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FIVE SOLVED PROBLEMS ON RADICALS OF ORE

EXTENSIONS

BE’ERI GREENFELD, AGATA SMOKTUNOWICZ, AND MICHA L ZIEMBOWSKI

Abstract. We answer several open questions and establish new results con-

cerning differential and skew polynomial ring extensions, with emphasis on

radicals. In particular, we prove the following results.
If R is prime radical and δ is a derivation of R, then the differential poly-

nomial ring R[X; δ] is locally nilpotent. This answers an open question posed

in [53].
The nil radical of a differential polynomial ring R[X; δ] takes the form

I[X; δ] for some ideal I of R, provided that the base field is infinite. This
answers an open question posed in [38] for algebras over infinite fields.

If R is a graded algebra generated in degree 1 over a field of characteristic

zero and δ is a grading preserving derivation on R, then the Jacobson radical
of R is δ-stable. Examples are given to show the necessity of all conditions,

thereby proving this result is sharp.

Skew polynomial rings with natural grading are locally nilpotent if and only
if they are graded locally nilpotent.

The power series ring R[[X;σ, δ]] is well-defined whenever δ is a locally

nilpotent σ-derivation; this answers a conjecture from [17], and opens up the
possibility of generalizing many research directions studied thus far only when

further restrictions are put on δ.

1. Introduction

In this paper we investigate the properties of several classes of ideals in twisted
ring extensions. We are particularly interested in prime, nilpotent and locally
nilpotent ideals. Recently applications of this research area have been found in
connection with the Quantum Yang-Baxter equation (QYBE), braces [57], Knot
theory [24] and Hopf algebras [27, 28, 12, 6]. The ring theoretical approach to
QYBE has been studied for example in [57, 25, 10, 9, 8, 7, 64]. Recall that in
2005 [57] Rump introduced braces, a generalisation of Jacobson radical rings, as a
tool to investigate non-degenerate involutive set-theoretic solutions of the QYBE.
Skew braces also have been introduced recently [37] to describe non-degenerate
injective solutions of the QYBE. Nil rings, and in particular nil differential poly-
nomial rings yield in many ways examples of braces and skew braces [57, 64]. This
allows to construct set-theoretic solutions of the QYBE, 1-cocycles, matched pairs
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of groups, exactly factorised groups and examples of semisimple Hopf algebras by
using radicals in associative noncommutative rings [27, 28, 12, 51, 64].

An outline of the paper’s structure now follows.
We consider properties of ideals in Ore extensions of noncommutative rings. An

Ore extension of a ring R is denoted by R[X;σ, δ], where σ is an endomorphism
of R and δ is a σ-derivation, i.e. δ : R → R is an additive map such that δ(ab) =
σ(a)δ(b) + δ(a)b, for all a, b ∈ R. Recall that elements of R[X;σ, δ] are polynomials
in X with coefficients written on the left. Multiplication in R[X;σ, δ] is given by
the multiplication in R and the condition Xa = σ(a)X + δ(a) for all a ∈ R.

There are two important special cases of skew polynomial rings. If σ is the
identity map, then R[X; δ] is called a differential polynomial ring or skew polynomial
ring of derivation type. If δ = 0, then R[X;σ] is called a skew polynomial ring.

Ore extensions of noncommutative rings were introduced in the 1930’s by Ore.
Since then they have been studied extensively. Ore extensions have been used as
a source of examples of rings with various properties, and were investigated in the
context of the question of which properties of rings (such as DCC or ACC on ideals
and primitivity [50]) pass to differential or skew-polynomial extensions. Differential
polynomial rings, an important class of Ore ring extensions, have also been inves-
tigated in relation to Lie algebras - recall that enveloping algebras of solvable Lie
algebras are iterated differential polynomial rings [55, Proposition 8.3.28]. Ore ring
extensions have also been studied in relation to quantum groups (see [34], [22]).
For detailed information about the Gelfand-Kirilov dimension of Ore extensions we
refer the reader to [41]. It is also worth noticing that the conditions under which
Ore extensions satisfy a polynomial identity have been completely characterized
[48]. Radicals and prime ideals of differential polynomial rings over rings satisfying
a polynomial identity were investigated in [19, 16]. Interesting results in the case
where R is a commutative ring were obtained in [32, 33, 35]; for example, in [32],
the Jacobson condition (i.e., that all prime ideals are semiprimitive) is proved to
pass from a commutative noetherian ring R to R[X;σ, δ]. In [33] prime ideals in
Ore extension R[X;σ, δ] are investigated. In [35] Goodearl and Warfield developed
necessary and sufficient conditions for a differential polynomial ring R[X; δ] over a
commutative Noetherian ring R with a derivation δ to be a simple ring, a primitive
ring, or a Jacobson ring.

We investigate Ore ring extenstions in Sections 2, 3, 4, and 6. In Section 5 we
consider twisted power series rings.

In Section 2 we investigate differential polynomial rings over rings with a non-zero
Baer radical. Recall that a ring R has a non-zero Baer radical if and only if it has
a non-zero nilpotent ideal. It is known that, in characteristic zero, the Baer radical
is stable under derivations. We show that if R is a Baer radical with derivation
δ then the differential polynomial ring R[X; δ] is locally nilpotent (Theorem 2.3).
This answers Question 3.2 from [53]. Some interesting related results can be found
in [49] and [53].

In Section 3, we show that if R =
⊕∞

i=1Ri is a graded algebra, generated in
degree 1 over a field of characteristic zero, and δ is a grading preserving derivation
on R then δ(J(R)) ⊆ J(R), where J(R) denotes the Jacobson radical of R (Theorem
3.3). We show by counterexamples that the assumptions we put are necessary, and
therefore this result is the “best possible”.
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In Section 4 we answer a question of Hong, Kim, Lee and Nielsen from [38], in
the class of algebras over infinite fields. Namely, we show that if R is an algebra
over an infinite field K and δ is a derivation on R the nil radical of R[X; δ] equals
I[X; δ] for some ideal I of R (Theorem 4.2). Recall that the nil radical of a given
ring is the largest nil ideal in this ring.

In [17], Bergen and Grzeszczuk consider the skew power series ring R[[X;σ, δ]],
and prove many interesting conjectures on such rings. They conjectured that the
power series ring R[[X;σ, δ]] may not be well defined, even if δ is a locally nilpotent
deriviation. In Section 5 we disprove their conjecture; we prove that the power
series ring R[[X;σ, δ]] is always well-defined, provided that δ is a locally nilpotent
σ-derivation (Theorem 5.3).

In Section 6, we investigate the properties of skew polynomial rings of graded
rings. Our main theorem in this section states that skew polynomial rings with
natural grading are locally nilpotent if and only if they are graded locally nilpotent
(Theorem 6.12). We also obtain several other results on skew polynomial rings,
and pose several open questions.

All of the algebras in this paper are over a field and all rings are associative
but are not required to have an identity. We denote by A1 the usual exten-
sion with an identity of the ring A. For a ring R the Jacobson radical, upper
nil radical, locally nilpotent radical and Baer (i.e. prime) radical are denoted by
J(R), N(R), L(R), β(R), respectively. For details on general theory of radicals of
rings see [30].

2. Differential polynomial rings over rings with non-zero prime
radical

In [53], we can find a diagram showing relations between radicals of a ring R and
radicals of the differential polynomial ring R[X; δ]. One gap visible in the diagram
is the source of the wording of Question 3.2: “If R is a prime radical ring with a
derivation δ, then is R[X; δ] locally nilpotent (or even just Jacobson radical)?”

In this section we show that the answer to this question is positive.
Recall that a sequence a0, a1, a2, · · · ∈ R where ai+1 ∈ aiRai (for all i ≥ 0) is

called an m-sequence. An element a is strongly nilpotent if each m-sequence starting
with a is eventually zero. The prime radical of R is then precisely the set of strongly
nilpotent elements in R. Recall that the prime radical is always locally nilpotent.

We use the following well-known graph-theoretic lemma:

Lemma 2.1 (König’s lemma). Let T be a graph which is a tree such that every
vertex has finite degree. If there exist infinitely many edges, then T contains an
infinite path.

Let R be a ring. For elements r1, r2, . . . ∈ R we denote β(r1) = r1, β(r1, r2) =
r1r2r1 and inductively we define β(r1, . . . , rn+1) = β(r1, . . . , rn)rn+1β(r1, . . . , rn).

From Lemma 2.1 we get the following:

Corollary 2.2. Let R be a Baer radical ring. Let U1, U2, . . . be finite subsets of R.
Then there exists a positive integer n, such that for any r1 ∈ U1, r2 ∈ U2, . . . , rn ∈
Un we have β(r1, . . . , rn) = 0.

Proof. For each r1 ∈ U1 we define the tree Tr1 as follows. The vertices of Tr1
are non-zero elements β(r1, t2, t3, . . . , tm) such that ti ∈ Ui for each i and m
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is a positive integer. We put an edge between vertices β(r1, t2, t3, . . . , tm) and
β(r1, t2, t3, . . . , tm+1) for each ti ∈ Ui.

Since R is Baer radical, there are no infinite paths in this graph. Hence, by
Lemma 2.1 there exists some positive integer n such that every path in Tr1 has
lenght at most n−1. Therefore, β(r1, . . . , rn) = 0 for any r1 ∈ U1, r2 ∈ U2, . . . , rn ∈
Un. �

Theorem 2.3. If R is a ring and R is Baer (prime) radical, then for every deriva-
tion δ on R the differential polynomial ring R[X; δ] is locally nilpotent.

Proof. Let aiX
ji for i = 1, 2, . . . , l be such that ai ∈ R and j1, . . . , jl ≤ k for some

positive integers j1, . . . , jl, k. We will show that the subring of R[X; δ] generated
by these elements is nilpotent. Let t be a positive integer number and i1, . . . , it ≤ l.
Notice that each product

∏t
n=1 ainX

jin can be written as a sum of monomials of

the form a
(q1)
i1
· · · a(qt)

it
Xξ for some positive integers q1, . . . , qt, ξ where a(i) = δi(a)

is the i-th δ-derivative of a. We say that a word (namely, a product of elements

from R) w = a
(q1)
i1
· · · a(qt)

it
is good if (q1 + 1) + (q2 + 1) + . . .+ (qt + 1) ≤ t · (k+ 1).

Moreover, we say that w has length t in this presentation (notice that t might differ
between different presentations of w).

Part 1. We define a sequence of positive integers p(n), f(n) as follows:

• Set p(1) = 1;
• Let f(n) be the number of all good words of length p(n);
• Inductively define p(n+ 1) to be the smallest number such that every good

word of length p(n + 1) has more than f(n) (separate) subwords each of
which is a good word of length p(n).

In this part we show by induction on n that f(n) is finite and that it is always
possible to find p(n + 1) once we defined p(1), . . . , p(n). Namely, we show that

p(n), f(n) are well defined. For a word v = a
(m1)
1 · · · a(mt)

t define α(v) =
∑t
i=1(mi+

1).
Let w be a good word of length p(n) · t for some t. We can divide it into

t disjoint subwords c1, . . . , ct of length p(n) each (so they have the form: cj =

a
(m1)
1 . . . a

(mp(n))

p(n) ). Since w is a good word of length p(n) · t then α(w) ≤ (k +

1)(p(n) · t). Let y be the number of words ci such that α(ci) > p(n) · (k + 1)
(number of ci which are not good words), then t−y is equal to the number of good
words ci.

It follows that y · (p(n) · (k + 1) + 1) ≤ α(w) ≤ p(n) · t · (k + 1), therefore

y ≤ p(n)·t·(k+1)
p(n)·(k+1)+1 hence y · (1 + 1

p(n)·(k+1) ) ≤ t hence t − y ≥ y · ( 1
p(n)·(k+1) ). Let

t > 2p(n) · (k+1) ·f(n). If y > t
2 = p(n) · (k+1) ·f(n) then t−y ≥ y · ( 1

p(n)·(k+1) ) >

f(n) as required (since t− y is the number of good subwords in w). If y ≤ t
2 then

t− y ≥ t
2 > f(n) as required. This shows that by taking sufficiently large t we can

define p(n+ 1). It follows that f(n+ 1) is finite.
Part 2. Denote U1 = {a1, a2, . . . , al}. For each n > 1, define Un to be the set

of (non empty) subwords of good words of length p(n). By the above argument, all
sets Ui are finite.

In this part we show that every good word of length p(n+1) admits β(r1, . . . , rn)
as a proper subword (for some rj ∈ Uj).

For n = 1, the above assertion holds as U1 = {a1, . . . , al}. Suppose the assertion
is valid for n, so every good word w of length p(n + 1) has a proper subword
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u = β(r1, . . . , rn) (for some rj ∈ Uj), namely w = cud for some (not both empty)
words c, d.

Let w′ be a good word of length p(n + 2). Then, by definition of p(n + 2)
we can write w′ = c′wvwd′ where w is a good word of length of p(n + 1), for
some (possibly empty) words c′, d′, v. Hence w′ = c′(cud)v(cud)d′ = c′c(udvcu)dd′,
where c, d are some words and u = β(r1, . . . , rn). Denote dvc = rn+1 and notice
that rn+1 is a subword of w′, hence rn+1 ∈ Un+1, and therefore udvcu = urn+1u =
β(r1, . . . , rn+1), as required. Note that rn+1 ∈ R and β(r1, . . . , rn+1) is a proper
subword of w′ because c, d cannot be both empty (by the inductive assumption).

Part 3. We are now ready to prove the theorem. Let S be the subring of R[X; δ]
generated by elements aix

ji for i = 1, . . . , l (note that every finitely generated
subring of R[X; δ] is contained in a subring generated by finitely many monomials
in X).

By Corollary 2.2, there exists n > 1 such that β(r1, . . . , rn−1) = 0 for all ri ∈ Ui.
Note that every element in Sp(n) is a sum of monomials in X with coefficients
being good words of length p(n). Every word of length p(n) contains a subword
β(r1, . . . , rn−1) = 0 for some ri ∈ Ui. Therefore Sp(n) = 0, and it follows that
R[X; δ] is locally nilpotent. �

We have the following corollary from Theorem 2.3:

Corollary 2.4. Let K be a field of characteristic zero and R be a K-algebra with
derivation δ. Let R[X; δ] denote the differential polynomial ring. If the Baer radical
of R is nonzero then the locally nilpotent radical of R[X; δ] is nonzero.

Proof. Let β(R) denote the Baer radical of R. We know by Theorem [55, Theorem
2.6.28] that δ(β(R)) ⊆ β(R), hence the differential polynomial ring β(R)[X; δ] is
well defined. By Theorem 2.3 we get that β(R)[X; δ] is locally nilpotent. Notice
that β(R)[X; δ] is an ideal in R[X, δ]; this concludes the proof. �

3. Stability of the Jacobson radical in graded rings

Let K be a field and let R be an K-algebra. In [18] Bergen and Grzeszczuk have
shown that nil and prime radicals need not be stable under a q-skew derivations
(even in characteristic zero). On the other hand, if K has characteristic 0, Propo-
sition 2.6.28 from [55] shows that if δ is a derivation of R, then δ(N(R)) ⊆ N(R)
and δ(β(R)) ⊆ β(R) where N denotes the nil radical of R and β denotes the Baer
(prime) radical of R. Notice that this is no longer true if K is a field of characteris-
tic p > 0. This implies that the Jacobson radical of a ring R need not be δ-stable,
in the case when R is an algebra over a field of a characteristic p > 0.

In this section we consider the following related question:

Question 3.1. Let R be an algebra over a field of characteristic zero, and let δ be
a derivation on R. Under which assumptions is the Jacobson radical of R δ-stable?

Let R be a ring and let a ∈ R, we say that I is the ideal generated by a in R
if I is the smallest ideal in R which contains a. We say that a derivation δ is a
grading preserving derivation on a graded ring R =

⊕∞
i=1Ri if δ(Ri) ⊆ Ri for every

i. For r ∈ Ri, denote deg(r) = i. For an ideal I / R, denote by δ(I) the ideal of R
generated by elements δ(r) for all r ∈ I.
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Lemma 3.2. Let R =
⊕∞

i=1Ri be an algebra over a field K of characteristic zero
and let δ be a grading preserving derivation on R. Let I be a homogeneous, graded
nil ideal in R. Then every homogeneous element from δ(I) is nilpotent.

Proof. The proof is very similar to the proof of [55, Proposition 2.6.28].
Since I is homogeneous we have that δ(I) is generated by homogeneous elements

of the form δ(a).
We first show that δ(a) generates a graded nil ideal for every a ∈ I homogeneous.

Let a ∈ I ∩ Rj for some j and c1, . . . , cm, d1, . . . , dm ∈ R1 homogeneous such that
deg(ci) + deg(a) + deg(di) = k for some k.

Since I is graded nil we know that (
∑m
i=1 ciadi)

n
= 0 for some n. Applying δ to

this equation, we get that:

0 = δn

((
m∑
i=1

ciadi

)n)
=
∑
u

δn(hu,1 · · ·hu,n)

where each hu,l has the form ciadi. But δ(ciadi) = ciaδ(di) + ciδ(a)di + δ(ci)adi ∈
ciδ(a)di + I, so applying this to each δn(hu,1 · · ·hu,n) we get (iteratively using
Leibniz’ formula, as in [55, 1.6.29]) that:

0 = δn

((
m∑
i=1

ciadi

)n)
∈ m! ·

(
m∑
i=1

ciδ(a)di

)n
+ I.

Since m! is invertible and
∑m
i=1 ciadi is nilpotent (being a homogeneous element

from I) we get that
∑m
i=1 ciδ(a)di is nilpotent, and it follows that the ideal generated

by δ(a) is graded nil.
Notice that a sum of two graded nil ideals is graded nil, therefore a sum of a

finite number of graded nil ideals is graded nil.
Now let r ∈ δ(I) be an arbitrary homogeneous element. Then r ∈ R1δ(r1)R1 +

· · ·R1δ(rv)R
1 for some homogeneous r1, . . . , rv ∈ I. Since each R1δ(r1)R1 is a

homogeneous, graded nil two sided ideal, as proven above, then R1δ(r1)R1 + · · ·+
R1δ(rv)R

1 is graded nil too, and so r is nilpotent and the result follows. �

We are ready to prove our next result. By Mk(R) we will denote the k-by-k
matrix ring with entries from R.

Theorem 3.3. Let R =
⊕∞

i=1Ri be an algebra over a field K of characteristic
zero, and suppose that R is generated in degree one (R1 generates R as an algebra).
If δ is a grading preserving derivation on R then δ(J(R)) ⊆ J(R).

Proof. Let a ∈ J(R); we need to show that δ(a) ∈ J(R). By a result of Bergman
[20] the Jacobson radical of an N-graded ring is homogeneous, so we only need to
consider the case when a is homogeneous. Let I be the ideal generated by a in R.
Notice that I is a graded Jacobson radical ring (as the quasi-inverse of any element
from I is in I and I is homogeneous).

Notice that for every k the matrix ring Mk(R) has natural grading inherited
from R as Mk(R) =

⊕∞
i=1Mk(Ri). It is known that matrix rings over Jacobson

radical rings are Jacobson radical hence for every k, the matrix ring Mk(I) is
Jacobson radical. Every graded Jacobson radical ring is graded nil, hence Mk(I)
is a graded nil ideal in Mk(R). Notice that δ is a grading preserving derivation
on Mk(R) (where the derivation of a matrix with entries ai,j is the matrix with
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entries δ(ai,j)). Let Ĩ be the ideal of R generated by δ(a). By Lemma 3.2 every

homogeneous matrix from Mk(Ĩ) is nilpotent.

Let c ∈ Ĩ, then by Definition 7.1 from [61] there is a matrix X with entries from
R1 such that Xn = 0 for some n if and only if c is quasi-invertible (see Lemma
7.2 in [61]). Moreover, by Lemma 7.1 from [61] it follows that there is m such
that all entries of Xm are in the ideal generated by the homogeneous components
of c. In our situation, we get that there is m such that all entries of Xm are in
the ideal generated by δ(a). By the above Xn = 0 for some n, and hence c is

quasi-invertible. It follows that every element from Ĩ is quasi-invertible and hence
it is in the Jacobson radical of R. This concludes the proof. �

Before we end this section, let us provide two examples which demonstrate the
sharpness of Theorem 3.3. Namely, neither one of the assumptions in the formula-
tion of Theorem 3.3 can be dropped.

We begin by exhibiting a graded algebra which is generated in degree 1, such
that the Jacobson radical is not stable under some grading preserving derivation.
This marks the necessity of the assumption in Theorem 3.3 that the characteristic
of the base field is zero.

Example 3.4 (The characteristic hypothesis is necessary). Let F be an arbitrary
field of characteristic p > 0. Let R = F [x, y]/ 〈xp〉. Then R is graded by deg(x) =
0,deg(y) = 1. Consider the (non-unital) subalgebra R+ = F [y, xy, . . . , xp−1y].
Note that R+ is a graded algebra which is generated in degree 1.

Define a derivation δ : R+ → R+ by δ(y) = 0, δ(xy) = y, . . . , δ(xp−1y) =
(p− 1)yxp−2. Note that δ preserves the grading on R+. Observe that xy ∈ J(R+)
but δ(xy) = y /∈ J(R+).

We now show that the grading assumption cannot be dropped, even when the
characteristic is zero. Namely, we construct an algebra over a field of characteristic
zero, with a derivation such that the Jacobson radical is not stable under it. This
shows that the grading hypothesis cannot be dropped. Since we can always artifi-
cially declare that the whole algebra has degree zero, it shows that an additional
assumption on the grading must be put to prevent such redundant situations – in
our case, we assume the algebra is generated in degree 1.

Example 3.5 (The grading hypothesis is necessary). Recall the examples men-
tioned in [18] in positive characteristic: for any prime p let Rp = Fp[x]/ 〈xp〉 with
derivation δp : Rp → Rp defined by δp(x) = 1.

Now let P = {2, 3, 5, . . . } be the set of prime numbers. Fix a non-principal

ultrafilter F on P and let R̂ =
∏
F Rp be the corresponding ultraproduct. Note that

the set of derivations {δp}p∈P can be glued to a derivation δ̂ : R̂→ R̂.

Note that R̂ is an algebra over
∏
F Fp, which is a field of characteristic zero.

Observe that the diagonal element x̂ = (x, x, . . . ) is contained in the Jacobson

radical of R̂. To see this, observe that the natural lift of x̂ to the standard product∏
p∈P Rp generates a quasi-invertible ideal, and hence also its image (i.e. x̂) does

in R̂. However, δ̂(x̂) = 1 /∈ J(R̂).

Question 3.6. Let R be a graded algebra of characteristic zero and δ be a grading
preseving derivation on R. Is the Brown-McCoy radical δ-stable? Is the Berhens
radical δ-stable?
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4. On the nil radical of differential polynomial rings

In [38], Hong, Kim, Lee and Nielsen conjectured that for any ring R and a
derivation δ of R

N(R[X; δ]) = I[X; δ]

for some ideal I in R. We prove that this conjecture holds for algebras over infinite
fields. Namely, we show that the nil radical of a differential polynomial ring R[X; δ]
equals I[X; δ] for some ideal I in R, provided that R is an algebra over an infinite
field. Since we use classical methods developed by Amitsur and Jacobson the
content of this section can be viewed as a folklore; we provide detailed proofs
for the convenience of the reader.

Lemma 4.1. Let R be an algebra over an infinite field K and let δ be a derivation
on R. Suppose that the nil radical of R[X; δ] is non-zero. Then there is 0 6= a ∈ R
which is in the nil radical of R[X; δ].

Proof. Let f = f(X) ∈ R[X; δ] be a non-zero polynomial of the minimal possible
degree and such that f ∈ N(R[X; δ]). If the degree of f is 0 then f ∈ R and
the result follows. Suppose now on the contrary that the degree of f(X) is bigger
than 0. For arbitrary t ∈ K denote gt(X) = f(X + t) − f(X). Notice that the
degree of gt(X) is smaller than the degree of f(X). We will show that gt(X) is
in the nil radical of R[X; δ]. It suffices to show that f(X + t) is in the nil radical
of R[X; δ]. To get this fact, notice that the mapping αt : R[X; δ] → R[X; δ] given
by α(r) = r for r ∈ R and α(X) = X + t is a homomorphism of rings since
αt(rX − Xr + δ(r)) = r(X + t) − (X + t)r + δ(r) = 0 for every r ∈ R. In fact,
this is easy to see that α is even an isomorphism of rings. Now, obviously we
have f(X + t) = αt(f(X)) ∈ N(R[X; δ]), as f(X) ∈ N(R[X; δ]). Thus gt(X) ∈
N(R[X; δ]).

Since K is an infinite field, there exists some t such that αt(X) = f(X + t) −
f(X) 6= 0, this implies that gt(X) = f(X + t) − f(X) is a non-zero element of a
smaller degree that f(X) and gt(X) ∈ N(R[X;D]). We have obtained a contradic-
tion, since we assumed that the degree of f(X) is the minimal possible. �

Theorem 4.2. Let R be an algebra over an infinite field K and let δ be a derivation
on R. Then the nil radical of R[X; δ] equals I[X; δ] for some ideal I of R.

Proof. It follows from [38, Proposition 4.3] and from the above Lemma 4.1. �

Notice that our proof bears similarity to the original approach used by Amitsur
to show that the Jacobson radical of a polynomial ring R[X] equals I[X] for some
ideal I of R. This approach is well described and applied in [38, Section 5], wherein
it is shown that the nil radical of a differential polynomial ring R[X; δ] has a non-
zero intersection with R, provided that R is an algebra over a field of characteristic
zero.

Remark 4.3. Notice that by using a similar proof as in Lemma 4.1 it can be shown
that the Behrens and Brown-McCoy radical of a differential polynomial ring R[X; δ]
is of the form I[X; δ] for some ideal I of R, provided that R is an algebra over an
infinite field.

Remark 4.4. Note1 that if I /R[X] is a non-zero σt-invariant ideal (σt(X) = X+t
for t scalar) then I ∩R 6= 0. Therefore P (R[X]) = (P (R[X]∩R)[X] for any radical

1This remark was pointed out to us by the referee, to whom we thank for that.
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class P of algebras over infinite fields. See also [45, Exercise 5.3]. Similarly, using
the automorphisms γt(X) = tX one can show that P (R[X;σ]) is homogeneous (and
if σ is an automorphism, then also P [X,X−1; s] is).

5. Skew power series rings

Consider a ring R with an endomorphism σ. Recall that, given an endomorphism
σ of a ring R, a derivation δ of R is called a σ-derivation if δ(xy) = δ(x)y+σ(x)δ(y).

In [17], the skew power series ring R[[X;σ, δ]] is considered, and many interesting
results are proved on such rings. The authors conjecture that ‘...even if δ is locally
nilpotent, when we drop the assumption that σ = 1, another problem can arise [...]
note that even if δ is locally nilpotent, this sum might not be defined in R’.

Our aim in what follows is to show that, in contrast with the quoted remark, the
ring R[[X;σ, δ]] always has well-defined multiplication, extending that of R[X;σ, δ],
provided that δ is a locally nilpotent derivation. This opens a gateway for many
possible research problems as we propose in the end, as well as for generalizations
of results previously proven only when additional restrictions on σ, δ are put.

For w = w(δ, σ) a monomial in σ, δ, write w(a) for evaluation of w at a (for a ∈
R), and by degσ(w),degδ(w) denote the number of occurences of σ, δ respectively
in w.

Lemma 5.1. Let the notation be as above, and let a ∈ R. The formula:

Xna =

n∑
m=0

 ∑
degσ(w)=m

degδ(w)=n−m

w(δ, σ)(a)

Xm

holds in R[X;σ, δ].

Proof. By induction. The case n = 1 follows immediately, since Xa = σ(a)X+δ(a)
by definition. Now assume validity for n, and consider

Xn+1a =

n∑
m=0

 ∑
degσ(w)=m

degδ(w)=n−m

Xw(δ, σ)(a)

Xm

which decomposes to a sum of the action of σ and action of δ on coefficients:

n∑
m=0

 ∑
degσ(w)=m

degδ(w)=n−m

σw(a)

Xm+1 +

n∑
m=0

 ∑
degσ(w)=m

degδ(w)=n−m

δw(a)

Xm

collecting monomials of equal degrees we obtain:

n+1∑
m=0

 ∑
degσ(w)=m

degδ(w)=n+1−m

w(δ, σ)(a)

Xm

as desired. �

For f ∈ R[X;σ, δ], we denote by (f)m the coefficient of its degree m component.
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Lemma 5.2. Fix a ∈ R and assume δ is locally nilpotent. Then for every m there
exists Nm = Nm(a) such that for all n ≥ Nm and all i ≤ m we have:

(Xna)i = 0.

Proof. By induction. The case m = 0 is done by taking N0 such that δN0(a) = 0
(which exists, by assumption that δ is locally nilpotent).

We now suppose that we have defined all Nm and we define Nm+1. By Lemma
5.1, for all i ≤ m,

(1) 0 = (XNma)i =
∑

degσ(w)=i
degδ(w)=Nm−i

w(a).

Denote deg(w) = degσ(w) + degδ(w). Consider all monomials w = w(δ, σ)

with deg(w) = Nm, and let l be large enough such that δl(w(a)) = 0 for all such
monomials. Finally, take Nm+1 = l + Nm. Observe that for all i ≤ m we have
(XNm+1a)i = 0, since Nm+1 > Nm. We need to show that (XNm+1a)m+1 = 0.

Given a monomial w = w(δ, σ) with deg(w) = Nm+1, write w = w1w2 where
deg(w1) = l and deg(w2) = Nm. Recall that by Lemma 5.1

(XNma)m+1 =
∑

degσ(w)=m+1
degδ(w)=Nm+1−m+1

w(a).

By (1), it follows that either all m + 1 occurences of σ are in w2 or w2(a) = 0

(and hence w(a) = 0). Therefore w1 = δl, and by definition of l we now have that
w(a) = 0. �

Theorem 5.3. Let R be an algebra, σ an endomorphism and δ a σ-derivation
which is locally nilpotent.

Then natural extension of the multiplication from R[X;σ, δ] to R[[X;σ, δ]] is well
defined.

Proof. Let f =
∑∞
i=0 ciX

i and f ′ =
∑∞
i=0 c

′
iX

i. Then we need to show that we can
calculate (ff ′)m for every m ≥ 0. Fix such m. Let q = max0≤i≤m{Nm(c′i)}. Then:

(ff ′)m =

(( ∞∑
i=0

ciX
i

)
·

(
m∑
i=0

c′iX
i

))
m

=

((
q∑
i=0

ciX
i

)
·

(
m∑
i=0

c′iX
i

))
m

which is a well defined element of R. �

This opens several interesting research directions; in [16] it is proved that if R is
locally nilpotent PI then R[X; δ] is Jacobson radical.

Question 5.4. Can one provide a good characterization of the Jacobson radical of
R[[X;σ, δ]] in terms of R and σ, δ? When is it the case that R[[X;σ, δ]] is Jacobson
radical? When is it semiprimitive?

6. Graded algebras, homogeneity and some related questions

Recall that a ring is said to be Brown-McCoy radical if it cannot be mapped onto
a ring with 1, and Behrens radical if it cannot be mapped onto a ring with a non-zero
idempotent. Recall also that a graded ring is graded nil if all homogeneous elements
in R are nilpotent. A number of papers regarding radical properties of graded nil
rings have been published. It was proven in [54], that if R is nil then R[X] is
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Brown-McCoy radical, and later, in [13], it was shown that R[X] is Behrens radical.
Recently, it was proved that for any nil ring R the polynomial ring R[X1, . . . , xn]
with arbitrarily many variables is Brown-McCoy radical (see [26]).

While an arbitrary Z-graded ring which is graded nil is Brown-McCoy radical, for
any Z-graded nil ring R of characteristic p > 0 the polynomial ring R[X] is Brown-
McCoy radical (see [47]). It is not known if the latter result holds for algebras over
fields of arbitrary characteristic.

Proposition 6.1. Let R =
⊕∞

i=0Ri be graded nil. Then R is Behrens radical.

Proof. First, observe that we may assume that R is positively graded, namely that
R0 = 0. To see this, let ϕ : R→ P be a surjective homomorphism, where 0 6= e ∈ P
is an idempotent. Pick a lift of e, say x = x0 +x1 + · · ·+xn, where xi ∈ Ri. Since R
is graded nil, there exists some exponent m such that xm0 = 0, hence xm ∈

⊕∞
i=1Ri.

But ϕ(xm) = em = e.
Hence we assume that R is positively graded. By Zorn’s lemma, there exists an

ideal I / P maximal with respect to not containing e. We replace P by P/I. Note
that P must be primitive. First, it is semiprimitive (since Jacobson radicals cannot
contain non-zero idempotents). Then it follows that the zero ideal is an intersection
of primitive ideals. Since e 6= 0, it follows that at least one of them is zero, hence P
is a primitive ring. By [60] we have that P , as a primitive quotient of a (positively)
graded nil ring, is graded too. Write e = a1 + · · · + ar with ai homogenous of
degree i and r maximal such that ar 6= 0. Then ψ(e) = ψ(er+1) is supported on
the homogeneous components of degrees r + 1, r + 2, . . . , a contradiction. �

Remark 6.2. It can be shown that primitive ideals in non-negatively graded nil
rings are homogeneous, applying modified arguments from [60] (however we have
chosen not to include a full proof here).

There is a natural question which arises in the light of both Proposition 6.1 and
[47]:

Question 6.3. Is a Z-graded nil ring Behrens radical? What if we assume, in
addition, that the characteristic is p > 0?

It is known [20], that the Jacobson radical of a Z-graded ring is homogeneous;
similarly, it was shown [39] that the Brown-McCoy radical of a Z-graded ring is
homogeneous. The following question then naturally arises:

Question 6.4. Is the Behrens radical of a Z-graded ring homogeneous?

We also ask the following:

Question 6.5. Is there a locally nilpotent ring R and a derivation δ such that
R[X; δ] maps onto a ring with a non-zero idempotent?

Clearly, if R is locally nilpotent then so are R[X] and R[X,X−1]. By [40],
idempotents in R[X,X−1] arise from idempotents in R, hence for R without non-
zero idempotents (e.g. R nil) also R[X,X−1] has no non-zero idempotents. This is
done by embedding the Laurent extension R[X,X−1] into R[[X]]. This embedding
does not seem to be valid for twisted Laurent extensions, and we ask:

Question 6.6. Suppose R is a ring with an automorphism σ and a σ-derivation
δ. Is it possible that R admits no non-zero idempotents but R[X,X−1;σ, δ], the left
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localization of R[X;σ, δ] – whenever it exists, does? What if R is locally nilpotent?
What if δ = 0?

Observe that every ring with an identity is an idempotent ring, i.e. R2 = R
(where R2 consists of a finite sum of products of at least two elements from R).
It is known that every finitely generated idempotent ring gives rise to a perfect
group [52]. For this reason, idempotent rings are related to several important open
questions in group theory [52]. We ask:

Question 6.7. What can be said about idempotent rings R = R2 which are Brown-
McCoy radicals? Behrens radicals?

Question 6.8. What can be said about rings which cannot be homomorphically
mapped onto an idempotent ring, i.e. onto a ring R such that R2 = R? Would
such property give rise to a radical property?

Notice that, by Nakayama’s lemma, a finitely generated Jacobson radical ring
cannot be homomorphically mapped onto an idempotent ring.

Question 6.9. What can be said about rings which cannot be homomorphically
mapped onto a ring with a non-zero idempotent subring?

Remark 6.10. Note that there exists a finitely generated Jacobson radical algebra
which contains a non-zero idempotent subring. Indeed, by Theorem 4.1 from [2]
it is possible to embed an arbitrary countable dimensional Jacobson radical algebra
inside a finitely generated Jacobson radical algebra. Since countable dimensional
Jacobson radical idempotent rings exist (e.g. see [58]), it proves the statement.

The ring R[X;σ] is always graded by deg(r) = 0, deg(rXj) = j (for all non-zero
r ∈ R and all natural numbers j > 0). Therefore, if R[X;σ] is Jacobson radical
then it is graded nil (and in particular R is nil). We will use this grading in all of
the following results in this section.

In [11, Theorem 3.8], it is shown that over an uncountable field, R[X;σ] is nil if
R is nil and σ is locally torsion. Recall that σ is locally torsion if, for every r ∈ R,
there is n = n(r) such that σn(r) = r. We note that, for general base fields, we
have a weaker result.

Remark 6.11. If R is nil and σ is locally torsion, then R[X;σ] is graded nil.

Proof. Let r ∈ R; we want to show that rXd is nilpotent. Let t be the order of σ
on r, and let n be the nilpotency index of rσd(r) · · ·σd(t−1)(r). Then (rXd)tn =
(rσd(r) · · ·σd(t−1)(r)Xdt)n = (rσd(r) · · ·σd(t−1)(r))nXdtn = 0.

�

Motivated by the questions posed in [36], in [15], finitely generated infinite di-
mensional graded nilpotent, primitive algebras were constructed. Later, in [14], a
graded nilpotent algebra containing a free subalgebra was constructed. In particu-
lar, graded nilpotent algebras need not be nil.

Our Theorem 6.12 shows that this phenomenon is impossible in the context of
R[X;σ].

A graded algebra is graded nilpotent if the algebra generated by any set of ho-
mogeneous elements of the same degree is nilpotent.

It is graded locally nilpotent if the algebra generated by any finite set of homo-
geneous elements of the same degree is nilpotent.

We prove the following.
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Theorem 6.12. Suppose R[X;σ] is graded locally nilpotent. Then it is locally
nilpotent.

We begin with the following lemma:

Lemma 6.13. Let f = r1X
i1 · · · rnXin ∈ R[X;σ] be a product of homogeneous

elements of degrees i1, . . . , in (all ri’s are from R). Suppose m ≥ i1, . . . , in.

Then f can be written as f = s1X
m · · · slXmsl+1X

m′ , where m′ ≤ 2m and
s1, . . . , sl+1 ∈ R.

Moreover, lm+m′ = i1 + · · ·+ in.

Proof. This is done by induction on n. The case n = 1 is clear, since f = r1X
i1 ,

and we can take l = 0 and m′ = i1 ≤ m.
Now consider a product of n+1 homogeneous elements, f = r1X

i1 · · · rn+1X
in+1 .

By induction, we can write f = s1X
m · · · slXmsl+1X

m′rn+1X
in+1 , with m′ ≤ 2m.

If m′ = m we are done, since in+1 ≤ m. If m′ > m, write m′ = m + d (with
d ≤ m). Now

f = s1X
m · · · slXmsl+1X

m′rn+1X
in+1 = s1X

m · · · slXmsl+1X
mσd(rn+1)Xd+in+1

and we are done, since d, in+1 ≤ m and therefore d+ in+1 ≤ 2m.
Otherwise, m′ < m, so m′ + in+1 ≤ 2m and

f = s1X
m · · · slXmsl+1X

m′rn+1X
in+1 = s1X

m · · · slXmsl+1σ
m′(rn+1)Xm′+in+1

and we are done.
The equality lm+m′ = i1 + · · ·+ in follows from comparing the degrees of both

sides. �

We are now ready to prove Theorem 6.12.

Proof. (Proof of Theorem 6.12)
Pick f1, . . . , fn ∈ R[X;σ] where fi =

∑mi
j=0 ri,jX

j . Set m = maximi. Let

S = {σk(ri,j)|1 ≤ i ≤ n, 1 ≤ j ≤ mi, 0 ≤ k ≤ m} (where σ0 = id) and let T be the
set of all products of up to m (not necessarily distinct) elements from S, namely
T =

⋃m
i=1 S

i. Let U = {tXm|t ∈ T}. Since R[X;σ] is graded locally nilpotent,
and U is a set of homogeneous elements of degree m, there is some d such that
Ud = 0. Since R is locally nilpotent, we have that for some exponent e the set of
all products of e zero-degree coefficients vanish, namely {r1,0, . . . , rn,0}e = 0.

Let N = (d+ 2)me. Then for every choice of indices i1, . . . , iN ∈ {1, . . . , n}, we
can write fi1 · · · fiN = g + h, where g is a sum of homogeneous elements of degrees
not exceeding (d+ 2)m− 1, and h is a sum of homogeneous elments of degrees at
least (d+ 2)m.

First, we claim that g = 0. Indeed, given a product of N = (d+ 2)me elements
of the form ri,jX

j , say, ri1,j1X
j1 · · · riN ,jNXjN of degree less than (d+ 2)m, there

must be some 1 ≤ v ≤ N − e + 1 such that jiv = · · · = jiv+e−1 = 0, because
otherwise it would have degree at least (d+ 2)m. It follows that

ri1,j1X
j1 · · · riN ,jNXjN = α · riv,0 · · · riv+e−1,0 · β = 0.

Finally, we claim that h = 0. Indeed, take a product ri1,j1X
j1 · · · riN ,jNXjN

of degree at least (d + 2)m. By Lemma 6.13, we can present it as a product

s1X
m · · · slXmsl+1X

m′ , where m′ ≤ 2m and lm+m′ = i1 + · · ·+ iN ≥ (d+ 2)m.
It follows that (l + 2)m ≥ lm + m′ ≥ (d + 2)m, so l ≥ d. Since Ud = 0 and each
siX

m ∈ U , we have that s1X
m · · · slXm = 0; this concludes the proof. �
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For a graded ring S, we denote by S+ the positive part; i.e. if S = R[X;σ] then
S+ = SX + SX2 + · · · .

It is sometimes a useful tool to pass to the skew power series ring R[[X;σ]] to
prove results on R[X;σ]:

Proposition 6.14. Let R be an algebra with endomorphism σ. Let J(R[X;σ])
denote the Jacobson radical of the skew polynomial ring R[X,σ]. Let I = R ∩
J(R[X;σ]). Then I[X;σ]+ is graded nil. If R contains an uncountable field then
J(R[X;σ])+ is nil.

Note that in general graded nil does not imply nil, even over uncountable fields.

Proof. Pick c ∈ I and p ∈ N. Compute in R[[X;σ]]:

(1− cXp)−1 = 1 + cXp + cσp(c)X2p + cσp(c)σ2p(c)X3p + · · ·

On the other hand, we know that in R[X;σ] there is a finite polynomial representing
(1 − cXp)−1, so they must coincide. Hence for m � 1 we have

∏m
i=0 σ

ip(c) = 0,
hence (cXp)m = 0.

Now assume R contains an uncountable field, k. Pick f ∈ J(R[X;σ])+ and
consider g = (1− αf)−1 − 1; then there exists n such that for infinitely many such
α’s we have that g ∈ RX + RX2 + · · · + RXn. On the other hand, in R[[X;σ]]
we have that g = αf + α2f2 + · · · , so (g)m = α(f)m + α2(f2)m + · · ·+ αm(fm)m
(since fm+1, fm+2, . . . have zero coefficient of Xm). For all m ≥ n + 1, we see
that (g)m = 0, so the invertible Vandermonde matrix (αi are chosen to be non-zero
distinct scalars) 

1 α1 · · · αm−1
1

1 α2 · · · αm−1
2

...
...

. . .
...

1 αm · · · αm−1
m


annihilates the vector

(
(f)m (f2)m · · · (fm)m

)T
, hence (f i)m = 0 for all i ∈ N.

We get that on the one hand all coefficients of Xj in fn+1 are zero for j ≤ n, on
the other hand as we have shown (f i)m = 0 for all m ≥ n+ 1, so we conclude that
fn+1 = 0, and so J(R[X;σ])+ is nil. �

Corollary 6.15. If R is a nil algebra over an uncountable field, then J(R[X;σ])
is nil.

Proof. Pick x ∈ J(R[X;σ]) and denote by r ∈ R its constant term. Then r is
nilpotent, say rn = 0, so xn = (r + (x− r))n ∈ J(R[X;σ])+; hence by Proposition
6.14 it is nilpotent, and we are done. �

We find the following question interesting:

Question 6.16. Suppose R[X;σ] is graded nil (or Jacobson radical), and R is
locally nilpotent. Does it follow that R[X;σ] is nil (or Jacobson radical)?

Note that the question is closely related to the Köthe problem: for σ = id, the
assertion that R is nil implies that R[X;σ] = R[X] is Jacobson radical is equivalent
to an affirmative answer to the Köthe problem. Note that if we assume R is nil,
but not necessarily locally nilpotent, then R[X] need not be nil [59].
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By [63], if R is an algebra over an uncountable field and δ is locally nilpotent,
then J(R[X; δ]) ∩ R is nil. Note that if δ is replaced with an endomorphism σ
then it is still true (even over an arbitrary base field), since the resulting set is
homogeneous and the Jacobson radical of a Z-graded algebra is graded nil.

Question 6.17. Consider J(R[X;σ, δ])∩R. Is it nil if we assume that δ is locally
nilpotent? What if we assume that σ is locally torsion?

Notice that it was shown in [62] that J(R[X; δ]) ∩ R is nil provided that δ is a
locally nilpotent derivation and R is an algebra over a field of characteristic p > 0.
The assumption that δ is a locally nilpotent derivation is necessary (see Theorem
1, [62]). It is not known if the assumption that the base field has a non-zero
characteristic is necessary.
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[10] D. Bachiller, F. Cedó, E. Jespers, J. Okniński, Iterated matched products of finite braces and

simplicity; new solutions of the Yang-Baxter equation, to appear in Trans. Amer. Math. Soc.
[11] S. S. Bedi, J. Ram, Jacobson radical of skew polynomial rings and skew group rings, Israel

J. Math. 35(4) (1980), 327–338.

[12] E. J. Beggs, J. D. Gould and S. Majid, Finite group factorisation and braiding, J. Algebra
181 (1996), 112–151.

[13] K. I. Beidar, Y. Fong, E. R. Puczy lowski, Polynomial rings over nil rings cannot be homo-
morphically mapped onto rings with nonzero idempotents, J. Algebra 238(1) (2001), 389–399.

[14] J. P. Bell, B. Greenfeld, Free subalgebras of graded algebras, J. Algebra 483 (2017), 145–162.

[15] J. P. Bell, B. W. Madill, Iterative algebras, Alg. Rep. Theory 18(6) (2015), 1533-1546.
[16] J. P. Bell, B. W. Madill, F. Shinko, Differential polynomial rings over rings satisfying a

polynomial identity, J. Algebra 423(1) (2015), 28–36.

[17] J. Bergen, P. Grzeszczuk, Skew power series rings of derivation type, J. Alg. Appl. 10(6)
(2011), 1383–1399.

[18] J. Bergen, P. Grzeszczuk, Skew derivations and the nil and prime radicals, Colloq. Math.

128 (2012), 229–236.
[19] J. Bergen, S. Montgomery and D. S. Passman, Radicals of crossed products of enveloping

algebras, Israel J. Math. 59 (1987), 167–184.
[20] G. M. Bergman, On Jacobson radicals of graded rings, preprint, 1975. Available at

http://math.berkeley.edu/∼gbergman/papers/unpub/.
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