Additive first-order queries

Citation for published version:
https://doi.org/10.4230/LIPIcs.ICDT.2019.19

Digital Object Identifier (DOI):
10.4230/LIPIcs.ICDT.2019.19

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
22nd International Conference on Database Theory (ICDT 2019)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Additive first-order queries

Gerald Berger
TU Wien

Martin Otto
TU Darmstadt

Andreas Pieris
University of Edinburgh

Dimitri Surinx
Hasselt University

Jan Van den Bussche
Hasselt University

Abstract

A database query \(q \) is called additive if \(q(A \cup B) = q(A) \cup q(B) \) for domain-disjoint input databases \(A \) and \(B \). Additivity allows the computation of the query result to be parallelized over the connected components of the input database. We define the “connected formulas” as a syntactic fragment of first-order logic, and show that a first-order query is additive if and only if it expressible by a connected formula. This characterization specializes to the guarded fragment of first-order logic. We also show that additivity is decidable for formulas of the guarded fragment, establish the computational complexity, and do the same for positive-existential formulas. Our results hold when restricting attention to finite structures, as is common in database theory, but also hold in the unrestricted setting.

2012 ACM Subject Classification Information systems → Query languages

Keywords and phrases Expressive power

1 Introduction

Motivated by cloud computing and big data, in the past few years, there has been interest in logical characterisations of queries that can be answered using parallelism [11]. An attractive class of queries that was identified is formed by those that “distribute over components” [3]. These queries can be faithfully answered by the following three-step strategy: first, partition the input database in any way that does not split connected components; second, evaluate the query separately on each part, thus allowing some degree of parallelism; third, collect the final result by taking the union of all partial results. Equivalently, over finite databases, a query \(q \) for which this works correctly is additive, meaning that \(q(A \cup B) = q(A) \cup q(B) \) for any two domain-disjoint databases \(A \) and \(B \). Apart from the relevance to distributed computing, additivity is also a useful notion in the analysis of expressive power of query languages [21, 20].

Additivity is a semantic property that is undecidable for queries given, say, as Datalog programs, or as first-order logic formulas. It is therefore desirable to match additivity to a syntactic restriction in the query language. This was done successfully in the setting of Datalog programs, where it is a natural idea to restrict rule bodies so that they must be connected. It is then relatively straightforward to show that a Datalog query is additive if and only if it can be computed by a Datalog program with connected rule bodies. This program was successfully carried out for a range of Datalog variants, such as Datalog extended
Additive first-order queries

with stratified or well-founded negation, or value invention \([3, 4]\), as well as for unions of conjunctive queries, and ontology-mediated querying with conjunctive queries over linear, guarded, or sticky tuple-generating dependencies \([6]\).

The case of first-order queries (equivalently, relational algebra queries), however, has remained open until now. In this paper we define a syntactical notion of connectedness for first-order logic formulas, as well as for relational algebra expressions. In a connected relational algebra expression, equijoins are allowed, but cartesian products are not. Connected first-order logic formulas are defined similarly. Queries expressible by connected formulas are always additive. We show that the converse holds as well: if a first-order formula \(\varphi\) expresses an additive query, then \(\varphi\) is equivalent to a connected formula. A similar result then follows for relational algebra expressions.

Results of this kind are colloquially known as expressive completeness results, characterisation theorems, or preservation theorems \([2, 18]\). For example, modal characterisation theorems link bisimulation-invariant first-order formulas (in one free variable) to formulas in modal logics \([23, 17, 14, 15, 16]\). Indeed, the proof of our result starts from ideas that were developed to prove modal characterisation theorems over finite structures as well as over all structures. As a consequence, also our result holds over finite structure as well as over all structures.

In a second part of the paper, we consider the guarded fragment (GF) of first-order logic \([5]\). GF was originally introduced as a first-order generalisation of modal logic that preserves good properties such as the tree model property, the finite model property, and a decidable satisfiability problem. Satisfiability for GF is \(2\text{ExpTime}\)-complete in general and \(\text{ExpTime}\)-complete for bounded arity \([9]\).

When restricting attention to queries returning guarded tuples, the guarded fragment corresponds to the semijoin algebra \([12]\). Such queries are always additive. We complement this picture and show that a guarded formula \(\varphi\) expresses an additive query if and only if \(\varphi\) is equivalent to a connected guarded formula. We will see that additivity is decidable for GF as well, by a reduction to satisfiability. While our reduction preserves bounded arity, it is unfortunately exponential, so we only obtain a \(2\text{ExpTime}\) upper bound, even for bounded arity. By a very simple reduction from satisfiability, additivity for GF is \(2\text{ExpTime}\)-complete in general and \(\text{ExpTime}\)-hard for bounded arity.

Finally, we will consider positive-existential (PE) first-order formulas. Such formulas have the same expressive power as unions of conjunctive queries (UCQ) \([1]\). In earlier work \([6]\), additivity for UCQs was shown to be NP-complete. In this paper we complement this result and show that additivity for PE formulas is \(\Pi_2^P\)-complete. The pattern that seems to emerge here is that additivity has the same complexity as containment.

2 Preliminaries

From the outset, we assume a supply of relation names, where each relation name has an associated arity (a natural number). We use \(R/k\) to denote that relation name \(R\) has arity \(k\). In this paper we do not consider nullary relation names, as their presence corrupts the intuitive notion of domain-disjointness which will play an important role in this work (see Section 3).

We further assume an infinite domain \(\text{dom}\) of atomic data elements called constants. A fact is of the form \(R(a_1, \ldots, a_k)\) where \(a_1, \ldots, a_k\) are constants and \(R/k\) is a relation name. We call \(R\) the predicate of the fact.

A database schema (or schema for short) is a finite set of relation names. An instance
of a schema S is a nonempty set of facts with predicates from S. The set of all constants appearing in an instance A is called the active domain of A and denoted by $\text{adom}(A)$.

Remark (Finite vs unrestricted instances). In database theory it is common and natural to restrict attention to finite instances. Our results will hold in restriction to finite instances, as well as in the unrestricted setting where we allow all instances.

Let S be a schema, and let k be a natural number. A k-ary query over S is a function that maps each instance A of S to a k-ary relation on $\text{adom}(A)$. Note that a nullary query ($k = 0$) has only two possible results, $\{(\)}$ and \emptyset, which can be interpreted as the boolean values true and false respectively. Thus nullary queries capture the notion of boolean or yes/no query.

A standard language for expressing queries is the relational algebra [22]. To fix notation, we define it formally [13]. Note that we only consider equality selections and equijoins; the extension of our work to selection and join predicates involving constants, order, or arithmetic, is an interesting direction for further research.

Definition 1. The expressions of the relational algebra (RA) over a schema S are generated as follows:

- Each relation name $R \in S$ is a relational algebra expression. Its arity comes from S.
- If $E_1, E_2 \in RA$ have arity n, then also $E_1 \cup E_2$ (union) and $E_1 - E_2$ (difference) belong to RA and are of arity n.
- If $E \in RA$ has arity n and $i_1, \ldots, i_k \in \{1, \ldots, n\}$, then $\pi_{i_1,\ldots,i_k}(E)$ (projection) belongs to RA and is of arity k.
- If $E \in RA$ has arity n and $i, j \in \{1, \ldots, n\}$, then $\sigma_{i=j}(E)$ (selection) belongs to RA and is of arity n.
- If $E_1, E_2 \in RA$ have arities n and m, respectively, then $E_1 \times E_2$ (cartesian product) belongs to RA and is of arity $n + m$.

The semantics is well known; we recall it for the sake of completeness. Let A be an instance of S.

- If E is a relation name R then $E(A) := \{\bar{a} \mid R(\bar{a}) \in A\}$.
- If E is $E_1 \cup E_2$, or $E_1 - E_2$, or $E_1 \times E_2$, then $E(A) := E_1(A) \cup E_2(A)$, or $E_1(A) - E_2(A)$, or $E_1(A) \times E_2(A)$, respectively.
- If E is $\pi_{i_1,\ldots,i_k}(E_1)$ then $E(A) := \{(a_{i_1}, \ldots, a_{i_k}) \mid \bar{a} \in E_1(A)\}$.
- If E is $\sigma_{i=j}(E_1)$ then $E(A) := \{\bar{a} \in E_1(A) \mid a_i = a_j\}$.

The relational algebra is equivalent in expressive power to the language of first-order logic (FO) [22, 1]. To match RA as formalised above, we use FO with equality but without constants. An FO formula φ with free variables x_1, \ldots, x_k expresses the k-ary query that maps an instance A to the set of all k-tuples $(\alpha(x_1), \ldots, \alpha(x_k))$, where α is a valuation from $\{x_1, \ldots, x_k\}$ to $\text{adom}(A)$ such that $A, \alpha \models \varphi$. Here, A is viewed as a structure with domain $\text{adom}(A)$, so we employ the active-domain semantics for first-order logic. We denote the resulting relation by $\varphi(A)$. In particular, sentences (formulas without free variables) express nullary queries.

Notation:

- To indicate an ordering of the free variables of φ, we will use the notation $\varphi(x_1, \ldots, x_k)$.
- We will use FO to denote the class of queries expressible in FO.
Additive first-order queries

3 Additive queries

Let q be a query over schema S. We call q additive if $q(A \cup B) = q(A) \cup q(B)$ for any two S-instances A and B that are domain-disjoint, meaning that $\text{adom}(A)$ is disjoint from $\text{adom}(B)$. Note that, formally, this definition applies equally well to boolean (nullary) queries. Interpreting $\{\} \text{true}$ as true and \emptyset as false, as we will always do, the condition $q(A \cup B) = q(A) \cup q(B)$ can be equivalently read as “$q(A \cup B)$ is true if and only if $q(A)$ is true or $q(B)$ is true”.

Notation: When we write $A = B + C$ we will mean that $A = B \cup C$ and B and C are domain-disjoint.

Example 2. Consider queries about two binary relations R and T, expressed in RA.
1. The selection $\sigma_{1=2}(R)$ is clearly additive.
2. The join $\pi_{1,2,4}(R \times T)$ is additive.
3. The union $R \cup T$ and the difference $R - T$ are additive.

In order to give examples of queries that are not additive, it is useful to introduce the following definitions and lemma.

Definition 3 ([3]). A component of an instance A is an instance C such that $A = C + B$ for some instance B, and C is minimal with this property.

Definition 4. Let A be an instance and let t be a tuple of elements of $\text{adom}(A)$. We call t mixed with respect to A, if t contains elements from (at least) two different components of A.

Lemma 5. Let q be an additive query and let A be an instance. Then $q(A)$ does not contain any mixed tuples (with respect to A).

Proof. Suppose $t \in q(A)$ contains elements from two distinct components B and C (and possibly more). Write $A = B + C + D$. Then $t \in q(B) \cup q(C) \cup q(D)$. However, t cannot be in $q(B)$ since $q(B)$ is a relation on $\text{adom}(B)$ and t contains elements from $\text{adom}(C)$. For similar reasons, t can neither be in $q(C)$ nor in $q(D)$. We have arrived at a contradiction.

We can now follow up Example 2 with some negative examples.

Example 6. 1. Let E be the cartesian product $R \times T$. Then E is not additive. Indeed, consider $A = \{R(a,a), T(b,b)\}$. Then $(a,a,b,b) \in E(A)$ is a mixed tuple, contradicting Lemma 5.
2. Let $\varphi(x,y,z)$ be the FO query $R(x,y) \lor T(y,z)$. Then φ is not additive. Indeed, consider $A = \{R(a,b), T(c,d)\}$. Then $(a,b,c) \in \varphi(A)$ is a mixed tuple, again contradicting Lemma 5.
3. Let φ be the boolean FO query $\neg \exists z R(z,z)$. Then φ is not additive. Indeed, consider $A = \{R(a,b)\}$ and $B = \{R(c,e)\}$. Then $\varphi(A)$ is true, but $\varphi(A \cup B)$ is false. Note that φ does not return mixed tuples, yet is not additive.

3.1 Queries that distribute over components

A notion closely related to additivity is that of *distributing over components* [3]. A query q is said to distribute over components if $q(A)$ equals the union of $q(C)$ over all components C of A.
Let us denote the class of additive queries by ADD and the class of queries distributing over components by DIST. Clearly, DIST implies ADD. Over instances that have only finitely many components, the converse implication is quite clear as well. Over infinite instances, the converse implication can still be shown quite simply, but only for non-boolean queries.

We summarise the situation as follows. Let \(\text{ADD}^* \) be the class of additive queries that are not nullary, and similarly for \(\text{DIST}^* \).

\[\text{Proposition 7.} \quad \text{In restriction to finite instances, } \text{ADD} = \text{DIST}. \quad \text{In the unrestricted setting, } \text{ADD}^* = \text{DIST}^*. \]

\[\text{Proof.} \quad \text{The only part that is not immediately clear is that ADD implies DIST for non-boolean queries in the unrestricted setting. To show this, let } q \text{ be an additive non-boolean query, and let } A \text{ be an instance. We need to verify that } q(A) \text{ equals the union of } q(C) \text{ over all components } C \text{ of } A. \text{ For the inclusion from right to left, take a component } C \text{ and write } A = C + B. \text{ Then } q(C) \subseteq q(C) \cup q(B) = q(A). \]

For the inclusion from left to right, let \(t \in q(A) \). By Lemma 5, \(t \) consists of elements from a single component \(C \) of \(A \). Moreover, since \(q \) is non-boolean, \(t \) is nonempty. Write \(A = C + B \). Thus \(t \in q(C) \cup q(B) \). However, \(t \) cannot be in \(q(B) \) since \(B \) is domain-disjoint from \(C \). Hence \(t \in q(C) \) as desired. ▶

Actually, over infinite instances, ADD does not imply DIST for boolean queries. Indeed, the boolean query “does the instance have infinitely many components?” is in ADD but not in DIST. Within FO, however, the equivalence between ADD and DIST does hold. This will follow from our result on additive boolean FO queries (Proposition 14).

4 The first-order case

In this section we introduce the connected formulas as a syntactical restriction on FO formulas. Our main result will be that a query expressible in FO is additive if and only if it is expressible by a connected FO formula. A similar result will then follow for the relational algebra. We will conclude the section with a very simple reduction from satisfiability to additivity.

4.1 Connected FO

Connected FO formulas are generated according to the following syntax rules:

- Every atomic formula is connected.
- If \(\varphi \) is connected then \(\exists y \varphi \), for any variable \(y \), is also connected.
- If \(\varphi \) and \(\psi \) are connected and they share at least one free variable, then \(\varphi \land \psi \) is also connected.
- If \(\varphi \) and \(\psi \) are connected and have exactly the same free variables (possibly none), then \(\varphi \lor \psi \) is also connected.
- If \(\varphi \) and \(\psi \) are connected, \(\psi \) has at least one free variable, and \(\varphi \) has all the free variables of \(\psi \), then \(\varphi \land \neg \psi \) is also connected.

\[\text{Example 8.} \quad \text{Revisiting Examples 2 and 6, we see that the positive examples are expressible by connected formulas: the selection example by } R(x, y) \land x = y; \text{ the equijoin by } R(x, y) \land T(y, z); \text{ the union and difference by } R(x, y) \lor T(x, y) \text{ and } R(x, y) \land \neg T(x, y), \text{ respectively.} \]
We also see that the negative examples are not connected formulas: the formula $R(x, y) \land T(u, v)$ for cartesian product violates the conjunction rule; the formula $R(x, y) \lor T(y, z)$ violates the disjunction rule; and the formula $\neg \exists z R(z, z)$ violates the negation rule.

It is readily verified that connected FO queries are always additive. Our main result in this section is that the converse holds as well. Let CFO denote the queries expressible by a connected FO formula. We establish:

Theorem 9. $\text{FO} \cap \text{ADD} = \text{CFO}$.

4.2 Non-boolean queries

Our theorem is proven separately for formulas with free variables, and for sentences. In this subsection we handle the case with free variables.

We need to recall the basic notions concerning the locality of first-order logic [8]. The *Gaifman graph* of an instance A, denoted by $G(A)$, is the undirected graph with $\text{adom}(A)$ as the set of nodes; there is an edge between distinct nodes a and b if a and b occur together in some fact in A. The distance between a and b in $G(A)$ is denoted by $d(a, b)$, or simply $d(a, b)$ if A is understood. For any natural number ℓ, the set $\{ b \in \text{adom}(A) \mid d(a, b) \leq \ell \}$ is denoted by $B^A(a, \ell)$ or $B(a, \ell)$ if A is understood (B for “ball”). The notation $B(\bar{a}, \ell)$, for a tuple $\bar{a} = a_1, \ldots, a_k$, denotes the union of $B(a_i, \ell)$ for $i = 1, \ldots, k$. The restriction of A to $B(\bar{a}, \ell)$ is denoted by $N^A(\bar{a}, \ell)$ (N for “neighbourhood”). A k-ary formula $\varphi(\bar{x})$ is called ℓ-local if for every instance A and every k-tuple \bar{a} over $\text{adom}(A)$, we have

$$\bar{a} \in \varphi(A) \iff \bar{a} \in \varphi(N^A(\bar{a}, \ell)).$$

We are now ready to state an important lemma. In modal characterisation theorems, one considers unary FO formulas over unary and binary relations that are invariant under bisimulation. Invariance under bisimulation implies invariance under disjoint sums. Additivity is the natural generalisation of invariance under disjoint sums to higher-arity queries. In earlier work, one of us showed, by a detailed Ehrenfeucht-Fraïssé game argument, that unary FO formulas, invariant under disjoint sums, are always local [16, Lemma 3.5]. We have carefully verified that the exact same argument also works for formulas about higher-arity relations and with multiple free variables. We thus obtain:

Lemma 10. Let φ be an additive FO formula and let q be its quantifier rank. Then φ is 2^q-local.

By the above lemma, all subformulas of $\varphi(\bar{x})$ may be assumed to talk about elements y that belong to $B(\bar{x}, \ell)$. Moreover, by Lemma 5 we already know that the values of the free variables \bar{x} must come from the same component. This is not quite enough, however, to express $y \in B(\bar{x}, \ell)$ by a connected FO formula; for that we need a finite upper bound on the diameter of the tuple of (valuations of) free variables that holds uniformly over all instances. This is provided by the following:

Proposition 11. Let φ be an additive FO formula of quantifier rank q. Assume (a_1, \ldots, a_n) is in $\varphi(A)$. Then $d^A(a_i, a_j) \leq (n - 1)2^q$ for all $i, j \in \{1, \ldots, n\}$.

Proof. Let $\bar{a} = a_1, \ldots, a_n$ and let $\ell = 2^q$. Suppose to the contrary that $d(a_i, a_j) > (n - 1)\ell$. Then there exists a partition $\{ I, J \}$ of $\{1, \ldots, n\}$ such that $d(\bar{a}_I, \bar{a}_J) > \ell$ (this is formally verified in Lemma 26 in the Appendix). Here, $d(\bar{a}_I, \bar{a}_J)$ naturally stands for the minimum of $d(a_i, a_j)$ for $i \in I$ and $j \in J$.

Let us make a domain-disjoint copy \(f(A) \) of \(A \) by using a bijection \(f : \text{adom}(A) \rightarrow B \) for some set \(B \) disjoint from \(\text{adom}(A) \). Take an additional \(q \) domain-disjoint copies of \(A \), which we denote by \(q \cdot A \). Define the tuple \(b = b_1, \ldots, b_n \) by

\[
b_i = \begin{cases} 0 & \text{if } i \in I, \\ f(a_i) & \text{if } i \in J. \end{cases}
\]

Consider the instance \(C = A + f(A) + q \cdot A \). Since \(\bar{a} \in \varphi(A) \) and \(\varphi \) is additive, also \(\bar{a} \in \varphi(C) \). We will claim that this implies also \(b \in \varphi(C) \). This claim, however, contradicts the additivity of \(\varphi \), since \(b \) is a mixed tuple with respect to \(C \) (Lemma 5).

The claim that \(b \in \varphi(C) \) follows from Lemma 27, proven in the Appendix. This lemma says that \(C, \bar{a} \) and \(C, b \) are indistinguishable by FO formulas of quantifier rank \(q \). The proof is by a detailed Ehrenfeucht-Fraïssé game argument, inspired by the original proof of Lemma 10.

Our final lemma is the following:

\textbf{Lemma 12.} Let \(\bar{x} \) be a nonempty list of variables. Let \(\varphi \) be a formula, with free variables among \(\bar{x} \), so that each quantifier in \(\varphi \) is of the form \(\exists y \in B(\bar{x'}, \ell) \) with \(y \notin \bar{x} \), and \(\bar{x'} \) a nonempty subtuple of \(\bar{x} \). Let \(\delta \) be a connected formula with exactly \(\bar{x} \) as free variables. Then \(\varphi \land \delta \) can be rewritten as a connected formula.

\textbf{Proof.} It is readily verified that predicates of the form \(\exists y \in B(x_1, x_2, 3) \land \neg S(y) \), and \(\delta \) being \(R(x_1, x_2) \). The formula \(\varphi \land \delta \) can be rewritten into the connected formula

\[
\exists y ((\neg S(y) \land d(x_1, y) \leq 3 \land R(x_1, x_2)) \lor (\neg S(y) \land d(x_2, y) \leq 3 \land R(x_1, x_2))).
\]

We now have all ingredients to prove that every additive FO formula \(\varphi \) with at least one free variable can be rewritten as a connected formula. Let \(\bar{x} = x_1, \ldots, x_n \) be the list free variables of \(\varphi \). By Lemma 10, we may assume that each quantifier in \(\varphi \) is of the form \(\exists y \in B(\bar{x}, \ell) \). We may always assume that \(y \notin \bar{x} \) simply by choosing another bound variable. Furthermore, by Proposition 11, \(\varphi \) is equivalent to \(\varphi \land \delta \), where \(\delta \) is the conjunction of \(d(x_1, x_i) \leq (n-1)\ell \) for \(i = 2, \ldots, n \). (If \(n = 1 \), set \(\delta \) to \(x_1 = x_1 \).) Hence, by Lemma 12, \(\varphi \) is equivalent to a connected formula as desired.

\subsection{4.3 Boolean queries}

The argument in the previous subsection relies on the presence of at least one free variable to connect everything inside the formula. So, to prove Theorem 9 for sentences, we need a separate argument. Interestingly, this argument will then only work for sentences and not with free variables. However, in the next section, we will be able to adapt the argument at least to guarded formulas, with or without free variables.

Recall that a \textit{simple local sentence} is a sentence of the form \(\exists x \varphi \) where \(\varphi \) is local [15]. By Lemma 12, such sentences can be rewritten in connected form (use \(x = x \) for \(\delta \)). Since a disjunction of connected sentences is again connected, the following proposition proves all we need.

\textbf{Proposition 14.} Every additive FO sentence can be rewritten as a finite disjunction of simple local sentences.
Additive first-order queries

Proof. Let φ be an additive sentence. The formula φ^* that is $x = x \land \varphi$ is *invariant under disjoint copies*, by which we mean the following. For an instance \mathcal{A}, let $q \cdot \mathcal{A}$ denote an instance consisting of q domain-disjoint copies of \mathcal{A}. Then, for any $a \in \text{adom}(\mathcal{A})$ and any q, we have $a \in \varphi^*(\mathcal{A})$ iff $a \in \varphi^*(\mathcal{A} + q \cdot \mathcal{A})$, for any q. Over unary and binary relations, it was already proven that any formula in one free variable, invariant under disjoint copies, is equivalent to a boolean combination of simple local sentences and local formulas [15, Proposition 19]. That proof goes through verbatim for higher-arity relations as well. It follows that $\varphi \equiv \exists x \varphi^*$ is equivalent to a boolean combination of simple local sentences.

So we now assume that φ is a boolean combination, in disjunctive normal form, over a finite set Σ of simple local sentences. We may assume that each clause is *complete*, meaning that it either contains σ or $\lnot \sigma$ for every $\sigma \in \Sigma$. We may also assume that each clause is satisfiable. We will identify φ with the set of its clauses.

The plan of the proof is to first get rid of negations, then of conjunctions, leaving a disjunction as desired. For the first step, let Γ denote the set of all satisfiable complete clauses over Σ. For two clauses γ_1 and γ_2 in Γ, we write $\gamma_1 \leq \gamma_2$ if every $\sigma \in \Sigma$ that occurs positively in γ_1 also occurs positively in γ_2. We claim the following *monotonicity property*:

Let $\gamma_1 \in \varphi$ and let $\gamma_2 \in \Gamma$ such that $\gamma_1 \leq \gamma_2$. Then also $\gamma_2 \in \varphi$.

In proof, let \mathcal{A} and \mathcal{B} be domain-disjoint instances such that $\mathcal{A} \models \gamma_1$ and $\mathcal{B} \models \gamma_2$. Since $\mathcal{A} \models \varphi$, by additivity also $\mathcal{A} + \mathcal{B} \models \varphi$, so $\mathcal{A} + \mathcal{B} \models \gamma$ for some $\gamma \in \varphi$. We verify that $\gamma = \gamma_2$.

Consider any $\sigma \in \Sigma$.

- If σ occurs positively in γ_2, then $\mathcal{B} \models \sigma$, so also $\mathcal{A} + \mathcal{B} \models \sigma$. Hence, σ cannot occur negated in γ, i.e., σ occurs positively also in γ.

- If σ occurs negated in γ_2, then also in γ_1, so neither $\mathcal{A} \models \sigma$ nor $\mathcal{B} \models \sigma$ holds, and thus $\mathcal{A} + \mathcal{B} \models \lnot \sigma$. Hence, σ cannot occur positively in γ, i.e., σ occurs negated also in γ.

By the monotonicity property, we can simplify φ so that it is now a disjunction of conjunctions, each conjunction over some finite subset of Σ. We will naturally view φ as a set of subsets of Σ. We may also assume that φ is simplified further so that every $\gamma \in \varphi$ is *minimal*, meaning that replacing γ by a strict subset $\gamma' \subsetneq \gamma$ would yield a sentence not equivalent to φ.

Now assume, for the sake of contradiction, that some $\gamma \in \varphi$ has at least two elements. Then we can split $\gamma = \gamma_1 \cup \gamma_2$ in two disjoint nonempty subsets. By the minimality assumption, there exists instances \mathcal{A} and \mathcal{B} such that $\mathcal{A} \models \gamma_1 \land \lnot \varphi$, and $\mathcal{B} \models \gamma_2 \land \lnot \varphi$. (Here, we view each γ_i as the conjunction of its elements.) By additivity, $\mathcal{A} + \mathcal{B} \models \lnot \varphi$. However, clearly $\mathcal{A} + \mathcal{B} \models \gamma$, whence $\mathcal{A} + \mathcal{B} \models \varphi$, a contradiction.

4.4 Some consequences

Connected RA. We can give an analogue to Theorem 9 for RA instead of FO. Call an RA expression *connected* if every cartesian product subexpression of the form $e_1 \times e_2$ occurs in the context of a selection subexpression of the form $\sigma_{=}^{=j}(e_1 \times e_2)$, with $i \in \{1, \ldots, n\}$ and $j \in \{n + 1, \ldots, i + m\}$, where n and m are the arities of e_1 and e_2, respectively. In other words, in connected RA, pure cartesian products are disallowed, but equijoins are still allowed. Denote the queries expressible by connected RA expressions by CRA. It is clear that CRA queries are always additive. Again we have the converse:

Corollary 15. $\text{RA} \cap \text{ADD} = \text{CRA}$.

Indeed, it is well known that RA can be translated into FO, so, by Theorem 9, all we need to show is that CFO can be translated back into CRA. The translation from FO to RA given by Ullman [22] can be easily adapted to this effect.

Finite vs infinite. Theorem 9 holds in restriction to finite instances, as well as over all instances, but the two settings still need to be kept separate. CFO formulas are always additive, over all instances. This, however, should not lull the reader into believing that an FO formula that is additive over finite instances is also additive over all instances. Indeed, our results only show that such a formula is equivalent to a CFO formula over finite instances.

An example of an FO sentence over a binary relation \(R \) that is additive over finite instances but not in general, expresses that \(R \) consists of two total orders, over two disjoint sets, each order without a maximum.

4.5 Reduction from satisfiability

It is expected that additivity of FO formulas is an undecidable property. There is actually an extremely simple reduction from unsatisfiability. The proof, while short, is not entirely trivial and given in the Appendix.

\[\text{Proposition 16.} \] Let \(\varphi \) be an FO sentence over schema \(S \) and let \(S \) and \(T \) be two unary relation names not in \(S \). Then \(\varphi \) is unsatisfiable if and only if \(\varphi \land \exists x S(x) \land \exists y T(y) \) is additive.

Over all instances, the additive FO formulas are recursively enumerable; this actually follows from our theorem, but can also seen by a direct reduction from additivity to unsatisfiability. We will see this reduction later when showing decidability of additivity for guarded formulas. Over finite instances, the additive FO formulas are clearly co-r.e.

5 The guarded case

In this section we specialise Theorem 9 to the guarded fragment. We also show that additivity for guarded formulas is decidable and \(2\text{ExpTime} \)-complete.

5.1 Guarded and connected formulas

We recall the syntax of the guarded fragment [5], which we denote by GF.

- Every atomic formula is guarded.
- If \(\varphi \) and \(\psi \) are guarded, then so are \(\varphi \land \psi \), \(\varphi \lor \psi \), and \(\neg \varphi \).
- If \(\alpha \) is an atomic formula, \(\psi \) is a guarded formula such that all free variables of \(\psi \) occur in \(\alpha \), and \(\bar{y} \) is a subtuple of the free variables of \(\alpha \), then \(\exists \bar{y}(\alpha \land \psi) \) is guarded.

Let us denote the class of queries expressible by guarded formulas by GF, and the class of queries expressible by formulas that are both guarded and connected by CGF. We will establish:

\[\text{Theorem 17.} \] \text{GF} \cap \text{ADD} = \text{CGF}. \]

Towards the proof, we introduce:

\[\text{Definition 18.} \] \text{The relaxed version of CGF, denoted by CGF}^+, \text{ is defined as follows:} \]

1. Every atomic formula is in CGF$^+$.

2. If φ and ψ are in CGF^+, then so are $\varphi \land \psi$, $\varphi \lor \psi$, and $\varphi \land \neg \psi$, on condition that the rules for building connected formulas (Section 4.1) are satisfied.

3. If α is an atomic formula, and ψ is a boolean combination of CGF^+ formulas, all with at least one free variable, and all free variables of ψ occur in α, then both $\alpha \land \psi$ and $\exists \vec{y} (\alpha \land \psi)$ belong to CGF^+, with \vec{y} a subtuple of the free variables of α.

Example 19. The sentence φ: $\exists x, y (R(x, y) \land (S(x) \lor T(y)))$ belongs to CGF^+, but it is not connected due to the subformula $S(x) \lor T(y)$. However, φ can be equivalently rewritten as $\exists x, y(R(x, y) \land S(x)) \lor \exists x, y(R(x, y) \land T(y))$ which is in GF.

Lemma 20. Every CGF^+ formula is equivalent to a CGF formula.

We also introduce a subclass of CGF^+ formulas, which we call the simple guarded formulas. These are the formulas that can be generated using only syntax rules 1 and 3 of CGF^+ (Definition 18). Simple guarded formulas are useful building blocks. First of all, they are additive. They are q-local if q is their quantifier rank. Furthermore we have the following lemma:

Lemma 21. Every GF formula is equivalent to a boolean combination of simple guarded formulas.

So, we can start the proof of Theorem 17 with an additive boolean combination φ of simple guarded formulas, in disjunctive normal form. Within each clause ψ, we identify the pseudopositive part as the part consisting of all positive literals, plus all negative literals with a single free variable. The remainder of the clause is called the negative part. We will denote the pseudopositive part of a clause ψ by ψ_{pp} and the negative part by ψ_{neg}.

We may assume that φ has been simplified so that it has no redundancies in the following sense:

(A) If we would remove a subpart of the pseudopositive part of some clause, the resulting formula would not be logically equivalent to φ.

(B) If we would remove an entire clause, the resulting formula would again not be logically equivalent to φ.

(C) No clause contains a negated literal $\neg \eta$ such that η is a sentence that logically implies φ.

If, after these simplifications, we end up with an empty disjunction, then the original φ expresses the n-ary empty query, with n the number of free variables of φ. It is a simple exercise to express this query in CGF.

The plan of the proof is as follows. Each step will rely on the additivity of φ, and the order of the steps is important.

Claim 1: The pseudopositive part of each clause is connected.

Claim 2: In each clause, the free variables of the negative part are included in those of the pseudopositive part.

Claim 3: No clause can have negated literals that are sentences.

Claim 4: All clauses have the same free variables.

The result is a CGF^+ formula and we are done by Lemma 20.

In the proofs below, for any formula χ, we use $\text{free}(\chi)$ to denote the set of free variables of χ.
Proof of Claim 1. Suppose there would exist a clause ψ of φ with disconnected pseudopositive part. Then we can split ψ^{pp} in two nonempty disjoint parts γ_1 and γ_2 with disjoint free variables. Since neither γ_1 nor γ_2 is redundant in sense (A) listed above, there exist instances A, B and valuations α, β such that $A, \alpha \models \gamma_1 \land \psi^{neg} \land \neg \varphi$ and $B, \beta \models \gamma_2 \land \psi^{neg} \land \neg \varphi$.

Define the valuation ξ over free(φ) as β on free(γ_2) and as α elsewhere. We show:

1. $A + B, \xi \models \gamma_1$. Indeed, take any literal τ from γ_1. Then τ is either a simple guarded formula, or a negated simple guarded formula in a single free variable, say $\neg \eta(x)$. In the first case, τ is certainly additive, but also in the second case, τ is additive, as we can rewrite τ as $x = x \land \neg \eta$, which is a CGF formula, thus additive. Now from $A, \alpha \models \tau$ we obtain $A, \xi \models \tau$, and, since τ is additive, also $A + B, \xi \models \tau$.

2. Similarly, $A + B, \xi \models \gamma_2$ follows from $B, \beta \models \gamma_2$.

3. $A + B, \xi \models \psi^{neg}$. Indeed, take any negated literal $\neg \eta$ from ψ^{neg}, and assume, for the sake of contradiction, that $A + B, \xi \models \eta$. Since η is additive, by Lemma 5, this implies either $A, \alpha \models \eta$ or $B, \beta \models \eta$, which, however, contradicts that $A, \alpha \models \psi^{neg}$ and $B, \beta \models \psi^{neg}$.

We conclude that $A + B, \xi \models \varphi$ and $A + B, \xi \models \varphi$. Now, since φ is additive, again using Lemma 5, this would imply $A, \alpha \models \varphi$ or $B, \beta \models \varphi$, a contradiction.

Proof of Claim 2. Suppose there would exist a clause ψ of φ and a variable x such that $x \notin \text{free}(\psi^{neg})$ but $x \notin \text{free}(\psi^{pp})$. Since ψ is not redundant in sense (B) listed above, ψ must be satisfiable. Thus there exists an instance A and a valuation α such that $A, \alpha \models \psi$. Taking a domain-disjoint copy B of A and a corresponding valuation β, we also have $B, \beta \models \psi$.

Define the valuation ξ over free(ψ) as β on x and α elsewhere. Clearly, $A, \xi \models \psi^{pp}$, whence, since ψ^{pp} is additive by Claim 1, also $A + B, \xi \models \psi^{pp}$. Furthermore, also $A + B, \xi \models \psi^{neg}$.

Indeed, assume, for the sake of contradiction, that $A + B, \xi \models \eta$ for some negated literal $\neg \eta$ from ψ^{neg}. By Lemma 5, this would imply $A, \alpha \models \eta$ or $B, \beta \models \eta$, which contradicts $A, \alpha \models \psi^{neg}$ and $B, \beta \models \psi^{neg}$.

We conclude that $A + B, \xi \models \psi$ and thus $A + B, \xi \models \varphi$. Note, however, that ψ^{neg} cannot have only x as free variable, by definition of ψ^{neg}. This means that ξ produces a mixed output tuple, contradicting Lemma 5.

Proof of Claim 3. Suppose there would exist a clause ψ of φ and a negated literal $\neg \eta$ in ψ^{neg} such that η is a sentence. Let $\varphi \setminus \psi$ denote the formula obtained from φ by removing the clause ψ. (If ψ is the only clause, then $\varphi \setminus \psi$ is set to false.) Since ψ is not redundant in sense (B) listed above, there exists an instance A and a valuation α such that $A, \alpha \models \psi \land \neg (\varphi \setminus \psi)$. Since $\neg \eta$ is not redundant in sense (C) listed above, there exists an instance B and a valuation β such that $B, \beta \models \eta \land \neg \varphi$.

Since $A, \alpha \models \psi$, we have $A, \alpha \models \varphi$, so also $A + B, \alpha \models \varphi$, since φ is additive. Thus $A + B, \alpha \models \gamma$ for some clause γ of φ. This clause cannot be ψ itself; indeed, because $B \models \eta$, also $A + B \models \eta$, so $A + B$ can never satisfy ψ^{neg}. Hence, if ψ is the only clause of φ, we have already reached our contradiction. Otherwise, we know γ is a clause from $\varphi \setminus \psi$.

In particular, we have $A + B, \alpha \models \gamma^{pp}$. Since γ^{pp} is additive by Claim 1, this implies the following two possibilities. We show that both lead to a contradiction.

The first possibility is that $A, \alpha \models \gamma^{pp}$. However, we know also $A, \alpha \models \gamma^{neg}$. Indeed, assume, for the sake of contradiction, that $A, \alpha \models \chi$ for some negated literal $\neg \chi$ in γ^{neg}. Since χ is additive, then also $A + B, \alpha \models \chi$, which contradicts $A + B, \alpha \models \gamma^{neg}$. We conclude that $A, \alpha \models \gamma$, which contradicts $A, \alpha \models \neg (\varphi \setminus \psi)$.

Noting that α is a valuation in $\text{adom}(A)$, the other possibility is that γ^{pp} is a sentence and $B \models \gamma^{pp}$. If γ^{pp} is a sentence, also γ^{neg} is a sentence, by Claim 2. Thus $A + B \models \gamma^{neg}$ implies in particular $B \models \gamma^{neg}$ (each literal of γ^{neg} is the negation of a local sentence that
Additive first-order queries

is not satisfied in \(A + B\), so certainly not in \(B\). We conclude that \(B \models \gamma\) which contradicts \(B, \beta \models \neg \varphi\).

Proof of Claim 4. Suppose there would be a free variable \(x\) of \(\varphi\) that is not free in some clause \(\psi\). By the previous claims, we know that \(\psi\) is a CGF\(^+\) formula, whence additive by Lemma 20. Since \(\psi\) is satisfiable, there exists an instance \(A\) and a valuation \(\alpha\) on free(\(\psi\)) such that \(A, \alpha \models \psi\). Taking a domain-disjoint copy of \(B\) and a corresponding valuation \(\beta\), we also have \(B, \beta \models \psi\).

Define the valuation \(\xi\) as \(\beta\) on \(x\) and as \(\alpha\) elsewhere. Since \(A, \alpha \models \psi\) and \(\psi\) is additive by the previous claims, also \(A + B, \alpha \models \psi\). Since \(x\) is not free in \(\psi\), this implies \(A + B, \xi \models \psi\). But then \(\xi\) produces a mixed tuple, contradicting Lemma 5.

5.2 Complexity of additivity for GF

We show:

Theorem 22. Additivity of guarded formulas is \(\text{2ExpTime}\)-complete.

Since satisfiability for guarded formulas is \(\text{2ExpTime}\)-hard [9], the hardness follows directly from the simple reduction from satisfiability to additivity given by Proposition 16. Conversely, the membership in \(\text{2ExpTime}\) is shown by a reduction from additivity to unsatisfiability, which we next describe.

Consider an arbitrary guarded formula \(\varphi\) over a schema \(S\). We will construct a guarded formula \(\varphi'\) over a larger schema \(S^+\) such that \(\varphi\) is additive iff \(\varphi'\) is unsatisfiable. Specifically, \(S^+ = S \cup \{U_1, U_2\}\), for two fresh unary relation names \(U_1\) and \(U_2\).

Satisfiability for guarded formulas of size \(n\) over relations of maximum arity \(a\) is decidable in time \(2^{\mathcal{O}(n)} \cdot 2^{n \log a}\) [10]. If \(n\) is the size of \(\varphi\), our formula \(\varphi'\) will have size \(2^{\mathcal{O}(n)}\) but the arity does not change. Hence, we will obtain that additivity is in \(\text{2ExpTime}\) as desired.

The high-level idea underlying the reduction can be sketched as follows. From \(\varphi\), we construct guarded formulas \(\varphi^+\) and \(\varphi^\vee\) such that \(\varphi\) is additive iff \(\varphi^+\) is unsatisfiable. Specifically, \(\varphi^+ = \varphi \lor \exists\overline{U_1} \land \exists\overline{U_2}\), where \(\exists\overline{U_1}\) and \(\exists\overline{U_2}\) are quantifiers over fresh relation names, and \(\varphi^\vee\) is constructed to be the disjunction of \(\varphi^+\) and \(\varphi^\wedge\).

The formula \(\varphi^+\). This formula is obtained quite plainly from \(\varphi\) by replacing each relation atom \((R(y_1, \ldots, y_n))\) by the disjunction

\[
((R(y_1, \ldots, y_n) \land U_1(y_1) \land \cdots \land U_1(y_n)) \lor (R(y_1, \ldots, y_n) \land U_2(y_1) \land \cdots \land U_2(y_n)))
\]

Since this replaces guards in existentially quantified formulas by disjunctions of atoms, the result is strictly speaking not guarded. We can, however, replace such formulas by disjunctions of guarded formulas. Unfortunately, by doing this recursively we obtain a guarded formula of size \(2^{\mathcal{O}(|\varphi|)}\), where \(|\varphi|\) denotes the size of \(\varphi\). In what follows, for brevity, we write \(\varphi^+\) for the exponentially sized rewritten guarded formula.

The formula \(\varphi^\vee\). For \(k = 1, 2\), we define \(\varphi^k\) as the formula obtained from \(\varphi\) by relativizing all quantifiers and free variables to \(U_k\). So, quantifiers are of the form \(\exists x \in U_k\), and for every free variable \(x\) we have a conjunct \(U_k(x)\). A guarded existential formula \(\exists y_1, \ldots, y_l (\alpha \land \psi)\) can be relativized as \(\exists y_1, \ldots, y_l (\alpha \land U_k(y_1) \land \cdots \land U_k(y_l) \land \psi)\), which is still guarded. The formula \(\varphi^\vee\) is then defined as the (guarded) formula \(\varphi^1 \lor \varphi^2\).

Consistency. An \(S^+\)-instance \(A^+\) is consistent if it admits a partition \((A_1, A_2)\) such that:
1. \(A_1 \) is an \((S \cup \{U_1\})\)-instance and \(A_2 \) is an \((S \cup \{U_2\})\)-instance.
2. \(\text{adom}(A_1) \cap \text{adom}(A_2) = \emptyset \).
3. \(\{ a : U_1(a) \in A_1 \} = \text{adom}(A_1) \) and \(\{ b : U_2(b) \in A_2 \} = \text{adom}(A_2) \).

So, consistent instances describe pairs of domain-disjoint instances. Applied to a consistent instance \((A_1, A_2)\), we see that \(\varphi^+ \) returns \(\varphi(A_1 \cup A_2) \), while \(\varphi^\lor \) returns \(\varphi(A_1) \cup \varphi(A_2) \).

Hence we obtain:

\[\text{Lemma 23. The following are equivalent:} \]
1. \(\varphi \) is additive.
2. For every consistent \(S^+ \)-instance \(A^+ \), \(\varphi^+(A^+) = \varphi^\lor(A^+) \).

It remains to show that consistency can be checked via a guarded formula, which will give us the desired reduction. In fact, consistency can be checked via the formula

\[\varphi_{\text{cons}} := \neg \exists x (U_1(x) \land U_2(x)) \land \exists x U_1(x) \land \exists x U_2(x) \land \psi_1^1 \land \psi_2^1 \land \chi, \]

where, for \(k = 1, 2 \), and assuming that \(S = \{ R_1, \ldots, R_n \} \) (and \(R_i \) is \(n \)-ary),

\[\psi_k^i := \forall x (U_k(x) \rightarrow \bigwedge_{i=1}^{n} \exists y_1, \ldots, y_{n-1} (R_i(x, y_1, \ldots, y_{n-1}) \land \bigvee R_i(y_1, x, y_2, \ldots, y_{n-1}) \land \cdots \land \bigvee R_i(y_1, \ldots, y_{n-1}, x))), \]

and

\[\chi := \bigwedge_{i=1}^{n} \forall x_1, \ldots, x_{n_1} (R_i(x_1, \ldots, x_{n_1}) \rightarrow ((U_1(x_1) \land \cdots \land U_1(x_{n_1})) \land (U_2(x_1) \land \cdots \land U_2(x_{n_1})))) \]

The above formula can be easily transformed in a guarded formula. We now obtain, as announced, that \(\varphi \) is additive if and only if \(\varphi_{\text{cons}} \models \varphi^+ \leftrightarrow \varphi^\lor \).

\[\text{Remark. At the end of Section 4.4 we gave an example of an FO formula additive over finite instances but not over all instances. Since GF has the finite model property, the above reduction to unsatisfiability implies that a GF formula that is additive over finite instances is automatically additive over all instances.} \]

\section{The positive-existential case}

In this final section, we concentrate on queries expressed via positive-existential (PE) first-order formulas, i.e., formulas that use only \(\land, \lor, \) and existential quantification. As always we also use PE to denote the class of all queries expressible in this manner.

It is well-known \[1\] that PE has the same expressive power as the class of \textit{unions of conjunctive queries (UCQ)}, i.e., disjunctive FO-formulas of the form \(\bigvee_{1 \leq i \leq n} \varphi_i(\bar{x}) \), with \(\varphi_i(\bar{x}) = \exists y (\alpha_{1,i} \land \cdots \land \alpha_{m,i}) \), where each \(\alpha_{i,j} \) is an atomic formula. Formulas of the form \(\varphi_i(\bar{x}) \) are called \textit{conjunctive queries}. In earlier work \[6\], two of us already showed that \(\text{UCQ} \cap \text{ADD} = \text{CUCQ} \), where CUCQ refers to the connected UCQs. As a consequence, also \(\text{PE} \cap \text{ADD} = \text{CPE} \), where CPE refers to the connected PE formulas.

In this section, we focus on the complexity of deciding additivity for PE formulas. For UCQs, additivity was already shown to be NP-complete \[6\]. Unfortunately, in general, it takes exponential time to convert a PE formula into a union of conjunctive queries. Thus, the naive algorithm provides only an exponential time upper bound, which is not optimal.

We can, however, show that our problem lies at the second level of the polynomial hierarchy:
Theorem 24. Additivity of PE formulas is Π_2^P-complete. The lower bound holds even over unary and binary relations.

Towards the proof, let us first introduce some useful notions. A component of a conjunctive query $\varphi_i(\overline{x}) = \exists y (\alpha_1 \land \cdots \land \alpha_m)$ is a connected formula $\psi = \exists y (\alpha_1 \land \cdots \land \alpha_m)$, where $\{i_1, \ldots, i_m\} \subseteq \{1, \ldots, n\}$, such that, for every $j \in \{1, \ldots, n\} \setminus \{i_1, \ldots, i_m\}$, the formula $\alpha_{i_1} \land \cdots \land \alpha_{i_m} \land \alpha_j$ is not connected anymore. Given two formulas $\varphi(\overline{x})$ and $\psi(\overline{x})$ over a schema S, we say that φ is contained in ψ, written $\varphi \subseteq \psi$, if $\varphi(A) \subseteq \psi(A)$ for every S-instance A. We need the following:

Lemma 25 ([6]). Consider a union of conjunctive queries $\varphi(\overline{x})$ of the form $\bigvee_{1 \leq i \leq n} \varphi_i(\overline{x})$. The following are equivalent:

1. φ is additive;
2. for each $i \in \{1, \ldots, n\}$, there exists a component $\psi := \psi(\overline{x})$ of $\varphi_i(\overline{x})$ such that $\psi \subseteq \varphi$.

Consider an arbitrary PE-formula φ. Even though we cannot efficiently convert φ into an equivalent union of conjunctive queries $\bigvee_{1 \leq i \leq n} \varphi_i$, we can non-deterministically construct a disjunct of φ_i in polynomial time. This fact, together with Lemma 25, lead to the following non-deterministic algorithm for checking whether φ is not additive:

1. Non-deterministically construct a disjunct φ_i of the union of conjunctive queries obtained after converting φ into an equivalent union of conjunctive queries.
2. Compute the set C of all the components of φ_i.
3. If, for each $\psi \in C$, it holds that $\psi \not\subseteq \varphi$, then ACCEPT; otherwise, REJECT.

It is easy to verify, due to Lemma 25, that φ is not additive iff the above procedure accepts. Observe now that steps 1 and 2 are feasible in polynomial time. Finally, during step 3, we need to check polynomially many times for non-containment of a conjunction of atomic formulas, i.e., a conjunctive query, into a PE-formula. The latter is feasible in coNP. Thus, the obtained upper bound for non-additivity is $\text{NP}^{\text{coNP}} = \Sigma_2^P$, as needed.

It remains to establish that additivity for PE-formulas is Π_2^P-hard. This is shown by a reduction from the problem of containment for PE-sentences, i.e., given two PE-sentences φ and ψ, to decide whether $\varphi \subseteq \psi$, which is Π_2^P-hard [19]. Actually, this problem remains Π_2^P-hard even if the left-hand side formula is connected, and the relation symbols have arity at most two; this is implicit from the work by Bienvenu et al. [7]. Given a connected PE-formula φ, and an arbitrary PE-formula ψ, we can show that $\varphi \subseteq \psi$ iff the PE-formula $\varphi \land P(x_\varphi) \land \psi$ is additive, where x_φ is an existentially quantified variable in φ, and P a fresh relation name. This shows that additivity for PE-formulas is Π_2^P-hard even for unary and binary relations.

Conclusion

We conclude with a few directions for further research.

1. Investigate the complexity, in terms of formula length, of the shortest connected formula equivalent to an additive formula.
2. Our reduction from additivity to unsatisfiability for GF formulas is exponential. However, the GF formula that is produced has exponential length only because we need disjunctive guards. If disjunctive guards would be allowed, the reduction would be polynomial and would preserve bounded arity. We conjecture that additivity for GF formulas of bounded arity is actually in ExPTIME, and plan to investigate this in the near future.
3. Also, our reduction from additivity to unsatisfiability works in general, for FO formulas, and for other reasonable logics. It is interesting to apply the reduction to other decidable logics, and see if the reduction produces a formula in the same logic. For example, our reduction also works for \(\text{FO}^2 \), thus additivity for \(\text{FO}^2 \) formulas is decidable.

4. Give a short classical model-theoretic proof, e.g., involving the compactness theorem, that every FO formula, additive over all structures, is equivalent to a CFO formula.

References

Define \(\text{diam}(\bar{a}) = \max_{1 \leq i,j \leq n} (d(a_i, a_j)) \).

\[\text{Lemma 26.} \text{ Let } \varphi(x_1, \ldots, x_n) \text{ be a first-order formula. If there exists a natural number } k \text{ such that for any } A \models \varphi[\bar{a}] \text{ and for any partition } \{I, J\} \text{ of } \{1, \ldots, n\}, \text{ we have } d(\bar{a}_I, \bar{a}_J) \leq k, \text{ then for every } A \models \varphi[\bar{a}] \text{ we have } \text{diam}(\bar{a}) \leq (n-1)k. \]

\[\text{Proof.} \text{ Suppose that } A \models \varphi[a_1, \ldots, a_n]. \text{ We will show that } d(a_i, a_j) \leq (n-1)k \text{ for } i, j = 1, \ldots, n. \text{ We will construct a sequence } i_1, \ldots, i_n \text{ by induction such that:} \]

\[\begin{align*}
& i_1 = i; \\
& \{i_1, \ldots, i_n\} = \{1, \ldots, n\}; \\
& \text{For every } j = 1, \ldots, n-1 \text{ we have } d(a_{i_j}, a_{i_{j+1}}) \leq lk.
\end{align*} \]

The existence of such a sequence proves the proposition since \(j \in \{1, \ldots, n\} = \{i_1, \ldots, i_n\}. \)

Suppose we have constructed the sequence \(i_1, \ldots, i_l. \) Let \(I = \{i_1, \ldots, i_l\} \) and \(J = \{1, \ldots, n\} \setminus I. \) By assumption, \(d(\bar{a}_I, \bar{a}_J) \leq k, \) whence there exists \(m \in I \) and \(i_{l+1} \in J \) such that \(d(a_{m_i}, a_{i_{l+1}}) \leq k. \) By induction, \(d(a_{i_1}, a_m) \leq (l-1)k. \) Therefore, \(d(a_{i_1}, a_{i_1}) \leq d(a_{i_1}, a_m) + d(a_m, a_{i_{l+1}}) \leq (l-1)k + k = lk \) as desired. \[\square \]

\[\text{Lemma 27.} \text{ Let } n \text{ and } q \text{ be natural numbers; let } \ell = 2^q. \text{ Let } A \text{ be an instance, } I, J \text{ be a partition of } \{1, \ldots, n\}, \text{ and } \bar{a} \text{ an } n \text{-tuple over } \text{adom}(A) \text{ such that } d(\bar{a}_I, \bar{a}_J) > \ell. \text{ Let } C \text{ and } \bar{b} \text{ be constructed as described in the proof of Proposition 11. Then for all } n \text{-ary FO formulas } \varphi \text{ of quantifier rank } q, \text{ we have } \bar{a} \in \varphi(C) \text{ iff } \bar{b} \in \varphi(C). \]

\[\text{Proof.} \text{ We will play an Ehrenfeucht-Fraïssé game of } q \text{ rounds } \{(c_1, d_1), \ldots, (c_q, d_q)\} \text{ where } c_i \text{ and } d_i \text{ are respectively picked in } C, \bar{a} \text{ and } C, \bar{b}. \text{ We will have three types of moves } (c_l, d_l): \]

\[\begin{align*}
& \text{I-close where } d_l = c_l; \\
& J\text{-close where } d_l = f(c_l); \\
& \text{Nonclose moves where } d_l \neq c_l \text{ and } d_l \neq f(c_l).
\end{align*} \]

To avoid extra cases later in the proof, we also say that \((a_l, b_l)\) is a I\text{-close move if } \(l \in I \) and a J\text{-close move if } \(l \in J. \) When a move \((c_l, d_l)\) is I\text{-close, we will refer to } \(c_l \) and } \(d_l \) as I\text{-close elements. Similarly, we extend the meaning of J\text{-close moves and nonclose moves to J\text{-close and nonclose elements. In particular, } a_l, b_l \text{ with } i \in I \text{ are called } I\text{-close elements, and } a_j, b_j \text{ with } j \in J \text{ are called J\text{-close elements.} \]
Suppose that we already played \(k \) rounds. We are thus in position \((c_1, d_1), \ldots, (c_k, d_k) \). A distance that will be frequently used in the remainder of the proof is \(\ell_k := 2^{i-k} \). Note that \(\ell_k = 2\ell_{k+1} \). The goal of our strategy is to maintain the following invariant conditions after playing \(k \)-th round.

1. All \(I \)-close elements are played in \(B(\bar{a}|_f, \ell - \ell_k) \)
2. All \(J \)-close elements are played in \(B(\bar{a}|_f, \ell - \ell_k) \) or \(B(\bar{b}|_f, \ell - \ell_k) \);
3. The distance between any \(I \)-close element and any \(J \)-close element is strictly greater than \(\ell_k \);
4. The distance between nonlocal elements and any \(I \)-close or \(J \)-close element is strictly greater than \(\ell_k \);
5. If \((c_i, d_i)\) is a nonlocal move, then there exists an isomorphism \(\rho_i \) between \(\mathcal{A}_{c_i} \) and \(\mathcal{A}_{d_i} \) such that \(\rho_i(c_i) = d_i \), where \(\mathcal{A}_{c_i} \) is the copy where \(c_i \) lives in and \(\mathcal{A}_{d_i} \) is the copy where \(d_i \) lives in;
6. If \((c_i, d_i)\) and \((c_m, d_m)\) are nonlocal, and \(d(c_i, c_m) \leq \ell_k \) or \(d(d_i, d_m) < \ell_k \) then \(\rho_i = \rho_m \).

These conditions hold initially:
1. Trivial;
2. Trivial;
3. Follows by assumption since \(d(\bar{a}|_f, \bar{a}|_f) > \ell = \ell_0 \) and \(d(\bar{b}|_f, \bar{b}|_f) = \infty \);
4. There are no nonclose elements at this stage;
5. Trivial since there are no nonclose elements at this stage;
6. Trivial since there are no nonclose elements at this stage.

We first argue that, if the duplicator plays the game so that conditions 1 through 6 remain valid after every move, we end in a winning scenario for the duplicator. Indeed, since the distance between \(I \)-local, \(J \)-local and nonlocal elements is strictly greater than \(\ell_q = 1 \), we know that for any relation \(R \), there is no tuple \(\bar{t} \) such that \(\mathcal{C} \models R[\bar{t}] \) and \(\bar{t} \) contains a mix of \(I \)-local and \(J \)-local; \(I \)-local and nonlocal; \(J \)-local and nonlocal; or \(I \)-local, \(J \)-local and nonlocal elements. Thus, if we have separate partial isomorphism for the \(I \)-local, \(J \)-local and nonlocal moves, we can combine these three partial isomorphisms to get one partial isomorphism for the \(q \) rounds together. The \(I \)-local moves together form a partial isomorphism since they are played according to the identity isomorphism. The \(J \)-local moves together form a partial isomorphism since they are played according to the isomorphism \(f \). Furthermore, the nonlocal moves together form a partial isomorphism by conditions 5 and 6. Thus, \(\{(a_1, b_1), \ldots, (a_n, b_n), (c_1, d_1), \ldots, (c_q, d_q)\} \) is a partial isomorphism, whence the duplicator is in a winning scenario.

We now outline our strategy and show that it maintains conditions 1 through 6. We assume that the spoiler picks his \((k + 1)\)st move in \(\mathcal{C}, \bar{u} \). Let us call this move \(c_{k+1} \). The case where the spoiler picks his move in \(\mathcal{C}, \bar{b} \) is analogous; the only part that changes is that we use the inverse of all the isomorphisms. Regardless of the choice of \(d_{k+1} \), we only have to verify conditions 1 through 6 when the condition relates to our new move. Indeed, for the original moves all conditions remain true:

1. An \(I \)-close element is in \(B(\bar{a}|_f, \ell - \ell_k) \) or \(B(\bar{b}|_f, \ell - \ell_k) \) by induction. The condition now follows because \(\ell - \ell_{k+1} \) is greater than \(\ell - \ell_k \).
2. Similar to the previous case;
3. The distance between any \(I \)-close element and any \(J \)-close element is greater than \(\ell_k \) by induction. The condition then follows because \(\ell_{k+1} \) is smaller than \(\ell_k \).
4. The distance between any nonclose element and any \(I \)-close or \(J \)-close element is greater than \(\ell_k \) by induction. The condition then follows because \(\ell_{k+1} \) is smaller than \(\ell_k \).
5. Follows directly by induction.
6. Follows by induction since ℓ_{k+1} is smaller than ℓ_k.

The duplicator then plays according to the following strategy:

A: Suppose c_{k+1} is at distance strictly greater than ℓ_{k+1} of any previously played element and \bar{a}. Let \mathcal{A}_{k+1} be the copy of \mathcal{A} where c_{k+1} lives in, and let \mathcal{A}' be one of the unused copies of $q \cdot \mathcal{A}$ in C, \bar{b}. Let ρ_{k+1} be an isomorphism from \mathcal{A}_{k+1} to \mathcal{A}'. The duplicator now picks $d_{k+1} := \rho_{k+1}(c_{k+1})$. Remember that we call such a move nonclose. We now check conditions 1 through 6.

1. There is nothing to prove since (c_{k+1}, d_{k+1}) is nonclose.
2. There is nothing to prove since (c_{k+1}, d_{k+1}) is nonclose.
3. There is nothing to prove since (c_{k+1}, d_{k+1}) is nonclose.
4. The condition holds for c_{k+1} by definition. The condition holds for d_{k+1} as well since it lives in a previously unused copy.
5. Holds by construction.
6. There is nothing to prove since d_{k+1} is in an unused component and c_{k+1} is further away than ℓ_{k+1} from any previously picked element and \bar{a}.

B: Suppose that $d(c_{k+1}, c_i) \leq \ell_{k+1}$ where c_i is a nonclose element. Then the duplicator picks $d_{k+1} := \rho_{k+1}(c_{k+1})$. (Thus, ρ_{k+1} is defined as ρ_i.) Remember that we call such a move nonclose. We now check conditions 1 through 6.

1. There is nothing to prove since (c_{k+1}, d_{k+1}) is nonclose.
2. There is nothing to prove since (c_{k+1}, d_{k+1}) is nonclose.
3. There is nothing to prove since (c_{k+1}, d_{k+1}) is nonclose.
4. Distances are preserved by isomorphisms, whence $d(c_{k+1}, c_i) = d(k_{k+1}, d_i)$. Now let (c_m, d_m) be an arbitrary I-close or J-close move. We now show that $d(c_{k+1}, c_m) \geq \ell_{k+1}$.

Then, by induction, $d(c_i, c_m) > \ell_k$. Obviously, there is only something to prove when c_{k+1} is in the same component as c_m, whence $d(c_i, c_m)$ is finite. Therefore, we have

$$d(c_{k+1}, c_m) \geq d(c_m, c_i) - d(c_{k+1}, c_i)$$

$$> \ell_k - \ell_{k+1}$$

$$= 2\ell_{k+1} - \ell_{k+1} = \ell_{k+1}.$$

Similarly, we can establish that $d(d_{k+1}, d_j) > \ell_{k+1}$.

5. Holds by construction.

6. Let (c_m, d_m) be a previously nonclose move such that $d(c_{k+1}, c_m) \leq \ell_{k+1}$. Then, $d(c_m, c_i) \leq d(c_m, c_{k+1}) + d(c_{k+1}, c_i) \leq \ell_{k+1} + \ell_{k+1} = \ell_k$. By induction, $\rho_i = \rho_m$, which implies that $\rho_m = \rho_{k+1}$ as desired.

A similar argument can be used when $d(d_{k+1}, d_m) \leq \ell_{k+1}$.

I-moves: Suppose $d(c_{k+1}, c_i) \leq \ell_{k+1}$ where c_i is an I-close element. Then, the duplicator picks $d_{k+1} := c_{k+1}$. We now check conditions 1 through 6.

1. By induction $d(c_i, a_i) \leq \ell - \ell_k$ for some $i \in I$. Then,

$$d(c_{k+1}, a_i) \leq d(c_{k+1}, c_i) + d(c_i, a_i)$$

$$\leq \ell_{k+1} + \ell - \ell_k$$

$$= \ell_{k+1} + \ell - 2\ell_{k+1} = \ell - \ell_{k+1}.$$

2. There is nothing to prove since (c_{k+1}, d_{k+1}) is I-close and I-close elements are not J-close.
3. Let \((c_m, d_m)\) be a J-close move. By induction, \(d(c_m, c_l) > \ell_k\) Then,

\[
d(c_{k+1}, c_m) \geq d(c_l, c_m) - d(c_{k+1}, c_l) > \ell_k - \ell_{k+1} = \ell_{k+1}.
\]

Note that \(d(d_{k+1}, d_m) = \infty > \ell_{k+1}\) since \(d_m = f(c_m)\) and \(d_{k+1} = c_{k+1}\).

4. Similar to the previous case since for any nonclose move \((c_m, d_m)\) we have \(d(c_m, c_l) > \ell_k\).

5. There is nothing to prove since \((c_{k+1}, d_{k+1})\) is I-close.

6. There is nothing to prove since \((c_{k+1}, d_{k+1})\) is I-close.

J-moves: Suppose \(d(c_{k+1}, c_l) \leq \ell_{k+1}\) where \(c_l\) is a J-close element. Then, the duplicator picks \(d_{k+1} = f(c_{k+1})\). We now check conditions 1 through 6.

1. There is nothing to prove since \((c_{k+1}, d_{k+1})\) is J-close and J-close elements are not I-close.

2. By induction \(d(c_l, a_j) \leq \ell - \ell_k\) for some \(j \in I\). Then,

\[
d(c_{k+1}, a_j) \leq d(c_{k+1}, c_l) + d(c_l, a_j) \leq \ell_{k+1} + \ell - \ell_k = \ell_{k+1} + \ell - 2\ell_{k+1} = \ell - \ell_{k+1}.
\]

We also have \(d(d_{k+1}, b_j) \leq \ell - \ell_{k+1}\), since \(f\) preserves distances and \((d_{k+1}, b_j) = (f(c_{k+1}), f(a_j))\).

3. Let \((c_m, d_m)\) be a I-close move. By induction, \(d(c_m, c_l) > \ell_k\). Note that \(d(c_m, c_l)\) is finite since \(c_l\) and \(c_m\) are both in the component of \(c_{k+1}\). Therefore, we have

\[
d(c_{k+1}, c_m) \geq d(c_l, c_m) - d(c_{k+1}, c_l) > \ell_k - \ell_{k+1} = \ell_{k+1}.
\]

Note that \(d(d_{k+1}, d_m) = \infty > \ell_{k+1}\) since \(d_m = c_m\) and \(d_{k+1} = f(c_{k+1})\).

4. Similar to the previous case since for any nonclose move \((c_m, d_m)\) we have \(d(c_m, c_l) > \ell_k\) and \(d(d_m, d_l) > \ell_k\).

5. There is nothing left to prove since \((c_{k+1}, d_{k+1})\) is J-close.

6. There is nothing left to prove since \((c_{k+1}, d_{k+1})\) is J-close.

It is obvious that this strategy covers any choice the spoiler can make. We now show that these strategies are mutually exclusive.

A vs. B, I, J Strategy A is mutually exclusive from any other strategy since by definition \(c_{k+1}\) is at a distance greater than any other element and \(d_{k+1}\) is in a completely new component.

B vs. I Suppose that \(d(c_{k+1}, c_l) \leq \ell_{k+1}\) where \(c_l\) is a nonclose element. Let \(c_m\) be an I-close element. Then,

\[
d(c_{k+1}, c_m) \geq d(c_l, c_m) - d(c_{k+1}, c_l) > \ell_k - \ell_{k+1} = 2\ell_{k+1} - \ell_{k+1} = \ell_{k+1}.
\]

so \(c_{k+1}\) does not fit in the I-strategy.

B vs. J Similar to the previous case.

I vs. J Similar to case number two since \(d(c_l, c_m) > \ell_k\) if \(c_l\) is I-close and \(c_m\) is J-close.
Proof of Proposition 16. Denote $\varphi \land \exists x S(x) \land \exists y T(y)$ by φ'. If φ is unsatisfiable then φ' is the empty query which is trivially additive. Conversely, we must show that if φ is satisfiable, then φ' is not additive. There are two cases.

1. φ is additive. Let A be an instance of S such that $A \models \varphi$. Take a domain-disjoint copy A' of A, and pick $b \in \text{adom}(A)$ and $c \in \text{adom}(A')$ arbitrarily. Now define $B = A \cup \{S(b)\}$ and $C = A' \cup \{T(c)\}$. We have $\varphi(B + C) = \varphi(A + A') = \varphi(A) = \text{true}$, the second equality by additivity. Clearly also $B + C \models \exists x S(x) \land \exists y T(y)$. Hence, $B + C \models \varphi'$. However, clearly, neither $B \models \varphi'$ nor $C \models \varphi'$, so φ' is not additive.

2. φ is not additive. Then there exist S-instances A and B such that $\varphi(A + B) \neq \varphi(A) \lor \varphi(B)$. Pick $a \in \text{adom}(A)$ and $b \in \text{adom}(B)$ arbitrarily, and define $A' = A \cup \{S(a), T(a)\}$ and $B' = B \cup \{S(b), T(b)\}$. We have $\varphi'(A' + B') = \varphi(A + B) \neq \varphi(A) \lor \varphi(B) = \varphi'(A') \lor \varphi'(B')$, so φ' is not additive.

\[\Box \]