Oral prion neuroinvasion occurs independently of PrPC expression in the gut epithelium

Running title: Prion disease in mice lacking PrPC in enterocytes

Alison Marshalla, Barry M. Bradforda, Alan R. Clarkeb,c, Jean C. Mansond# & Neil A. Mabbotta#

a The Roslin Institute & Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush EH25 9RG, United Kingdom

b School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom

c Deceased

d Centre for Clinical Brain Sciences, University of Edinburgh, United Kingdom

\# Address correspondence to: Jean C. Manson, jean.manson@roslin.ed.ac.uk; Neil A. Mabbott, neil.mabbott@roslin.ed.ac.uk
ABSTRACT The early replication of certain prion strains within the Peyer’s patches in the small intestine is essential for the efficient spread of disease to the brain after oral exposure. Our data show that orally-acquired prions utilise specialised gut epithelial cells known as M cells to enter Peyer’s patches. M cells express the cellular isoform of the prion protein, PrP\textsubscript{C}, and this may be exploited by some pathogens as an uptake receptor to enter Peyer’s patches. This suggested that PrP\textsubscript{C} might also mediate the uptake and transfer of prions across the gut epithelium into Peyer’s patches in order to establish infection. Furthermore, the expression level of PrP\textsubscript{C} in the gut epithelium could influence the uptake of prions from the lumen of the small intestine. To test this hypothesis, transgenic mice were created in which deficiency in PrP\textsubscript{C} was specifically restricted to epithelial cells throughout the lining of the small intestine. Our data clearly show that efficient prion neuroinvasion after oral exposure occurred independently of PrP\textsubscript{C} expression in small intestinal epithelial cells. The specific absence of PrP\textsubscript{C} in the gut epithelium did not influence the early replication of prions in the Peyer’s patches or disease susceptibility. Acute mucosal inflammation can enhance PrP\textsubscript{C} expression in the intestine, implying the potential to enhance oral prion disease pathogenesis and susceptibility. However, our data suggest that the magnitude of PrP\textsubscript{C} expression in the epithelium lining the small intestine is unlikely to be an important factor which influences the risk of oral prion disease susceptibility.

IMPORTANCE The accumulation of orally-acquired prions within Peyer’s patches in the small intestine is essential for the efficient spread of disease to the brain. Little is known of how the prions initially establish infection within the Peyer’s patches. Some gastrointestinal pathogens utilize molecules such as the cellular prion protein, PrP\textsubscript{C}, expressed on gut epithelial cells to enter Peyer’s patches.
Acute mucosal inflammation can enhance PrP^C expression in the intestine, implying the potential to enhance oral prion disease susceptibility. We used transgenic mice to determine whether the uptake of prions into Peyer’s patches was dependent upon PrP^C expression in the gut epithelium. We show that orally-acquired prions can establish infection in Peyer’s patches independently of PrP^C expression in gut epithelial cells. Our data suggest that the magnitude of PrP^C expression in the epithelium lining the small intestine is unlikely to be an important factor which influences oral prion disease susceptibility.

Key words prions, transmissible spongiform encephalopathies, PrP, intestine, gut epithelium, Peyer’s patches
Introduction

Prions cause chronic neurodegenerative diseases that affect humans and some domesticated and free-ranging animal species to which there are no treatments. Bovine spongiform encephalopathy (BSE) prions also have zoonotic potential (1), exerting high societal and economic costs. The precise nature of the infectious prion is uncertain, but an abnormal, relatively proteinase-resistant isoform (PrP^{Sc}) of the host cellular prion protein (PrP^C), co-purifies with prion infectivity in diseased tissues (2), and host cells must express cellular PrP^C to sustain prion infection (3).

Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. The gut-associated lymphoid tissues (GALT) within the lining of the intestine such as the tonsils, Peyer’s patches, appendix, colonic and caecal patches, together with the mesenteric lymph nodes (MLN), help to provide protection against intestinal pathogens. However, orally-acquired prions exploit the GALT to achieve host infection (4-8). The early replication of prions within Peyer’s patches in the small intestine is essential for their efficient spread of from the gut to the brain (termed neuroinvasion), as oral prion disease susceptibility is blocked in their absence (5, 9-11).

Orally-acquired prions utilize an elegant cellular relay in the GALT in order to establish host infection. After ingestion, the prions are first transported across the follicle-associated epithelium (FAE) which covers the luminal surface of the Peyer’s patches by M cells (12-16). The prions are then acquired by mononuclear phagocytes within the GALT which they appear to use as “Trojan horses” to shuttle them towards the follicular dendritic cells (FDC) in the B cell follicles (17-19). The subsequent replication of the prions upon FDC is essential for efficient neuroinvasion from the intestine (4, 5, 17, 20). The prions then infect nearby enteric nerves before spreading along fibres of the sympathetic and parasympathetic
nervous systems to the brain where they ultimately cause neurodegeneration and death (17, 21).

M cells are specialized, highly phagocytic, intestinal epithelial cells that facilitate the uptake and trans-epithelial transfer of particulate antigens and microorganisms into the GALT from the gut lumen (22). The transcytosis of particulate antigens by M cells is an important initial step in the induction of efficient mucosal immune responses against certain pathogenic bacteria (23, 24) and the commensal bacterial flora (25). However, some orally-acquired bacterial (26-28) and viral (29, 30) pathogens utilise M cells to achieve host infection. Prions also exploit M cells in order to enter Peyer’s patches and establish host infection (13, 16). Furthermore, the density of M cells in the gut epithelium directly limits or enhances disease susceptibility. In the specific absence of M cells, the accumulation of prions in Peyer’s patches and subsequent spread of the disease to the brain is blocked (13, 16). In contrast, increased M-cell density at the time of oral exposure enhances prion disease susceptibility approx 10 fold by increasing the uptake of prions from the gut lumen (16).

M cells are considered to express a variety of “immunosurveillance” receptors on their apical surfaces which enable them to acquire certain pathogens and antigens. For example, glycoprotein 2 (GP2) can act as a receptor for FimH+ bacteria such as *Eschericia coli* and *Salmonella enterica* serovar Typhimurium (23). Uromodulin (also known as Tamm-Horsfall protein) may similarly mediate the uptake of surface layer protein A+ lactic acid bacteria (31). Some pathogenic microorganisms appear to use receptors on M cells to aid host infection. The complement C5a receptor is expressed on the apical surface of M cells and aids the uptake of *Yersinia enterocolitica* to establish infection (32). Interactions between the type A 1 botulinum neurotoxin complex and GP2 on the M-cell surface have also
been shown to mediate the intestinal translocation of the toxin order to exert its toxic
effects (33). M cells express the cellular isoform of the prion protein, PrPC, on their
apical surfaces (26, 34). Data suggest that the pathogenic Gram-negative
bacterium Brucella abortus utilizes the PrPC on the M-cell surface as an uptake
receptor to enter Peyer’s patches (26).

Whether the uptake and transcytosis of prions across the gut epithelium into
Peyer’s patches in order to establish infection predominantly occurs via constitutive
sampling of the lumenal contents, or via binding to specific receptors such as PrPC,
is not known. Treatments that impede the early accumulation prions within the
GALT can impede their spread to the brain and reduce disease susceptibility (4, 13,
16, 18). Thus the identification of the molecular factors that facilitate the uptake of
prions into the GALT will help the design of novel intervention targets, and enhance
our understanding of the factors that influence the risk of infection. Therefore, in the
current study transgenic mice were created in which Prnp expression (encoding
PrPC) was specifically ablated in epithelial cells throughout the lining of the small
intestine. These mice were then used to determine whether the absence of PrPC
expression in the epithelium lining the small intestine influences oral prion disease
susceptibility and the early replication of prions in the GALT.

RESULTS

Conditional ablation of Prnp throughout the small intestinal epithelium. The
expression of Cre recombinase under the control of the rat Cyp1a1 promoter
element in Cyp1a1-Cre mice has been used in a series of studies to inducibly ablate
the expression of LoxP site-flanked target genes in small intestinal progenitor cells
and intestinal epithelial cells (IEC) following β-naphthoflavone (βNF) treatment (35-
The FANTOM5 project of the FANTOM consortium (38) has collated a large
collection of cap analysis of gene expression (CAGE) data from multiple mouse
tissues and cells (http://fantom.gsc.riken.jp/zenbu). We used this publicly available
data resource to compare the expression of levels of Cyp1a1, Gp2 and Prnp in
multiple data sets derived from mouse FAE, M cells, lymphocytes and leukocytes,
and brain-derived cells. This analysis confirmed that Cyp1a1 and Prnp were also
expressed highly in the FAE and in GP2+ M cells (Fig. 1). However, Cyp1a1
expression was absent in B cells, T cells and macrophages as well as brain-derived
microglia, astrocytes and neurons (Fig. 1).

Here, Cyp1a1-Cre mice were crossed with Prnp^{F/F} mice which carry a
“floxed” Prnp gene (39) to enable the inducible ablation of Prnp specifically in IEC.
Since the reliable detection of PrP^C in the gut epithelium by immunohistochemistry
(IHC) is technically challenging, these mice were additionally crossed with
ROSA26^{F/F} reporter mice (40) to enable the cellular-specificity of the Cre-mediated
gene ablation to be readily assessed by histological assessment of β-galactosidase
(LacZ) expression. The resultant progeny Cyp1a1-Cre ROSA26^{F/F} Prnp^{F/F} mice
were termed Prnp^{ΔIEC} mice, hereinafter.

Female Prnp^{ΔIEC} mice were treated with βNF (or vehicle alone as a control)
for five days to specifically ablate Prnp expression in IEC and tissues analyzed 14
days later. Whole-mount histological analysis showed LacZ expression indicative of
efficient Cre-mediated gene recombination throughout the small and large intestines
of βNF-treated Prnp^{ΔIEC} mice (Fig. 2a). Analysis of tissue sections showed strong
LacZ expression in IEC and crypts throughout the small intestine (Fig. 2c). The
Cre-mediated gene recombination in the small intestinal crypts of βNF-treated
Prnp^{ΔIEC} mice was highly efficient (99.5% ± 1.1; Fig. 2e). In contrast, the Cre-
mediated gene recombination in colonic crypts and IEC in the large intestine was
less efficient (64.1% ± 8.6; Fig. 2f) and presented as a mosaic pattern (Fig. 2c). No other cellular sites of Cre-mediated recombination were observed throughout the intestines of βNF-treated PrnpΔIEC mice. LacZ expression was absent within the submucosa (Fig. 2c), and also in the sub-epithelial dome and FDC-containing B cell-follicle regions of the GALT (Fig. 2g). As anticipated, no LacZ expression was detected throughout the small and large intestines of vehicle-treated PrnpΔIEC control mice (Fig. 2b, d, e, f, h). LacZ expression was also undetectable throughout the small and large intestines of untreated PrnpΔIEC control mice and βNF-treated PrnpF/F (Cre-deficient) control mice (Fig. 2 e, f). These data clearly demonstrate that Cre-mediated gene recombination is restricted to IEC in the small intestines of βNF-treated PrnpΔIEC mice.

Effect of IEC-restricted Prnp-ablation on prion accumulation in lymphoid tissues. To determine the effects of IEC-specific PrP^C-deficiency on oral prion disease pathogenesis, groups of female PrnpΔIEC mice were treated with βNF for five days to specifically ablate Prnp expression in IEC. Untreated PrnpΔIEC mice, vehicle-treated PrnpΔIEC mice and βNF-treated PrnpF/F (Cre-deficient) mice were used as controls. Fourteen days later 10 mice/group were subsequently orally exposed to ME7 scrapie prions and tissues collected at 70 days post-infection. The presence of the prion disease-specific, abnormal accumulations of PrP (referred to as PrP_d) which occur only in the tissues of affected animals was detected by IHC (4, 5, 11, 13, 16, 19, 41-43). However, since the IHC analysis cannot unequivocally discriminate between PrP_{Sc} and cellular PrP_C, paraffin-embedded tissue immunoblot analysis of adjacent membrane-bound sections was also used to confirm that these PrP_d aggregates contained prion disease-specific, relatively proteinase-K (PK)-resistant PrP_{Sc}. As anticipated, abundant PrP_{Sc} accumulations were detected in
association with FDC (CD21/35^+ cells) in the Peyer’s patches of control Prnp^{ΔIEC} mice (Fig. 3a, arrows, left-hand and middle columns). Abundant FDC-associated PrP^Sc accumulations were also detected in the Peyer’s patches of βNF-treated Prnp^{ΔIEC} mice.

Consistent with the IHC data (Fig. 3a) high levels of prion infectivity were detected in the Peyer’s patches of mice from each control group (median infectivity level 6.0-6.6 Log_{10} intracerebral [IC] infectious dose [ID]_{50} units/g, n = 2-4 mice/group; Fig 3b). IEC-restricted Prnp-ablation did not influence the early accumulation of infectious prions within Peyer’s patches as high levels of prion infectivity were also detected in tissues from βNF-treated Prnp^{ΔIEC} mice (median infectivity level 6.1 Log_{10} IC ID_{50} infectious units/g, n = 4 mice; Fig 3b).

Within weeks after oral exposure, high levels of ME7 scrapie prions first accumulate upon FDC in the Peyer’s patches and are subsequently disseminated via the blood and lymph to most other lymphoid tissues including the MLN and spleen (4, 5, 11, 13, 16, 18, 19, 44). The levels of prion infectivity detected in the MLN and spleens from mice from each treatment and control group were also similar (Fig. 3c & d, respectively).

These data clearly show that IEC-restricted Prnp-ablation does not affect the early accumulation of orally-acquired prions within Peyer’s patches or their subsequent dissemination to the MLN or spleen.

IEC-restricted Prnp-ablation does not influence oral prion disease susceptibility. Female Prnp^{ΔIEC} mice were treated with βNF for five days to ablate Prnp expression in IEC, and 14 days later subsequently orally exposed to ME7 scrapie prions. Untreated Prnp^{ΔIEC} mice, vehicle-treated Prnp^{ΔIEC} mice and βNF-treated Prnp^{F/F} (Cre-deficient) mice were used as controls. As anticipated, all of the
orally-exposed untreated \(Prnp^{\DeltaIEC} \) (control) mice succumbed to clinical prion disease (mean survival time \(307 \pm 23 \) days; median 300 days, \(n = 10/10 \); Table 1). Furthermore, IEC-restricted \(Prnp \)-ablation did not affect disease duration (survival times) or susceptibility as all of the βNF-treated \(Prnp^{\DeltaIEC} \) mice also succumbed to clinical prion disease with similar survival times (mean \(306 \pm 11 \) days; median 306 days, \(n = 12/12 \), \(P = 0.673 \), One-way ANOVA with Dunnett’s post-test; Table 1).

All the brains from the clinically-affected mice in each group displayed the characteristic spongiform pathology (vacuolation), PrP\(^{Sc} \) accumulation, astroglisis and microgliosis which is associated with terminal infection with ME7 scrapie prions (Fig. 4a&b). The severity and distribution of the spongiform pathology was also similar in the brains of the clinically-affected mice from each group (Fig. 4c).

Together these data clearly show that efficient prion neuroinvasion after oral exposure occurs independently of PrP\(^{C} \) expression in IEC in the small intestine.

DISCUSSION

The initial transport of prions across the gut epithelium by M cells into small intestinal Peyer’s patches is essential to establish efficient infection after oral exposure (13, 16). But whether the uptake and translocation of prions across the gut epithelium involves a specific receptor is uncertain. Treatments that prevent the initial replication of prions within the GALT impede the spread of prions to the brain and reduce disease susceptibility (4, 13, 16, 18). Thus the identification of the molecular factors that facilitate the uptake of prions into the GALT will help the design of novel intervention strategies, and enhance our understanding of the factors that influence the risk of infection. Small intestinal M cells express cellular PrP\(^{C} \) on their apical surfaces and this may be used by certain gastronintestinal
pathogens as an uptake receptor to infect Peyer’s patches (26, 34). Independent IHC-based tracing studies have suggested that orally-administered prion protein can be transported across the gut epithelium of PrP^C-deficient mice (14, 17), but whether the expression of PrP^C on IEC populations contributed to the establishment of host infection had not been assessed. Data in the current study clearly show that prion neuroinvasion after oral exposure occurs independently of PrP^C expression in small intestinal IEC.

Orally-acquired prions replicate first in the small intestinal GALT and subsequently spread to most other secondary lymphoid tissues including the large intestinal GALT. Since oral prion disease susceptibility is substantially reduced in the specific absence of the small intestinal GALT (11), this suggests that the early replication of prions within Peyer’s patches is essential to establish efficient host infection after oral exposure. The small intestinal GALT also appear to be the important early sites of prion replication in natural host species (45-47). Although we observed highly efficient Cre-mediated gene recombination in intestinal crypts and IEC throughout the small intestines of βNF-treated Prnp^{ΔIEC} mice, the efficiency in the colon was less efficient and presented as a mosaic pattern (Fig. 2c) (35). The less efficient Prnp-ablation in the large intestine was unlikely to have influenced oral prion disease pathogenesis in the current study, as the large intestinal GALT such as the colonic patches are not important early sites of prion replication and neuroinvasion (11).

Despite the potentially widespread exposure of the UK population to BSE-contaminated food in the 1980s, there have fortunately there have been much fewer clinical cases of variant Creutzfeldt-Jakob disease in humans than the original estimates suggested (48) (178 definite or probable cases, as of 4th May 2018; (49)). This implies that additional factors could potentially influence an individual’s
susceptibility to oral prion infection by enhancing or impeding the initial uptake of prions from the gut lumen. In support of this hypothesis we have shown that stimuli that increase the density of M cells in the gut epithelium also increase oral prion disease susceptibility approx 10 fold by enhancing the uptake of prions into Peyer's patches (16). The expression level of PrP\(^C\) in host cells such as neurones and FDC directly influences survival times in prion infected mice (43, 50-52). Acute mucosal inflammation following oral infection with S. Typhimurium or treatment with dextran sodium sulphate have each been shown to enhance PrP\(^C\) expression in the large intestine, implying the potential to enhance oral prion disease pathogenesis and susceptibility (53, 54). Conversely, PrP\(^C\) expression was reported to be down-regulated in the small intestines of mice treated with the nonsteroidal anti-inflammatory drug indomethacin, and coincided with a modest increase in survival time after oral exposure to ME7 scrapie prions (55). Although the cellular sites of PrP\(^C\) expression were not determined in the above studies, our data suggest that the magnitude of PrP\(^C\) expression in IEC throughout the small intestine is unlikely to be an important factor which influences the risk of oral prion disease susceptibility.

In sheep with natural scrapie (56) or orally exposed to BSE prions (57), prion accumulation is first detected in the palantine tonsils in addition to the Peyer's patches. Natural prion disease susceptible host species such as sheep and cervids also have highly developed olfactory systems which they use to detect food, select mates and sense predators. A series of experimental studies in rodents and sheep have shown that prion infections can be established via the nasal cavity (58, 59) (60). Thus it cannot be excluded that soil-bound prions might also be inhaled and infect the host as the animal forages for food. Although M cells are present in the epithelia covering the nasal-associated lymphoid tissue (61), studies in hamsters indicate that these prion uptake across the nasal epithelium occurs independently of M cells (62). Whether prion uptake across
the mucosal surfaces in the upper gastrointestinal and upper respiratory tracts of natural host species is also PrP^C-independent remains to be determined.

In conclusion, we show that oral prion disease neuroinvasion occurs independently of PrP^C expression in IEC in the small intestine. Whether prions exploit other receptors on the apical surfaces of M cells to establish host infection is uncertain. The specific targeting of vaccine antigens to M cells has been shown to be an effective method to induce protective antigen-specific mucosal immunity (63).

Mucosal immunization has also been shown to provide promising protection against oral prion infections in mice (64) and white-tailed deer (65). Thus, a thorough understanding of the mechanisms that prions exploit to establish infection within the GALT may help to identify important factors which influence the disease susceptibility, or identify novel targets for prophylactic intervention.

MATERIALS AND METHODS

Mice. The following mouse strains were used in this study where indicated: Cyp1a1-Cre (35); ROSA26^{F/F} reporter strain (40); Prnp^{F/F} mice (strain Prnp^{tm2Tuzi}) which have LoxP sites flanking exon 3 of the Prnp gene (39). C57BL/Dk mice were also used where indicated. All mice were bred and maintained under SPF conditions. All studies and regulatory licences were approved by the Institute’s ethics committee and carried out under the authority of a UK Home Office Project Licence. Prior to their use in experiments, the genotype of each mouse was confirmed by PCR analysis of tail DNA (Table 2).

β-naphthoflavone treatment. Where indicated, mice were given five daily intraperitoneal injections of β-naphthoflavone (80 mg/kg; Sigma-Aldritch, Poole, UK)
dissolved in corn oil (Sigma-Aldrich) and analyzed 14 days after the last injection or used in subsequent experiments. Where indicated, some mice received either corn oil alone (vehicle) or no treatment as controls.

Histological assessment of LacZ expression. Tissues were first immersed in LacZ fixative [PBS (pH 7.4) containing 2% paraformaldehyde, 0.2% gluteraldehyde, 0.02% Nonidet P40, 0.01% sodium deoxycholate, 5 mM EGTA, 2 mM MgCl₂] and washed in LacZ wash buffer [PBS (pH 7.4) containing 0.02% Nonidet P40, 0.01% sodium deoxycholate, 2 mM MgCl₂]. Tissues were subsequently incubated in 15% (wt/vol) sucrose in PBS overnight followed by a further overnight incubation in 30% (wt/vol) sucrose in PBS and embedded in Tissue-Tek OCT compound (Bayer PLC, Newbury, UK). Serial sections (thickness 8 mm) were cut on cryostat and stained overnight at with LacZ staining solution (Glycosynth, Warrington, UK). Staining reaction was stopped by washing in LacZ wash buffer followed by distilled water. Sections were counterstained with nuclear fast red (Vector Laboratories, Peterborough, UK). Intestinal whole-mounts were prepared luminal side up as described previously (66), and fixed in ice-cold 2% formaldehyde/0.2% glutaraldehyde in PBS (pH 7.4) for 1 h before overnight incubation in LacZ staining solution.

Prion exposure and disease monitoring. For oral exposure, mice were fed individual food pellets dosed with 50 µl of a 1.0 % (w/v) dilution of scrapie brain homogenate (containing approximately 4.6 Log₁₀ IC₅₀ units) prepared from mice terminally-affected with ME7 scrapie prions according to our standard protocol (11, 16, 19). During the dosing period mice were individually housed in bedding- and
food-free cages with water provided *ad libitum*. A single prion-dosed food pellet was
then placed in the cage. The mice were returned to their original cages (with
bedding and food *ad libitum*) as soon as the food pellet was observed to have been
completely ingested. The use of bedding- and additional food-free cages ensured
easy monitoring of consumption of the prion-contaminated food pellet. Following
prion exposure, mice were coded and assessed weekly for signs of clinical disease
and culled at a standard clinical endpoint. The clinical endpoint of disease was
determined by rating the severity of clinical signs of prion disease exhibited by the
mice. Mice were clinically scored as “unaffected”, “possibly affected” and “definitely
affected” using standard criteria which typically present in mice terminal ME7
scrapie prion disease. Clinical signs following infection with the ME7 scrapie prions
may include: weight-loss, starry coat, hunched, jumpy behaviour (at early onset)
progressing to limited movement, upright tail, wet genitals, decreased awareness,
discharge from eyes/BLinking eyes, ataxia of hind legs. The clinical endpoint of
disease was defined in one of the following ways: i) the day on which a mouse
received a second consecutive “definite” rating; ii) the day on which a mouse
received a third “definite” rating within four consecutive weeks; iii) the day on which
a mouse was culled in extremis. Prion diagnosis was confirmed by histopathological
assessment of the magnitude of the spongiform pathology (vacuolation) in nine
distinct grey-matter regions of the brain as described (67).

For bioassay of prion infectivity, individual tissues were prepared as 10 %
(w/v) homogenates and 20 µl was injected IC into each of 4 recipient C57BL/Dk
indicator mice. The prion infectivity titre in each sample was determined from the
mean incubation period in the indicator mice, by reference to a dose/incubation
period response curve for ME7 scrapie-infected spleen tissue serially titrated in
C57BL/Dk indicator mice (68).
Immunohistochemistry. For the detection of disease-specific PrP (PrP^d) in intestines and brains, tissues were fixed in periodate-lysine-paraformaldehyde fixative and embedded in paraffin wax. Sections (thickness, 6 µm) were deparaffinised, and pre-treated to enhance the detection of PrP^d by hydrated autoclaving (15 min, 121°C, hydration) and subsequent immersion in formic acid (98%) for 5 min. Sections were then immunostained with 1B3 PrP-specific pAb. For the detection of FDC in intestines deparaffinised sections were first pre-treated with Target Retrieval Solution (DAKO) and subsequently immunostained with anti-CD21/35 (clone 7G6, BD Biosciences). Paraffin-embedded tissue immunoblot analysis was used to confirm that the PrP^d detected by immunohistochemistry was proteinase K-resistant PrP^{Sc} (69). Membranes were subsequently immunostained with 1B3 PrP-specific pAb.

For the detection of astrocytes, brain sections were immunostained with anti-glia fibrillary acidic protein (GFAP; DAKO, Ely, UK), and to detect microglia sections were immunostained with anti-ionized calcium-binding adaptor molecule 1 (Iba-1; Wako Chemicals GmbH, Neuss, Germany).

Following the addition of primary antibodies, biotin-conjugated species-specific secondary antibodies (Stratech, Soham, UK) were applied and immunolabelling was revealed using either alkaline phoshatase-conjugated to the avidin-biotin complex (Vector Laboratories, Peterborough, UK) and visualized using Vector Red (Vector Red), or HRP-conjugated to the avidin-biotin complex (Vector Laboratories) and visualized with DAB (Sigma). Sections were counterstained with haematoxylin to distinguish cell nuclei.

Immunoblot detection of PrP^{Sc}
Brain homogenates (10% weight/volume) were prepared in NP40 lysis buffer (1% NP40, 0.5% sodium deoxycholate, 150 mM NaCl, 50 mM TrisHCL [pH 7.5]) and incubated at 37°C for 1 h with 20 µg/ml PK. Digestions were halted by addition of 1 mM phenylmethylsulfonyl fluoride. Samples were then subjected to electrophoresis through 12% Tris-glycine polyacrylamide gels (Nupage, Life Technologies) and transferred to PVDF membranes by semi-dry blotting. PrP was detected using anti-mouse PrP-specific mAb 7A12 (70) followed by horseradish peroxidase-conjugated goat anti-mouse antibody (Jackson Immunoresearch) and visualised chemiluminescence (BM Chemiluminescent substrate kit, Roche, Burgess Hill, UK).

Statistical analyses. Unless indicated otherwise, data are presented as mean ± SD and significant differences between groups were sought by Student’s *t*-test. Values of *P* < 0.05 were accepted as significant.

ACKNOWLEDGEMENTS

The authors would like to dedicate this paper to Professor Alan Clarke (1963-2015) in recognition of his inspiration and support in this study. We also thank Nadia Tuzi, Dorothy Kisielewski, Rebecca Greenan, Simon Cumming, Val Thomson, Kris Hogan and the Pathology Services Group (University of Edinburgh, UK) for excellent technical support, and Abigail Diack (University of Edinburgh) for helpful discussion.

This work was supported by project funding from the Department of Health (PR-IP-0807-0070161) and Institute Strategic Programme Grant funding from the Biotechnology and Biological Sciences Research Council (grant numbers BBS/E/D/05241339, BBS/E/D/20251968 and BBS/E/D/20002174).
FIG 1 Cyp1a1 is expressed in the follicle-associated epithelium and in M cells in the small intestine. Comparison of Cyp1a1, Prnp and Gp2 mRNA expression in individual cell populations in deep cap analysis of gene expression (CAGE) sequence data from the FANTOM5 project of the FANTOM consortium (38). Each bar shows the relative expression level of each gene per million reads in each sample; RLE normalized tags/million. The blue hatched box highlights the small intestine-derived glycoprotein 2-expressing (GP2+) M-cell and the follicle-associated epithelium datasets. The red hatched box highlights the brain-derived datasets.

FIG 2 Cre-mediated gene recombination is restricted to IEC in the small intestines of βNF-treated PrnpΔIEC mice. Female PrnpΔIEC mice were treated with β-naphthoflavone (βNF) for five days to specifically ablate Prnp expression in intestinal epithelial cells and tissues analyzed 14 days later. PrnpΔIEC mice treated with vehicle alone (Veh.) were used as controls. (A, B) Whole-mount histological analysis of LacZ expression (blue) in the intestines of (A) βNF-treated PrnpΔIEC mice or (B) vehicle-treated PrnpΔIEC control mice. S, small intestine. L, large intestine. (C, D) Histological analysis of LacZ expression (blue) in IEC and crypts in the intestines of (C) βNF-treated PrnpΔIEC mice or (D) vehicle-treated PrnpΔIEC control mice. Sections were counterstained with nuclear fast red to detect cell nuclei (red). SM, submucosa. (E, F) Comparison of the % LacZ-expressing crypts in (E) the small and (F) large intestines, of βNF-treated PrnpΔ/F mice control mice. Untreated PrnpΔIEC mice, vehicle-treated PrnpΔIEC mice and βNF-treated PrnpΔ/F mice were used as controls. Data represent mean % LacZ-expressing crypts/mouse (n = 5 mice/group, 50-105 crypts/mouse). (G, H) Histological analysis of LacZ expression (blue) in the Peyer’s patches and colonic patches of (G) βNF-treated PrnpΔIEC mice or (H) vehicle-treated PrnpΔIEC control mice.
FIG 3 Effect of intestinal epithelial cell-restricted Prnp-ablation on prion accumulation in lymphoid tissues. Female PrnpΔIEC mice were treated with β-naphthoflavone (βNF) for five days to specifically ablate Prnp expression in intestinal epithelial cells. Untreated PrnpΔIEC mice and PrnpΔIEC mice treated with vehicle alone (Veh.) were used as controls. Fourteen days later the mice were orally exposed to ME7 scrapie prions and Peyer’s patches, mesenteric lymph nodes (MLN) and spleens collected at 70 days post infection. (A) Immunohistochemical analysis revealed high levels of disease-specific PrP (PrPd, red, middle row, arrows) were detected in association with FDC (CD21/35+ cells, red, upper row) in Peyer’s patches from mice from each group. Sections were counterstained with haematoxylin to detect cell nuclei (blue). Analysis of adjacent sections by paraffin-embedded tissue immunoblot analysis confirmed the presence of prion-specific PK-resistant PrPSc (blue/black). Data representative of tissues from 6 mice/group. (B, C, D) Prion infectivity levels were assayed in (B) Peyer’s patches, (C) MLN and (D) spleens from mice from each group collected at 70 days post infection. Prion infectivity titres (log10 IC ID50/g tissue) were determined by injection of tissue homogenates into groups of C57BL/Dk indicator mice (n = 4 recipient mice/tissue). Each symbol represents data derived from an individual tissue. Red line, median prion infectivity titre for groups in which all samples contained >1 log10 IC ID50/g tissue. Data below the broken horizontal line indicate disease incidence in the recipient mice <100% and considered to contain trace levels of prion infectivity.

FIG 4. Intestinal epithelial cell-restricted Prnp-ablation does not influence development of the histopathological signs prion disease in the brains of clinically affected mice. Female PrnpΔIEC mice were treated with β-naphthoflavone (βNF) for
five days to specifically ablate Prnp expression in intestinal epithelial cells. Untreated PrnpΔIEC mice and PrnpΔIEC mice treated with vehicle alone (Veh.) were used as controls. Fourteen days later the mice were orally exposed to ME7 scrapie prions and culled when they succumbed to clinical prion disease. (A) High levels of spongiform pathology (H&E), heavy accumulations of disease-specific PrP, (PrPd, brown), reactive astrocytes expressing GFAP (brown) and active microglia expressing IBA1 (brown) were detected in the brains of all orally-exposed mice with clinical prion disease. Clin., clinical prion disease status; pos., clinically positive; individual survival times are shown (dpi, days post infection). Sections were counterstained with haematoxylin to detect cell nuclei (blue). (B) Immunoblot analysis of brain tissue homogenates confirmed the presence of high levels of prion-specific, relatively proteinase K (PK)-resistant PrPSc within the brains of the clinically-affected mice from each group. Samples were treated in the presence (+) or absence (-) of PK before electrophoresis. After PK treatment, a typical three-band pattern was observed between molecular mass value of 20–30 kDa, representing unglycosylated, monoglycosylated, and diglycosylated isomers of PrP (in order of increasing molecular mass). (C) The severity and distribution of the spongiform pathology (vacuolation) within each brain was scored on a scale of 1–5 in nine grey matter areas: G1, dorsal medulla; G2, cerebellar cortex; G3, superior colliculus; G4, hypothalamus; G5, thalamus; G6, hippocampus; G7, septum; G8, retrosplenial and adjacent motor cortex; G9, cingulate and adjacent motor cortex. Each point represents the mean vacuolation score ± SD (n = 10-12 mice/group).
REFERENCES

<table>
<thead>
<tr>
<th>Mouse model(^a)</th>
<th>Mean survival times (days±SD)(^b,c)</th>
<th>Median survival times (days)</th>
<th>Clinical disease(^d)</th>
<th>Histopathological signs of prion disease in the brain(^e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pmp^{NEC})</td>
<td>307 ± 23</td>
<td>300</td>
<td>10/10</td>
<td>10/10</td>
</tr>
<tr>
<td>(Pmp^{NEC} + \text{Veh.})</td>
<td>303 ± 12</td>
<td>303</td>
<td>10/10</td>
<td>10/10</td>
</tr>
<tr>
<td>(Pmp^{NEC} + \beta NF)</td>
<td>308 ± 11</td>
<td>306</td>
<td>12/12</td>
<td>12/12</td>
</tr>
<tr>
<td>(Pmp^{F/F} + \beta NF)</td>
<td>313 ± 19</td>
<td>305</td>
<td>9/9</td>
<td>9/9</td>
</tr>
</tbody>
</table>

\(^a\) Where indicated, mice were given daily IP injections with \(\beta\)-napthoflavone (\(\beta NF\)) or corn oil (Vehicle control, Veh.) for 5 days. Mice were orally exposed to ME7 scrapie prions 14 days after the last treatment.

\(^b\) Duration from time of injection with prions to cull at clinical end-point.

\(^c\) No statistical differences in survival times were observed between groups (\(P=0.673\); One-way ANOVA with Dunnett’s post-test).

\(^d\) Incidence = no. animals displaying clinical signs of prion disease/no. animals tested.

\(^e\) Incidence = no. animals with histopathological signs of prion disease in the brain (spongiform pathology)/no. animals tested.
<table>
<thead>
<tr>
<th>Allele</th>
<th>Details</th>
<th>Primer sequence</th>
<th>Product size/s (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cre</td>
<td>Fwd</td>
<td>CGAGTGATGAGGTTTCGCAAGAACC</td>
<td>786</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>GCTAAGTGCCTCTCTACACCTGC</td>
<td></td>
</tr>
<tr>
<td>LacZ</td>
<td>Fwd</td>
<td>TACCACAGCGGATGGTTCCGG</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>GTGCTGGTTATGCCCAGATCGC</td>
<td></td>
</tr>
<tr>
<td>Prnp<sup>flox</sup></td>
<td>1</td>
<td>AATGGTAAACTTTCCGTTAAGGAT</td>
<td>Recombined Prnp<sup>f</sup> 344</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>GCCGACATCAGTCCACATAG</td>
<td>Prnp<sup>f</sup> 210</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>GGTTGACGCCCATGACTTTTC</td>
<td>Prnp<sup>+</sup> 167</td>
</tr>
<tr>
<td>Prnp<sup>+</sup></td>
<td>Fwd</td>
<td>TCATCCACGATCGGAAGATGAG</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Rev</td>
<td>ATGGCGAACCCTGGCTACTGGCTG</td>
<td></td>
</tr>
</tbody>
</table>

Fwd, forward primer; Rev, reverse primer; Recombined Prnp^f, Cre-mediated DNA recombined allele
Marshall Fig. 3

(a)

<table>
<thead>
<tr>
<th></th>
<th>Prnp<sup>ΔIEC</sup></th>
<th>Prnp<sup>ΔIEC</sup> + Veh.</th>
<th>Prnp<sup>ΔIEC</sup> + βNF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD21/35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrP<sup>Δ</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PrP<sup>S</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Peyer's patches

(c) MLN

(d) Spleen

Graphs showing prion infectivity and incidence in different tissues with varying treatments.