Whole Genome Sequence and Comparative Genomics Analysis of Multi-drug Resistant Environmental Staphylococcus epidermidis ST59

Zhen Xu,*† Raju Misra,§ Dorota Jamrozy,α Gavin K. Paterson,** Ronald R. Cutler,† Mark A. Holmes,††
Saheer Gharbia,* and Hermine V. Mkrtchyan†

*Department of Public Health, National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, China 300070, †School of Biological and Chemical Sciences, Queen Mary University of London, London, UK E1 4NS, §Natural History Museum, Core Research Laboratories, Molecular Biology, London, UK SW7 5BD, ‡The Wellcome Trust Sanger Institute, Cambridge, UK CB10 1SA, **The Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, UK EH8 9LE, and ††Department of Veterinary Medicine, University of Cambridge, Cambridge, UK CB3 0ES

ABSTRACT Staphylococcus epidermidis is a major opportunistic pathogen primarily recovered from device-associated healthcare associated infections (DA-HAIs). Although S. epidermidis and other coagulase-negative staphylococci (CoNS) are less virulent than Staphylococcus aureus, these bacteria are an important reservoir of antimicrobial resistance genes and resistance-associated mobile genetic elements that can be transferred between staphylococcal species. We report a whole genome sequence of a multidrug resistant S. epidermidis (strain G6_2) representing multilocus sequence type (ST) 59 and isolated from an environmental sampling of a hotel room in London, UK. The genome of S. epidermidis G6_2 comprises of a 2408357 bp chromosome and six plasmids, with an average G+C content of 32%. The strain displayed a multi-drug resistance phenotype which was associated with carriage of 7 antibiotic resistance genes (blaZ, meca, msrA, mphC, fosB, aacA-aphD, tetK) as well as resistance-conferring mutations in fusA and ileS. Antibiotic resistance genes were located on plasmids and chromosome. Comparative genomic analysis revealed that antibiotic resistance gene composition found in G6_2 was partly preserved across the ST59 lineage.

Staphylococcus epidermidis is a common human skin commensal, but also the most frequent pathogen among coagulase-negative staphylococci (CoNS), causing primarily device-associated healthcare associated infections (DA-HAIs). Compared with more virulent S. aureus, CoNS rarely produce toxins and less is known on whether the toxin genes contribute to strain virulence (Otto 2013a). S. epidermidis forms biofilms on medical devices and implants, from which single cells dissociate and disseminate via the bloodstream to start colonization at a different site, which might lead to sepsis, meningitis and endocarditis (Becker et al. 2014). In addition, S. epidermidis and other CoNS are believed to act as a reservoir of resistance and virulence genes for S. aureus, contributing to the evolution and emergence of successful clones of methicillin-resistant S. aureus (MRSA) (Otto 2013b).

Together with S. aureus and other CoNS, S. epidermidis accounts for 30% of hospital associated infections (Conlan et al. 2012). These nosocomial pathogens have developed an arsenal of strategies contributing to colonization and infection of the hosts (Becker et al. 2014), while often being resistant to multiple antibiotics. Emergence of antibiotic resistant bacteria has been mostly attributed to the healthcare-associated settings (Oliveira and Tomasz 2002). However, more recently, selection of antibiotic resistance has been also associated with the community which has been linked to the misuse of antibiotics (DeLeo et al. 2010). A typical example of this is the community-acquired MRSA (CA-MRSA) which, in addition to acquiring methicillin resistance, has gradually increased the frequency of resistance determinants similarly to hospital-acquired MRSA (HA-MRSA) (Chambers 2005). There is an increasing evidence that horizontal gene transfer between closely related species may contribute to this (Otto 2013a).
Recently, Méric et al. showed that S. aureus and S. epidermidis share half of the genome and while homologous recombination between the two species was rare, there was an evidence of extensive MGE sharing, in particular SCCmec, metal resistance and SapIn1 elements (Méric et al. 2015). As a result, attention is now focusing on the multidrug-resistant coagulase-negative staphylococci and their rapid spread as opportunistic pathogens particularly in relation to patients with an immuno-compromised status (Morfin-Otero et al. 2012). Multidrug-resistant coagulase-negative staphylococci (MDR-CoNS) are primarily recovered from healthcare-associated medical devices, ambulatory patients and healthy animals (Becker et al. 2014).

Molecular approaches such as pulse field gel electrophoresis and multi-locus sequence typing have been widely used to evaluate the dissemination of resistant clones of bacteria (Miragaia et al. 2008). Recently, complete genome sequencing of S. epidermidis strains have been reported, however these are limited to commensal and nosocomial strains (Conlan et al. 2012; Gill et al. 2005; Zhang et al. 2003). Only one study has compared whole genome sequences of four S. epidermidis isolated from rice seeds with that of type strain (Chaudhry and Patil 2016). To our knowledge this is the first whole genome based study looking at MDR-CoNS isolated from general public settings.

In this study, we present the genetic features of this multidrug resistant S. epidermidis (strain G6_2) and compare it with six S. epidermidis reference genomes and 133 previously published genomes of clinical S. epidermidis.

MATERIAL AND METHODS

Isolates analyzed in this study

Between October 2012 and April 2013, we sampled different sites in three hotels in London, UK. Permission to carry out sampling was granted by the manager/owner of each hotel and the results from each hotel were reported to each manager/owner for their information. Inanimate objects in 32 hotel rooms were sampled using COPAN dry swabs (Coping Diagnostics Inc., USA). All specimens were inoculated onto Nutrient Agar (Oxoid, Basingstoke, UK) and Mannitol Salt Agar plates (Oxoid Basingstoke, UK). These cultures were incubated aerobically at 37°C for 24–72 h.

The S. epidermidis G6_2 was recovered from one of the hotel rooms in April 2013 in London, UK. Preliminary identification was achieved by using Matrix-assisted laser desorption ionization time-flight mass-spectroscopy (Microlflex LT, MALDI-TOF-MS, Bruker Daltonics, Coventry, UK) as described previously (Mkrtchyan et al. 2013). For comparative genomics analysis genomes of six S. epidermidis reference strains were included: RP62A (Gill et al. 2005), ASM1192v1, ATCC12228 (Zhang et al. 2003), ASM764v1, SEI (Davenport et al. 2014), CP009046, 949_S8 (Biswas et al. 2015), CP010942, PM221 (Savijoki et al. 2014), HG815242, and BPH 0662 (Jyh et al. 2016), NZ_LT571449) together with 129 S. epidermidis genomes derived from two previously published collections (Roach et al. 2015; Tewhey et al. 2014).

16S rRNA gene sequencing

Genomic DNA of S. epidermidis G6_2 was prepared using a Qiagen DNA extraction kit (Qiagen, Crawley, UK). 16S rRNA amplification was performed as described previously (Okazaki et al. 2009), PCR products were sequenced by Eurofins MWG GmbH (Ebersberg, Germany) using ABI 3730 L DNA analyzer.

Molecular characterization of S. epidermidis G6_2

Carriage of the mecA gene was determined with PCR as described previously (Hanssen et al. 2004). SCCmec typing was carried out by determination of mec and ccr complexes (Kondo et al. 2007). Multi locus sequence typing (MLST) has been used to determine seven housekeeping genes as describe previously (Thomas et al. 2006). Sequence types were determined using MLST V1.8 software (https://cge.cbs.dtu.dk/services/MLST/).

Antibiotic susceptibility testing

The antibiotic susceptibility of S. epidermidis G6_2 was tested against 13 antibiotics (Mast Group, Merseyside, UK) using disk diffusion methods according to BSAC guidelines (J. M. Andrews and Howe 2011). This included penicillin (1 unit), amoxicillin (10 μg), cefoxitin (10 μg), oxacillin (1 μg), cefepime (30 μg), vancomycin (5 μg), gentamicin (10 μg), streptomycin (10 μg), mupirocin (20 μg), erythromycin (15 μg), tetracycline (10 μg), fusidic acid (10 μg) and chloramphenicol (30 μg). In addition, the minimum inhibitory concentration (MIC) of the isolate to oxacillin was determined using “M.I.C. evaluators” (Oxoid Ltd., Basingstoke, UK).

Whole genome sequencing, assembly and comparative genomics

Genomic DNA was extracted using the MasterPure Gram Positive DNA Purification Kit (Cambio, Dry Drayton, UK) from overnight cultures grown from single colonies in 5 ml of tryptic soy broth overnight at 37°C. Illumina library preparation was carried out as described previously (Quail et al. 2008), and genome sequencing using Hi-Seqation 2000 performed following the manufacturer’s standard protocols (Illumina, Little Chesterfield, UK). The raw fastq data were quality trimmed using trimmomatic, (version 0.35) default settings, specifying a phred cutoff of Q20. Read quality was assessed using FastQC (Andrews 2011) and Kraken (version 0.10.5-beta) metagenomic pipeline (Wood and Salzberg 2014), including KronaTools (version 2.5) (Ondov et al. 2011) was used to assess library purity, that is, it was not a mixed sample and ensure the species was S. epidermidis. De novo assemblies were performed using assembler, SPAdes (version 3.5.0) (Bankevich et al. 2012), default PE settings, from which only contigs greater than 500 bp in length were taken for further analysis. Using the program, Andi (version 0.9.4-beta) (Haubold et al. 2015) the de novo assembled G6_2 genome along with 108 assembled Staphylococci genomes were aligned, clustered and visualized using PHYLIPI (http://evolution.genetics.washington.edu/phylip.html) and FigTree (http://tree.bio.ed.ac.uk/software/figtree/). Annotations were performed using the pipeline Prokka (version 1.11) (Seemann 2014). The resultant annotated genome was used for all subsequent comparative genomic studies. Carriage of antimicrobial resistance and virulence genes was assessed using the SRST 2 software (Inouye et al. 2014) and the ARG-ANNOT (Gupta et al. 2014) and VF-DB databases (Chen et al. 2016). Pan-genome analysis was performed using the Roary pipeline (version 3.4.2) (Page et al. 2015). To reconstruct phylogenetic tree, short reads were mapped against the S. epidermidis ATCC12228 reference genome (Zhang et al. 2003), using SMALT version 0.5.8 (http://www.sanger.ac.uk/science/tools/ smalt-0). A core genome alignment was created after excluding MGE regions, variable sites associated with recombination (detected with Gubbins (Croucher et al. 2015) and sites with more than 5% proportion of gaps (i.e., sites with an ambiguous base). A maximum likelihood (ML) phylogenetic tree was generated with RAxML v8.2.8 (Stamatakis 2014) based on generalized time reversible (GTR) model with GAMMA method of correction for among site rate variation and 100 bootstrap (BS) replications. The phylogenetic tree was annotated using Evolvew (Zhang et al. 2012).
Table 1 Comparative general features of S. epidermidis G6_2 and the reference strains

<table>
<thead>
<tr>
<th>Chromosome*</th>
<th>RP62a</th>
<th>ATCC 12228</th>
<th>SEI</th>
<th>949_S8</th>
<th>PM221</th>
<th>BPH 0662</th>
<th>G6_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of sequences (bp)</td>
<td>2616530</td>
<td>2499279</td>
<td>2538314</td>
<td>2339868</td>
<td>2490012</td>
<td>2793003</td>
<td>2408357</td>
</tr>
<tr>
<td>G+C content</td>
<td>32.10%</td>
<td>32.10%</td>
<td>32.10%</td>
<td>32.00%</td>
<td>32.10%</td>
<td>32.00%</td>
<td>32.02%</td>
</tr>
<tr>
<td>Protein coding region</td>
<td>2391</td>
<td>2419</td>
<td>2504</td>
<td>2119</td>
<td>2399</td>
<td>2699</td>
<td>2213</td>
</tr>
<tr>
<td>Ribosomal RNAs</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Transfer RNAs</td>
<td>58</td>
<td>60</td>
<td>58</td>
<td>56</td>
<td>59</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>Plasmids**</td>
<td>P1:27310</td>
<td>P1:4439</td>
<td>P1:37688</td>
<td>P1:4439</td>
<td>P1:45804</td>
<td>P1:10570</td>
<td></td>
</tr>
</tbody>
</table>

*Chromosome section includes: the length of the chromosome, G+C content of the chromosome, protein coding region, ribosomal RNA and transfer RNAs numbers.

**Plasmids section includes: the length of each plasmid and the number of plasmids. P - Plasmid. Numbers - the number of plasmids.

Nucleotide sequence accession numbers
Reads for S. epidermidis G6_2 were submitted to the European Bioinformatics Institute Sequence Read Archive, accession ERR387168.

Data availability
The authors state that all data necessary for confirming the conclusions presented in the article are represented fully within the article and its tables and figures. Supplemental material available at Figshare: https:// doi.org/10.25387/g3.6133946.

RESULTS AND DISCUSSION
S. epidermidis has become a leading hospital-associated pathogen due to the increased use of medical devices (Vuong et al. 2004). Treatment of S. epidermidis infections is challenging as the bacteria are commonly resistant to methicillin and might also display multi-drug resistance phenotype, which presents a serious public health challenge (Xu et al. 2015). S. epidermidis, represents an important reservoir of mobilizable genes that can be horizontally transferred between staphylococci species, which has likely contributed to the development of antibiotic resistance in S. aureus (Otto 2013a).

S. epidermidis G6_2 was isolated from a hotel room in London, UK in 2013, and the species were determined by MALDI-TOF MS and 16S rRNA sequencing. Initial molecular analysis revealed that the S. epidermidis G6_2 strain was mecA positive, carrying SCCmec type IV, and represented ST59.

A draft genome was assembled, comprising of 53 contigs (48 ≥ 1kb) for the isolated S. epidermidis G6_2 genome (Table S1; Table S2 and Figure S1). The assembly comprised of one chromosome (2408357 bp in length) and six plasmids, annotated as pG6_2_1 to pG6_2_6 (the largest, pG6_2_1, is 10570 and the smallest, pG6_2_6, is 3426 bp in length), with an average G+C content of 32.02%. It has a total (chromosome and plasmids) of 2213 predicted protein coding sequences, of which 21.5% were annotated as hypothetical proteins and 14.3% were annotated as putative functions (Table 1).

Phylogenetic relationship with other S. epidermidis isolates
A previously described collection of 129 whole genome-sequenced S. epidermidis isolates together with 6 reference strains was used to determine the phylogenetic relationship between the G6_2 strain and other S. epidermidis lineages. After removal of variable sequence regions corresponding to mobile genetic elements (MGE), recombination blocks as well as sites with more than 5% proportion of gaps, the core genome alignment contained 4262 SNP sites. Seven ST59 isolates clustered and formed a distinct clade with S. epidermidis G6_2 (Figure 1).
might be successful in healthcare settings contribute to proliferation of subpopulations of two species (Méric et al. 2015).

Comparison of resistance determinant distribution revealed that the \textit{S. epidermidis} G6_2 strain shared a common antibiotic resistance gene composition with other ST59 isolates, suggesting that the particular combination of antibiotic resistance genes found in the G6_2 strain is preserved across the ST59 lineage (Figure 1). All ST59 isolates harbored \textit{aac-aph}, \textit{blaZ} and \textit{mecA} genes, and majority contained \textit{mphC} and \textit{msrA} genes, whereas \textit{tetK} was uniquely found in \textit{S. epidermidis} G6_2. The G6_2 strain also shared the \textit{qacC} plasmid with other ST59 isolates as well as the SCC\textit{mec} IV sequence but not full SCC\textit{mec}-SCC composite island, which was not detected in any other analyzed \textit{S. epidermidis} genome.

\textbf{Functional genes uniquely found in \textit{S. epidermidis} G6_2 compared with reference strains}

Pan-genome analysis of the G6_2 strain and six \textit{S. epidermidis} reference genomes revealed that 78 genes were unique to G6_2. After excluding genes found on plasmids, 64 chromosomally located genes were unique to G6_2 strain. This included a number of SCC\textit{mec}- and SCC-associated genes as well as some of the chromosomally inserted resistance genes such as \textit{mphC}, \textit{msrA}, \textit{capZ-capA-csoR} operon and the additional copy of \textit{czcD} genes.

\textbf{Comparative analysis of virulence genes}

Pathogenicity of \textit{S. epidermidis} has been linked primarily with its capacity for biofilm formation. Biofilm formation occurs by initial attachment of bacteria on both biotic and abiotic surfaces, which further accumulates into multi-layered cell agglomerates. This facilitates the internalization and persistence of \textit{S. epidermidis} species in the host cells. Strains that facilitate this feature are therefore considered more virulent (Becker et al. 2014). \textit{S. epidermidis} carries a number of virulence determinants that have been associated with its ability to attach to biotic and abiotic surfaces as well as the various phases of biofilm formation. Analysis of virulence gene composition based on the VF database, revealed a number of such virulence determinants that were detected in all or majority of analyzed \textit{S. epidermidis} isolates, including the G6_2 strain. This included the autolysin gene \textit{allE} (138/140), the cell wall associated fibronectin...
Inactivating enzymes | mph(C) | AF167161 (100) | plasmid | Macrolide resistance | Macrolide | Erythromycin |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracycline efflux pump</td>
<td>tet(K)</td>
<td>U38428 (99.93)</td>
<td>plasmid</td>
<td>Tetracycline resistance</td>
<td>Tetracycline</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>Isoleucyl RNA synthetase</td>
<td>ileS</td>
<td>—</td>
<td>—</td>
<td>Fusidic acid resistance</td>
<td>Fusidic acid</td>
<td>Fusidic acid</td>
</tr>
<tr>
<td>Elongation factor G</td>
<td>fusA</td>
<td>—</td>
<td>—</td>
<td>Monoxycarbolic resistance</td>
<td>Monoxycarbolic</td>
<td>Mupirocin</td>
</tr>
</tbody>
</table>

LITERATURE CITED

Table 2 Genotypic and phenotypic characterization of antibiotic resistance in *S. epidermidis* G6_2

<table>
<thead>
<tr>
<th>Product</th>
<th>Gene name</th>
<th>Accession number (Identity %)</th>
<th>Location</th>
<th>Function</th>
<th>Class of antibiotic</th>
<th>Antibiotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycoside-modifying enzymes</td>
<td>aac(6’)-aph(2’")</td>
<td>M137771 (100)</td>
<td>plasmid</td>
<td>Aminoglycoside resistance</td>
<td>Aminoglycoside</td>
<td>Gentamicin streptomycin</td>
</tr>
<tr>
<td>Beta-lactamase</td>
<td>blaZ</td>
<td>AJ302698 (100)</td>
<td>plasmid</td>
<td>Beta-lactam resistance</td>
<td>Beta-lactam</td>
<td>Penicillin oxacillin Amoxillin cefepime cefoxitin</td>
</tr>
<tr>
<td>Penicillin-binding protein 2a</td>
<td>mecA</td>
<td>AB505628 (100)</td>
<td>Chromosome</td>
<td>Beta-lactam resistance</td>
<td>Beta-lactam</td>
<td>Penicillin oxacillin Amoxillin cefepime cefoxitin</td>
</tr>
<tr>
<td>Fosfomycin resistance protein</td>
<td>fosA</td>
<td>ACHE01000077 (100)</td>
<td>Chromosome</td>
<td>Fosfomycin resistance</td>
<td>Phosphonic</td>
<td>Fosfomycin</td>
</tr>
<tr>
<td>Macrophage scavenger receptors</td>
<td>mprA</td>
<td>X52085 (98.98)</td>
<td>plasmid</td>
<td>Lincosamide and Streptogramin B resistance</td>
<td>Macrolide</td>
<td>Microlide Erythromycin</td>
</tr>
<tr>
<td>Inactivating enzymes</td>
<td>mph(C)</td>
<td>AF167161 (100)</td>
<td>plasmid</td>
<td>Macrolide resistance</td>
<td>Macrolide</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Tetracycline efflux pump</td>
<td>tet(K)</td>
<td>U38428 (99.93)</td>
<td>plasmid</td>
<td>Tetracycline resistance</td>
<td>Tetracycline</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>Isoleucyl RNA synthetase</td>
<td>ileS</td>
<td>—</td>
<td>—</td>
<td>Fusidic acid resistance</td>
<td>Fusidic acid</td>
<td>Fusidic acid</td>
</tr>
<tr>
<td>Elongation factor G</td>
<td>fusA</td>
<td>—</td>
<td>—</td>
<td>Monoxycarbolic resistance</td>
<td>Monoxycarbolic</td>
<td>Mupirocin</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

Genome sequencing was supported by Medical Research Council (MRC) partnership grant G1001787/1.