodsworth, R & Kendall, T 2018, 'Age vectors vs. axes of intraspeaker variation for vowel formants in North American and Scottish English' LabPhon 16, Lisbon, Portugal, 19/06/18 - 22/06/18, .
Data
We measured 547,344 stressed vowels from six speech corpora:
- Santa Barbara corpus subsets (Western U.S. and Northern Cities, Du Bois et al. 2000)
- Raleigh corpus (Raleigh, North Carolina, U.S. urban South, Dowdworth and Kohn 2012)
- Buckeye corpus (Columbus, Ohio, U.S. North Midland, Pitt et al. 2007)
- International Corpus of English, Canadian subset (ICE-CAN) (Canada, Greenbaum and Nelson 1996)
- Sounds of the City corpus (Glasgow, Scotland, Stuart-Smith 2014)
- Scottish Corpus of Texts and Speech (SCOTS) (Scotland, Anderson et al. 2007)

The analysis is limited to words that are not known to have been involved in context-sensitive change in any of the dialects under study; determined using UNISYN (Fitt 2000).

Methods
- Polyglot was used to measure F1 and F2 at the nucleus (1/3 time point) of each vowel.
- Optimal formant measurements for each token were selected in a FAVE-like (Rosenfelder et al. 2011) manner using prototypes for each category. The first pass was based on corrected and pruned measurements of the same corpora, and then prototypes were re-estimated for each speaker’s data five times.
- Selected formant measurements were normalized using the Lobanov method (Lobanov 2017). Speaker medians for various vowel categories are shown in Figure 2.

Age vectors (thick arrows in Figure 3) were calculated using the mean normalized F1 and F2 measurements for the oldest and youngest generation within each corpus (young vs. old for Buckeye, birth year before 1950 vs. after 1967 for Raleigh and SCOTS, older and 1980s-middle aged vs. 1980s-2000s young for Sounds of the City, birth year before vs. after 1950 for ICE-CAN, and age at recording over vs. under 35 for Santa Barbara.

Axes of intraspeaker variation (dotted line segments in Figure 3) were found by performing a principal component analysis for F1 and F2 for each speaker-vowel combination with at least 20 tokens. The loadings were used to calculate the angle of the main axis of variation for each speaker-vowel combination. These were averaged across speakers within each regionally-defined group. The length of each line segment represents the mean standard deviation of vowel variation along the axis.

Conclusions
- In the majority of cases, there is no obvious connection between age vectors and axes of intraspeaker variation, as Figures 2 and 3 illustrate.
- For most vowels, the axis of intraspeaker variation was aligned vertically, presumably corresponding to the degree of jaw opening for individual tokens.
- The GOOSE vowel in North American English is an important exception: the axis of intraspeaker variation is aligned horizontally, which also happens to be the axis of diachronic change for this vowel across North America.
- The horizontal alignment differentiated GOOSE from the less flat orientation of the other high, tense vowel (FLEECE); from the vertical orientations of other rounded vowels such as thought and GOAT; and even from the vertical orientations observed for GOOSE in the two Scottish corpora.
- This anomalous GOOSE pattern calls for an explanation, but it may help to explain why fronting and unrounding of high back vowels are common shifts across languages.

Bibliography