Intra-segmental timing in sound change: /aw/ in Philadelphia

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Intra-segmental timing in sound change /aw/ in Philadelphia

Intro

Philadelphia (Labov et al 2013)

- /aw/ raising and fronting 1900
- /aw/ lowering and backing 1950
- today

Formant Trajectories

Have been investigated with generation as a categorical variable. Jacewicz, Fox & Salmons (2011)

- Wholistic measures compared against continuous variables. Rudal & Kohn (2014)
- With GAMs, it is possible to model trajectories against continuous variables. Wood (2006)

Methods

Data

- Philadelphia Neighborhood Corpus
- 19,517 tokens of pre-oral /aw/
- 279 white speakers

Modelling

- Generalized additive models & tensor product smooths
- outcome (F1)

Predictors

- All non-linear effects and interactions between
 - gender
 - log2(duration)
 - date of birth
 - measurement point
- Random intercepts
 - speaker
 - word
- Random smooths
 - measurement point
 - by speaker

Results

formant tracks

- Falling F2 & single F1 excursion at midpoint (diphthong)

vowel space trajectories

max F1 excursion

- Timing of F1 maximum shifts diachronically
- Target of F1 maximum is more stable

They interact with duration differently, over time

F1 relative to F2

- Delayed F1 maximum keeps F2/F1 difference larger for longer

Conclusion

It is not straightforward to characterize /aw/ as a 2 part diphthong in Philadelphia.

Along with the shifts in vowel quality, there is a considerable shift in relative timing of vowel formant targets.

This puts /aw/ in line with some consonantal phonetic changes, such as Scottish derhoticization or Andalusian post-aspiration.

Further directions

Evaluating and improving quality of automated full formant track extraction.

Incorporating more linguistic (nasals) and social (education) factors into analysis.

Are the F1 and F2 qualities used differently for linguistic or sociolinguistic perception?

References

Labov, W., & Rosenfelder, L. (2007). Tone tools and methods for very large scale measurements of very large corpora.

