CONCUSSION IN MOTORSPORT

Concussion in Motorsport? Experience, Knowledge, Attitudes and Priorities of Medical Personnel and Drivers

Stephanie A. Adams, MSc, Anthony P. Turner, PhD, Hugh Richards, CPsychol, and Peter J. Hutchinson, FRCS (Surg Neurol)

Corresponding Author:

Stephanie A. Adams, MSc Neuropsychology, PhD Candidate
Institute for Sport, PE & Health Sciences
Moray House School of Education
University of Edinburgh
St Leonard's Land, Holyrood Road
Edinburgh, Scotland, EH8 8AQ
Email: stephanie.adams@ed.ac.uk
Tel: +44 (0) 131 651 6576
Fax: +44 (0) 131 651 6521

Acknowledgments: The authors would like to thank Dr Paul Trafford, Dr Ian Roberts and the motorsport drivers who provided consultation. We would also like to thank Louise Finlayson and Gala Morozova for their support and assistance in completing this study, as well as the UK Motor Sport Association (MSA) and Scottish Motor Sports (SMS) staff who helped to advertise the online survey.

Conflicts of Interest and Source of Funding: PJH is Chief Medical Officer for the FIA Formula One British Grand Prix at Silverstone. Stephanie Adams is supported by a University of Edinburgh Principal’s Career Development Scholarship. Nothing declared for the remaining authors.

Main word count: 3,053

Abstract word count: 269
CONCUSSION IN MOTORSPORT

Abstract

Objective: To assess concussion experiences, knowledge and attitudes of motorsport medical personnel and drivers, and to determine priority areas regarding concussion within the sport.

Setting: United Kingdom.

Participants: Part 1: Key motorsport stakeholders (N=8); Part 2: Motorsport medical personnel and drivers (N=209) representing amateur and/or professional 4-wheeled motorsport.

Main Outcome Measures: Concussion experience, knowledge, attitudes and perceived priority areas.

Results: Thirty-one percent of surveyed drivers (age = 37.91 ± 13.49 years: 89% male) reported suffering from concussion in motorsport. Eighty-seven percent of surveyed medical personnel (age = 48.60 91 ± 10.68 years: 74% male) reported experience with concussed drivers and 34% reported feeling pressured to clear a driver with concussion. Gaps in knowledge and misperceptions about concussion were reported in both groups, and disparity between concussion attitudes emerged between drivers and medical personnel. Application of assessment and management procedures varied between medical personnel and there was evidence motorsport policy and concussion guidelines may not be directly followed. According to both medical personnel (77%) and drivers (85%), ‘education and training’ is the top priority area for the sport.

Conclusions: There is clear evidence of concussions in motorsport, but accurate knowledge about this injury is missing. Concussion education and training for all
drivers and medical personnel is required. Additional investigations into concussion attitudes are advised to complement and advance simple educational initiatives. Further investigation is also required to determine how to best support motorsport medical personnel, and general practitioners, who hold significant responsibility in guiding drivers from diagnosis to return-to-racing, and to support the effective implementation of policy.

Key Words: concussion, motor sports, motorsport, stakeholders, knowledge, attitudes.

Clinical Relevance: Concussion in motorsport is a concern, and relevant information, guidelines and policy may not be effectively reaching motorsport medical personnel and drivers.
CONCUSSION IN MOTORSPORT

INTRODUCTION

Sport concussion is a current, high priority issue affecting millions of individuals worldwide\(^1\), including motorsport athletes (e.g., Formula-1, rally)\(^2\). Drivers are frequently subjected to demands that are rare in other sports (e.g., excessive speeds, high G forces, large rotational mechanisms)\(^2,3\). The risk and incidence of concussion in motorsport have been reported as high, and rising\(^2,4\).

However, published evidence of the experiences, knowledge and attitudes of key motorsport stakeholders (e.g., medical personnel, drivers) is lacking, and there is a significant knowledge gap regarding concussion in motorsport specifically\(^5\).

Motorsport has more than 80 million people involved worldwide\(^6\) and an increasing number of younger participants entering the sport\(^5\). The exact number of drivers is unknown, because unlicensed drivers may be three times the number of licensed at any one time\(^7\). The UK alone reports approximately 30,000 licenced drivers each year\(^8\). There are specific challenges within the context of motorsport including that the sport can be highly independent, with many drivers traveling to and from races alone, without a coach or family member. Furthermore, the availability of on-site medical personnel and medical resources varies significantly across region, race series and level, making standardised concussion management challenging. A detailed description of the specific components of motorsport is beyond the scope of this paper, however, relevant information can be found at www.msauk.org.

Recently there has been an increase in concern about concussion in motorsport reflecting high profile incidences\(^9\), governing body policy\(^10\), media publications\(^11-13\) and developing research in other sports. Consequently, early stage research into incidence and engineering perspectives have emerged\(^2,5\).
Research in other sports has identified gaps in athletes’ knowledge, and attitudes, towards concussion. Similarly, medical professionals have demonstrated substantial gaps in knowledge, and misperceptions. Physician knowledge about concussion is essential, particularly given they remain the primary health care provider for concussion. Limited evidence of knowledge towards concussion exists in two-wheeled motorsport, but to date, there have been no peer-reviewed studies of knowledge, or attitudes, towards concussion within four-wheeled motorsport.

Stakeholder involvement develops local relevance, improves research uptake and is a valuable component of the processes leading to effective interventions. Involving stakeholders in helping to identify research priorities has proven effective in other areas of medicine and sport, such as nursing, paediatrics, health promotion, and sport injury prevention. To our knowledge, stakeholders’, in this case motorsport drivers and medical personnel, perceived priority areas regarding concussion remain largely unaddressed, meaning contextualised perspective on this issue is lacking.

The aim of this research was to assess context and establish research feasibility and direction, followed by further assessment of concussion experiences, knowledge, attitudes and perceived priority areas for development in motorsport.

METHODS

A sequential mixed-methods design was used. Qualitative interviews (Part 1) explored stakeholders’ views and experiences. This informed a survey (Part 2) developed to assess experiences, knowledge, attitudes, and perceived priority areas. Research was approved by the relevant institutional ethics committee.
CONCUSSION IN MOTORSPORT

Eight experienced stakeholders (4 medical personnel (MED), 4 drivers (DRIV); aged 18+ years, $M=40$), with a mean 18 years of experience (range = 5 - 28 years), gave informed consent to be interviewed. Stakeholders were purposively sampled to be representative of different disciplines, roles and levels of motorsport (see Table, Supplemental Digital Content), and included highly accredited medical personnel and drivers at the professional level of the sport.

A semi-structured interview guide was developed through an iterative process of revision and piloting, using an expert panel ($N=4$) including qualitative researchers and a former international motorsport driver. Individual interviews ($M=30$ minutes) were recorded and transcribed using unique pseudonyms, and member checking was used to improve confidence in quality of data. Thematic analysis was conducted and consensus validation was used to establish validity and trustworthiness, achieving 86% initial agreement prior to researcher discussions which resolved any discrepancies.

Part 2

An online cross-sectional survey was disseminated using Bristol Online Survey (BOS; https://www.onlinesurveys.ac.uk/). Prior to launching, the survey went through multiple stages of revision and piloting. Content and face validity were checked by motorsport medical experts and professional motorsport drivers. The survey was disseminated UK-wide via national governing body mailing lists, newsletters, websites and postings on social media. Inclusion criteria included being 16+ years of age, and either a racing licenced UK driver or medical personnel (including UK certified doctors, surgeons, paramedics) from 4-wheeled motorsport.

Surveys contained a 24-item sign/symptom checklist (including distractors) and 18 statements, to assess concussion knowledge and opinions, adapted from a
CONCUSSION IN MOTORSPORT

previous survey. Checklist items reflected all different categories of signs/symptoms (i.e., physical, cognitive, emotional and sleep). Attitudes towards concussion were assessed using scenario-based questions from the Rosenbaum Concussion Knowledge and Attitude Survey (RoCKAS), which were adapted to suit motorsport context. Scoring and interpretation of these sections followed guidance from previous publications.

Medical personnel completed open-ended questions about concussion assessment and management practices (e.g., “How would you assess someone with a suspected concussion?”), adapted from the literature. Additionally, all participants were instructed to describe two perceived priority areas regarding concussion in motorsport.

Quantitative analyses were performed using SPSS Statistics version 22.0 (SPSS, Inc.), with an a priori significance level of $p < 0.05$. Normality and equality of variance assumptions (Shapiro-Wilk’s and Levene’s tests respectively) were met for general knowledge statements as well as the attitude scenarios. T-tests were therefore used to assess differences in general knowledge, and attitude scenarios, between groups (MED, DRIV). Sign/symptom data did not meet normality assumptions, and so a Mann-Whitney U test was used to assess sign/symptom knowledge between groups. Qualitative survey questions were analysed using thematic analysis.

RESULTS

Part 1

The following themes describe the current state of concussion in motorsport:

Concussions occurrence
CONCUSSION IN MOTORSPORT

All MED reported working with concussion in motorsport. One MED also described working with drivers with on-going symptoms and related-challenges:

“…seen drivers as a clinical follow-up who have been concussed, with on-going symptoms and issues with decision-making etc” (MED3).

Two of four drivers described personal experiences of concussion and three described indirect experiences through teammates or friends (Table 1).

Potential underdiagnoses/underreporting

Participants described signs of concussion including periods of transient dysfunction following accidents, and feelings of the brain being “shaken”. One driver indicated they might delay symptom reporting, or not seek medical help at all (Table 1). Additionally, MED articulated concerns about the consequences associated with underdiagnosis or underreporting:

“my fear is you have somebody who is not really in control of their faculties… they’re drowsy, not able to think clearly… if they go back in that car, they’re potentially going to kill themselves or kill somebody else” (MED1).

They also noted that concussion is likely under-recognised in general, and from a media perspective:

“it’s perhaps not as well-known from the public’s point of view, it’s not seen on camera as much as it is in rugby, American football… on a track if there’s something really big they just turn the camera away…” (MED4).

Challenges & variation in diagnosis, assessment and management

Reported concussion assessment and management practice differed according to motorsport series and/or level (Table 1). In addition, two MED (who regularly work in general practice) were concerned about general practitioners’
CONCUSSION IN MOTORSPORT

(GPs) “lack of concussion knowledge”, particularly given recent UK motorsport policy10 that requires concussed drivers to seek GP clearance before returning to competition:

“unreasonable to ask [GPs] to write a letter to say this guy’s better from this concussion… GPs haven’t got a clue we don’t see concussion in general practice” (Med1).

The following themes reflect recommended future directions and requirements:

Role of governing bodies

All participants advocated for governing bodies to be heavily involved in supporting and actively implementing research findings (Table 2).

Education and training

All DRIV, and two MED, emphasised a need to disseminate concussion-related information and/or education, and mandatory education was also suggested (Table 2).

Motorsport-specific research

Two drivers emphasised pushing for more sport-specific research, as they believed it is currently lacking:

“so far things with concussion are not as researched and understood [in motorsport]” (DRIV2).
CONCUSSION IN MOTORSPORT

This was echoed by medical personnel. Specifically, they felt data is needed to enhance diagnosis, assessment and management procedures (Table 2).

Engineering and technology

Two drivers prioritised focusing on safety technology (e.g., helmets) and one MED prioritised continued improvements to track-design and safety equipment (Table 2).

Part 1 summary

Motorsport experts have significant experience with concussion and the injury may be underdiagnosed. Motorsport MED (and GPs in general) may be behind other sports in terms of assessment and management practices, and implementing recent policy\(^9\). In general, the sport may have limited information and knowledge about concussion. Top perceived priority areas include education and training, acquiring motor-sport specific data and focusing on collective action between researchers, medical professionals and governing bodies.

[Table 2]

Part 2

Two hundred and nine respondents (90 MED, 119 DRIV) completed the survey. One MED and 18 DRIV did not meet inclusion criteria, thus their data was excluded from analyses. The majority of participants were male (74% MED, 89% DRIV). Forty-eight percent of MED were qualified medical doctors. Seventy-five percent of drivers were amateur level, and 78.7% of MED worked both amateur and professional level events. Respondents represented multiple types of motorsport, ‘Circuit racing’
(65.2% MED, 25.7% DRIV) and ‘Rallying’ (27.0% MED, 42.6% DRIV) were the most common (see Tables, Supplemental Digital Content).

Thirty-one percent of drivers reported concussion during motorsport. Eighty-seven percent of MED reported working with concussed drivers. Thirty-four percent of MED have felt pressured to clear a concussed driver.

Medical personnel demonstrated significantly greater sign/symptom knowledge ($M=20.27$, $SD=2.14$; $U=2,077.0$, $p<0.001$, $r=0.48$) compared to drivers ($M=16.76$, $SD=4.04$). Inspection of individual checklist items revealed knowledge gaps. For example, few DRIV correctly identified ‘sadness’ (35.6%), ‘trouble falling asleep’ (41.6%) and ‘feeling more emotional’ (47.5%). Overall, both groups identified fewer ‘emotional/sleep’ items. Furthermore, ‘shortness of breath’ (20.2% MED, 18% DRIV) and ‘ear discharge’ (32.6% MED, 36% DRIV) were incorrectly thought to be signs of concussion (Figure 1).

Medical personnel demonstrated significantly greater general concussion knowledge ($M=72.87$, $SD=6.06$; $t(187)=9.03$, $p<0.001$, $d=1.32$) compared to drivers ($M=64.80$, $SD=6.19$). However, both groups indicated several misperceptions. The most common were uncertainty about the recovery time for younger drivers (37.1% MED, 52.0% DRIV) and uncertainty whether prior concussion increases the risk of another concussion (37.1% MED, 35.6% DRIV). Furthermore, DRIV incorrectly agreed protective equipment (e.g., helmet) prevents concussion and that standard brain imaging (e.g., CT scan) shows concussion damage (26.7% and 23.8%, respectively). DRIV (50.5%) and MED (42.7%) incorrectly agreed drivers can start normal training when they are symptom free (Table 3). Furthermore, few participants (67.4% MED, 23.8% DRIV) ‘strongly disagreed’ that concussion can only occur from a direct blow to the head. Finally, 50.5% of DRIV and 42.7% of MED incorrectly
CONCUSSION IN MOTORSPORT

believed drivers can start normal training as soon as they are symptom free (Table 3).

[Figure 1]

Analysis of the adapted RoCKAS scenarios revealed no significant group differences in mean attitude scores ($t(185)=1.31$, $p=0.19$, $d=0.19$; DRIV: $M=40.56$, $SD=4.61$, MED: $M=39.67$, $SD=4.61$). When participants responded about their own attitudes, both groups demonstrated moderately safe attitudes towards concussion. However, variation was introduced when MED were asked to comment on what ‘most drivers would feel’ (Table 4 & see Table, Supplemental Digital Content).

[Table 3]

Analysis of open-ended questions showed forty-eight percent of MED find concussion assessment difficult. ‘Complexities of symptoms and diagnosis’ were the most commonly reported reasons, followed by ‘driver/team behaviours/pressures to compete’ and ‘logistical challenges (time/location/facilities)’ (see Table, Supplemental Digital Content).

[Table 4]

Medical Personnel (76%) reported using subjective and objective assessment approaches (24% of whom reported using a combination of both). Few MED
acknowledged following concussion policy and two MED reported adopting the World Rugby guidelines while working in motorsports. A number of findings highlight violation of recent consensus guideline39 and UK motorsport policy10. For example, few MED (8\%) reported recommending drivers follow a graduated return-to-sport protocol. Additionally, few MED reported telling drivers they should see their GP, or ensuring drivers are removed from competition until recovered and/or having the driver’s licence temporarily suspended (12\% and 28\%, respectively) (Table 5).

Thematic analysis revealed that the top three priority areas surrounding concussion in motorsport included: (1) ‘Education/training’ (MED=77\%, DRIV=85\%); (2) ‘Clearer concussion policy/procedures’ (MED=30\%, DRIV=24\%); (3) ‘Improving assessment procedures’ (MED=28\%, DRIV=10\%).

Part 2 summary

Eighty-seven percent of surveyed MED and 32\% of DRIV reported concussion experiences, and 34\% of MED reported feeling pressured to clear a concussed driver to return-to-sport. MED outperformed drivers (as expected) on both sign/symptom identification and general knowledge statements. However, both groups showed knowledge gaps. Although no significant group differences existed in regards to participants’ attitudes towards concussion, MED indicated negative expectations of drivers’ intentions. Medical personnel may benefit from support to improve adherence to motorsport concussion policy. ‘Education/training’ was the most highly reported priority within the sport.
DISCUSSION

This mixed-methods study represents the first examination of concussion knowledge and experiences within (four-wheeled) UK motorsport. It is also the first assessment of concussion attitudes across motorsport, and, is believed to be the first to conduct stakeholder interviews to help direct a sport-specific research agenda on concussion and to build justification for subsequent survey investigation.

Concussion in motorsport may be more common than expected. A third of surveyed drivers and 87% of medical personnel reported concussion experiences. These findings are consistent with recent literature\(^2\), including a pilot survey that found 90% of medical staff (31 countries) reported concussion experiences\(^11\).

Stakeholders indicated that motorsport may be experiencing underreporting and underdiagnosis similar to other sports\(^1\) (see Table 1). Behaviours and processes for reporting, and non-reporting, in motorsport should be investigated further.

Attitudes have a significant role in guiding behaviours\(^40\), and whilst participants demonstrated relatively safe attitudes towards concussion, on average, medical personnel showed evidence they did not believe most drivers always respond in the safest manner. In contrast, drivers generally thought they, and other drivers, would respond safely to concussion. It could be that drivers responded in a socially desirable manner. Previous research found athletes demonstrated safe concussion attitudes when assessed using questionnaires but revealed unsafe behaviours during follow-up interviews\(^16\). These findings have implications for how concussion attitudes are assessed, and prompts further questions around the medical personnel and athlete relationship. Additional investigation is warranted and alternative methods of assessing attitudes, such as through implicit measures\(^41\), would significantly enhance quality of evidence.
Drivers demonstrated worse sign/symptom knowledge compared to MED and performed up to 22% worse compared to other surveyed athlete groups14-17,23. Both groups identified fewer ‘emotional-sleep’ signs/symptoms of concussion compared to ‘cognitive’ or ‘physical’ items, consistent with previous surveys14,35,38,42. Interestingly, more drivers correctly identified the ‘red flag’ signs of concussion (seizure or convolution, neck pain) than MED43. There is a need to improve sign/symptom identification within motorsport and such knowledge gaps should feature in interventions.

Participants reported misperceptions consistent with earlier literature in other sports35. For example, a number of respondents incorrectly believed scans (e.g., X-ray) show concussion-induced damage to the brain and that protective equipment (e.g., helmet) prevents concussion. In fact, some participants regarded personal protective equipment as a priority in addressing concussion in motorsport, demonstrating lack of awareness that items like helmets may not reduce concussion incidence or severity36,44. Additionally, few participants understood that younger individuals (under 18 years) typically take longer than adults to recover from concussion. Drivers incorrectly agreed that concussions only occur from a direct blow to the head and that drivers have to lose consciousness to be diagnosed with concussion. In motorsport specifically, significant rotational forces (which can lead to concussion) are common even without direct impact or loss of consciousness2.

Medical personnel, GPs in particular, are the gatekeepers between drivers and their return to racing. However, present findings suggest recent policy10,39 may not be reaching medical personnel. Few MED discussed the importance of a return-to-sport protocol, ensuring drivers are removed from competition with a temporarily
suspended licence or that drivers follow-up with a GP, which are all key points of UK motorsport concussion policy10 and consensus guidelines39. Furthermore, the current guidance to see a general practitioner, and the finding that 40% of MED in the current study immediately refer patients to hospital for concussion, may be a concern. Studies suggest UK emergency department physicians lack concussion knowledge45 and that general practitioners show inadequacies in concussion-related knowledge and practice19,21,22,46 despite being the primary health resource for concussed individuals21. To alleviate this concern, and the burden placed on general practice and emergency departments, the UK may benefit from adopting the North American practice of sport concussion clinics, where highly trained multidisciplinary teams specialise in dealing with concussion cases.

Thirty percent of MED in the current study reported zero training or education on concussion, which may help to explain the limited adherence to concussion policy. A 2012 Canadian study found only 29% of its medical programmes provided any form of concussion education and that medical students lacked concussion knowledge46, similar to the current findings. Further work is needed to support motorsport medical personnel, and possibly GPs in general. Concussion education has now been successfully integrated into medical curricula in other countries19 and may be needed in UK programmes. Ensuring MED are educated about concussion (and updated as things progress) will likely improve concussion-related care21, simultaneously addressing other top priorities from the current survey (i.e., ‘assessment practices’, ‘clear concussions policy/procedures’).

Education and training are clearly top priorities for motorsport. Concussion education is advocated as a highly effective part of addressing the problem of sports concussion and has shown improvements in other sports47. Interviewed stakeholders
in the current study also perceived developing safety equipment and technology as key priorities. However, new developments take significant resources, and years, before implementation even at the top levels of motorsport (e.g., the ‘Halo’ system designed to guard drivers against airborne debris48). More specifically, advancements in engineering may not be effective, or plausible in cost or time to efficiently address concussion issues. Consequently education and training, which could be quickly made available to all levels of the sport, should be prioritised.

The survey was widely distributed across the UK however there may be a self-selection bias; people who already knew, or held personal interest, about concussion may have been more likely to respond. Additionally, accurate response rates could not be quantified given the described recruitment methods. Participants’ reported concussion history could not be validated using medical records. Finally, the research was specific to the UK and therefore should not be generalised to other countries or two-wheeled motorsports.

In summary, this research helps to address the existing knowledge gap for concussion in motorsport specifically, and highlights several concussion issues in the sport including misperceptions and gaps in knowledge, and limited adherence to concussion policy and guidelines. Education and training for drivers (currently underway) and medical personnel is needed. Findings also extend beyond motorsport, indicating a potential need to review current medical programmes to ensure structured training and continued educational opportunities on sports concussion as well as further consideration of the role for UK sports concussion clinics.
Acknowledgments: The authors would like to thank Dr Paul Trafford, Dr Ian Roberts and the motorsport drivers who provided consultation. We would also like to thank Louise Finlayson and Gala Morozova for their support and assistance in completing this study, as well as the UK Motor Sport Association (MSA) and Scottish Motor Sports (SMS) staff who helped to advertise the online survey.

Contributors: SAA led the design, conduct, analysis and drafting of the manuscript. APT, HR and PJH also contributed to research design, analysis interpretation and editorial input for the manuscript.

Conflicts of interest and source of funding: PJH is Chief Medical Officer for the FIA Formula One British Grand Prix at Silverstone. Stephanie Adams is supported by a University of Edinburgh Principal’s Career Development Scholarship. Nothing declared for the remaining authors.

Ethics approval: Moray House School of Education Ethics Committee, University of Edinburgh.
REFERENCES

CONCUSSION IN MOTORSPORT

Figure legends:

FIGURE 1. Percentage of Correctly Identified Concussion Signs and Symptoms by Motorsport Medical Personnel (MED; N=89) and Drivers (DRIV; N=101).
Table legends:

*Please also see separate Table file.

Table 1. Current State of Concussion in Motorsport

<table>
<thead>
<tr>
<th>Main theme</th>
<th>Sub-theme with sample quotes</th>
<th>No. of participants who endorsed this</th>
</tr>
</thead>
</table>

Explanatory legends: Note. N=8, MED=Medical personnel, DRIV=Drivers.

Table 2. Future Directions and Requirements in Motorsport

<table>
<thead>
<tr>
<th>Key theme</th>
<th>Sub-theme with sample quotes</th>
<th>No. of participants who endorsed this</th>
</tr>
</thead>
</table>

Explanatory legends: Note. N=8, MED=Medical personnel, DRIV=Drivers.

Table 3. General Gaps in Knowledge and Opinion Identified in Motorsport Medical Personnel (MED; N=89) and Drivers (DRIV; N=101)

<table>
<thead>
<tr>
<th>Statement</th>
<th>Responses (%)</th>
<th>Strongly disagree, Disagree, Neutral, Agree, Strongly Agree</th>
</tr>
</thead>
</table>

Explanatory legends: Note. Key knowledge gaps are in bold. Items 8-14, 16-17 are reverse scored. Distractor items not presented. MED=Medical personnel, DRIV=Drivers.

Table 4. Concussion Attitudes According to Scenario-Based Questions

<table>
<thead>
<tr>
<th>Statement</th>
<th>Responses (%)</th>
<th>Strongly disagree, Disagree, Neutral, Agree, Strongly Agree</th>
</tr>
</thead>
</table>

Explanatory legends: Note.
CONCUSSION IN MOTORSPORT

Explanatory legends: Note. Responses (%) = percentage of MED/DRIV who rated each particular item as such, MED=Medical personnel, DRIV=Drivers. See Supplemental Digital Content for full scenarios. Safer attitudes are in bold. Scenario 2 is reverse scored. Participants received 1-5 points for each item, 5 points representing safest possible answer and 1 point representing least safe answer. Possible scores ranged from 10-50, higher scores representing safer attitudes towards concussion.

Table title: TABLE 5. Concussion Assessment & Management Practices Amongst Motorsport Medical Personnel

Appropriate column heads: Assessment approach; No. (%) of respondents;
Management approach; No. (%) of respondents

Explanatory legends: Note. No. (%) of respondents=number of medical personnel who endorsed the item. Analysis based on responses from N=68 doctors. Multiple items sometimes suggested by respondent, thus % exceeds 100 and No. exceeds N.
CONCUSSION IN MOTORSPORT

600 **Supplemental Digital Content:**

601 Supplemental Digital Content 1_Adams et al._Concussion in motorsport.pdf