Zebrafish mesonephric renin cells are functionally conserved and comprise of two distinct morphological populations

Citation for published version:
https://doi.org/10.1152/ajprenal.00608.2016

Digital Object Identifier (DOI):
10.1152/ajprenal.00608.2016

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
American Journal of Physiology-Renal Physiology
Zebrafish mesonephric renin cells are functionally conserved and comprise of two distinct morphological populations.

Sebastien A. Rider¹, Helen C. Christian², Linda J. Mullins¹, Calum A. MacRae³ and John J. Mullins¹

¹University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, Little France, The University of Edinburgh, Edinburgh, EH16 4TJ. ²Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, South Parks Road, Oxford, OX1 3QX. ³Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115.

Correspondence: Dr Sebastien Rider, University/BHF Centre for Cardiovascular Science, The Queen’s Medical Research Institute, Little France, The University of Edinburgh, Edinburgh, EH16 4TJ. Phone: (+44) 0131 242 26729. Fax (+44) 0131 242 9101. Email: srider@staffmail.ed.ac.uk

Running Title

Distinct morphologies of mesonephric renin cells

Abstract

Zebrafish provide an excellent model in which to assess the role of the renin-angiotensin system in renal development, injury and repair. In contrast to mammals, zebrafish kidney organogenesis terminates with the mesonephros. Despite this, the basic functional structure of the nephron is conserved across vertebrates. The relevance of teleosts for studies relating to the regulation of the renin-angiotensin system was established by assessing the phenotype and functional regulation of renin-expressing cells in zebrafish.
Transgenic fluorescent reporters for renin (\textit{ren}), smooth muscle actin (\textit{acta2}), and platelet derived growth factor receptor beta (\textit{pdgfrb}) were studied to determine the phenotype and secretory ultrastructure of perivascular renin-expressing cells. Whole-kidney \textit{ren} transcription responded to altered salinity, pharmacological renin-angiotensin system inhibition, and renal injury.

Mesonephric \textit{ren}-expressing cells occupied niches at the pre-glomerular arteries and afferent arterioles, forming intermittent epithelioid-like multi-cellular clusters exhibiting a granular secretory ultrastructure. In contrast, renin cells of the efferent arterioles were thin-bodied and lacked secretory granules. Renin cells expressed the perivascular cell markers \textit{acta2} and \textit{pdgfrb}. Transcriptional responses of \textit{ren} to physiological challenge support the presence of a functional renin-angiotensin system and are consistent with the production of active renin.

The reparative capability of the zebrafish kidney was harnessed to demonstrate that \textit{ren} transcription is a marker for renal injury and repair. Our studies demonstrate substantive conservation of renin regulation across vertebrates and ultrastructural studies of renin cells reveal at least two distinct morphologies of mesonephric perivascular \textit{ren}-expressing cells.

Key words

Renin, perivascular, renin-angiotensin system, kidney injury, zebrafish.

Introduction

Renin-expressing cells are anatomically restricted to the juxtaglomerular apparatus (JGA) of the adult mammalian metanephros and secrete active renin, the initiating enzyme of the renin-angiotensin system (RAS). The RAS principally functions to maintain cardiovascular homeostasis. In humans, over-stimulation of RAS is associated with clinical hypertension and an increased risk of chronic kidney disease (CKD) (76). Over-production of angiotensin II (ANG II), the effector of the RAS, may be pharmacologically targeted by angiotensin-converting enzyme (ACE) inhibitors or
angiotensin receptor blockers (ARBs) (78). Renin-expressing cells of the developing metanephros are widespread throughout the nascent renal vasculature, yet their role remains poorly understood (19, 20, 62). In the embryo, renin cells may secrete active renin for RAS-mediated homeostasis or developmental pathways and (42), as activated pericytes, may be required for renal angiogenesis (56, 58, 77).

The canonical RAS first appeared in teleosts and perivascular ren-expressing cells are conserved in larval zebrafish (14, 38). A complete understanding of their functional relationship across vertebrates is, however, lacking. The intracellular granules of renin cells, only partially characterised in teleosts (8, 32, 33, 50), are fundamental to the synthesis and release of active renin. Fully differentiated renin cells of the mammalian juxtaglomerular apparatus (JGA) contain a large number of acidic secretory granules that process prorenin into its active form for regulated secretion (71). Mammalian renin cells present during development (72), or those recruited in response to homeostatic challenge (66), exhibit an intermediate phenotype with smaller and sparser renin granules.

The teleost kidney allows modelling of both nephron repair and regeneration post-injury (13, 43, 86). The final-stage kidney of adult zebrafish, the mesonephros, retains a nephron progenitor population throughout life and continually undergoes de novo nephrogenesis (61, 86). Tubular injury is expected to activate the RAS as a result of impaired solute uptake or nephron filtration (31). Post renal injury, the RAS and renin pericytes may be activated for tubular repair and neo-nephrogenesis (21, 45, 65). Current evidence suggests that renin cells belong to a pericyte lineage, but their differentiation pathways remain to be fully elucidated (7, 70). In mammalian experimental disease models, cells of renin lineage (CoRL) are multipotent and capable of repopulating multiple glomerular cell niches, including pdgfrb expressing mesangial cells (54, 55, 68).

The aims of the present study in adult zebrafish were to assess the functional and phenotypic conservation of renin-expressing cells in a lower vertebrate. We used transgenic reporter fish and
physiological challenges to address several questions. 1) Where are renin-expressing cells localised in adult zebrafish? 2) Do renin-expressing cells express markers of smooth muscle cells and pericytes? 3) Is their intracellular structure reminiscent of mammalian JGA cells that secrete active renin enzyme? 4) Are the physiological roles of renin-expressing cells consistent with a functional RAS? Our data establish the zebrafish model for studies of the RAS and its role in kidney injury and repair.

Methods

Fish lines and husbandry

Experiments were approved by the local ethics committee and conducted in accordance with the Animals (Scientific Procedures) Act 1986 in a UK Home Office approved establishment. Zebrafish (Danio rerio) were maintained at 28.5 °C, as described by Westerfield (58, 80). Established lines used included WIK, casper (81), tg(ren:LifeAct-RFP) (58), tg(kdrl:EGFP) (11), tg(wt1b:EGFP) (52), and tg(acta2:EGFP) (82). Adult fish were anaesthetised with 40 μg ml⁻¹ tricaine methanesulfonate (MS-222). All fish used in this study were 10-12 months of age. For all experiments fish were individually housed in one litre tanks in solutions adjusted to pH 7.6. For experiments longer than 24 hours, fish were fed daily, otherwise feed was withheld.

Generation of tg(pdgfrb:EGFP) fish

A 7.16 kb region upstream of the pdgfrb translational initiation site was isolated from WIK genomic DNA using the following primer sequences with attB sites for gateway recombination into pDONR4-PIR (Invitrogen); pdgfrb forward 5’-

GGGGACAACCTTGTATAGAAAAAGTGGCTCTCAGGCTATCAAGTTGGATGG; pdgfrb reverse 3’-

GGGGACTGCTTTTTTGTACAAACTTGCTCAACACTGCAGACGGAGAAAAC. The DNA fragment was recombined upstream of EGFP and SV40 polyA sequences by three-way gateway cloning into pDestTol2CG2 (containing minimal tol2 ends and cardiac myosin light chain:EGFP) of the tol2 system (37). Plasmid DNA was co-injected with transposase mRNA transcribed in-house. Fish with visible
pdgfrb-EGFP fluorescence displayed similar expression patterns to those previously reported (3, 79, 83).

In situ hybridisation (ISH)

Whole adult fish were fixed in 4% PFA and processed into paraffin embedded sagittal sections. ISH was conducted using standard protocols (58, 75). Briefly, a 500 bp digoxigenin (DIG)-labelled RNA probe was synthesised from ren cDNA. Embryos were rehydrated, permeabilised, and incubated at 65 °C for 16 hrs in hybridisation buffer. Following hybridisation, DIG-labelled RNA probes were detected with an alkaline phosphatase conjugated anti-DIG antibody (Roche) visualised by reaction with 5-bromo-4-chloro-3-indolyl phosphate and nitro blue tetrazolium (NBT). Sections were counterstained with methyl green. Ren mRNA was only detected in the renal tissue.

Intracellular acidic granule staining

Whole kidneys from tg(ren:LifeAct-RFP, casper) were excised into Dulbecco's Modified Eagle's medium (DMEM) with 5 μM Lysotracker® Green DND-26 (Molecular Probes™) for 1 hr at room temperature. Kidney tissue was then prepared by kidney squash for immediate confocal imaging of ren:LifeAct-RFP expressing cells.

Electron microscopy and ren:LifeAct-RFP immunogold

Prior to fixation, renal tissue was dissociated from haematopoietic cells by trituration in DMEM. Renal tissue was recovered with a 40 μm cell strainer. Samples were prepared for standard and ren:LifeAct-RFP immunogold electron microscopy (EM) by standard methods (1). Briefly, for immunogold EM, segments were stained with uranyl acetate (2% w/v in 0.1 M sodium acetate buffer), dehydrated through increasing concentrations of methanol (70-100%) at -20 °C and embedded in LR Gold (London Resin Company, Reading, UK). Ultrathin sections (50-80 nm) were prepared using a Reichert ultracut S microtome and mounted on 200 mesh nickel grids. Sections were incubated at room temperature for 2 hr with anti-RFP (Clontech, Mountain View, CA, USA.
dilution 1:1000) and for 1 hr with anti-rabbit IgG-15 nm gold complex (dilution 1:50; BBI, Cardiff UK). All antisera were diluted in 0.1 M phosphate buffer containing 0.1% egg albumin. As a secondary antibody negative control the primary antibody was replaced by phosphate buffer/egg albumin and no labelling was observed. After immunolabelling, sections were lightly counterstained with lead citrate and uranyl acetate and examined with a JEOL transmission electron microscope (JEM-1010, JEOL, Peabody, MA, USA) fitted with an Orius digital camera (GATAN, CA, USA).

Kidney tissue RNA analysis

Kidney samples were excised either whole or with the head kidney separated from the trunk and tail regions (Fig 1A). Tissue was immediately frozen on dry ice and stored at -80 °C until analysis. Total RNA was extracted from kidney tissue in TRIzol® (Ambion) reagent using a Qiagen RNeasy kit (Qiagen) according to the manufacturer’s instructions. RNA samples were quantified using a NanoDrop (Thermo Scientific) and integrity analysed by gel electrophoresis. RNA (500 ng) was reverse transcribed using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems™) and real-time PCR performed with the Universal Probe Library (UPL) system from Roche Diagnostics Ltd., using a Roche Lightcycler 480 (Roche, West Sussex, UK). Primers were designed and utilised with the Roche Universal Probe Library (Table 1). Gene expression was normalized to the mean expression of ribosomal protein S18 (rps18) and elongation factor 1 alpha (eef1α).

Salinity challenge and captopril treatment

Fish were exposed to various saline solutions for a 24 hour period (n = 8). As similarly described (25, 59), 1x conditioned water (CW) contained 60 mg l⁻¹ marine salts (Tropic Marin®), 1/10th CW contained 6 mg l⁻¹ marine salts, and 10x Na & K contained 1x CW supplemented with 365 µM KCl and 171 mM NaCl. 0.05 mM waterborne captopril (C4042, Sigma-Aldrich) was administered in 1x CW for four days (n=10).

Kidney injury and regeneration with captopril treatment
For the induction of tubular injury, fish were intraperitoneally injected with either 65 mg/kg gentamicin or PBS for sham fish using a 10 µl NanoFil syringe with a 35 gauge needle. Transcriptional responses to kidney injury were determined 48 hours post-injection. For the analysis of regeneration, fish were sampled eight days post injection. The effects of RAS inhibition on regeneration were determined with 0.05 mM waterborne captopril from 24 hours post gentamicin injection until sampling. Only fish that responded significantly to captopril treatment were included for further analysis, i.e. those with a mean relative ren expression at or above that of the control fish. For all other groups n = 8.

Kidney regeneration and spatial analysis of kidney ren

Fish were subjected to an intraperitoneal dose of either 75 mg/kg gentamicin or PBS for sham fish. Post-recovery, fish were individually housed in one litre tanks and fed daily. Head, or tail and trunk kidney regions were sampled for RNA analysis nine days post gentamicin injection. Fish not responding significantly to gentamicin, i.e. those with a mean relative wt1 expression at or below that of the mean of sham fish were excluded from further analysis. Control group n = 7.

Confocal imaging

Kidney squashes were prepared using fresh tissue in DMEM or fixed tissue (4% PFA in PBS). For fixed tissue, 300 nM DAPI was diluted in PBS for nuclear staining. Confocal images were taken with a Leica SP5 using a 63x or 100x objective, 3x averaging, and a 0.5 µm z-step size for z-stacks. Optical thickness ranged between 0.5-1 µm. Maximal intensity projections were created with Fiji. Brightfield ISH images were taken using an Olympus Provis AX70 microscope.

Statistical analysis

Statistical analyses were performed with GraphPad Prism 6 (La Jolla, CA). Differences in means between two treatments were analysed by an independent samples t-test. Means between three or more groups were subject to a One-way ANOVA and where appropriate followed by a post-hoc
Bonferroni test for comparisons between predetermined treatments groups. Means are reported with a standard error of the mean and \(p \) values <0.05 were considered significant.

Results

Renin cell localisation and morphology

Visualisation of *ren*:LifeAct-RFP and *ren* in situ hybridisation (ISH) confirmed the location of renin-expressing cells in adult zebrafish. ISH showed *ren* mRNA is specifically associated with the mesonephric vasculature and not detectable in glomeruli, tubular epithelium, or haematopoietic cells (Fig. 1A-C), as characteristic of the developing mouse metanephros (26). The *ren*:LifeAct-RFP transgene is *bona fide* for endogenous *ren* in adults and larval fish (58). Despite an even distribution of nephrons across the mesonephros, *ren*:LifeAct-RFP (Fig. 1D) and *ren* mRNA transcripts are spatially varied across the kidney, being markedly reduced in the head kidney compared to the trunk and tail regions (Fig. 7).

Crossing \(\text{tg}(\text{ren}:\text{LifeAct-RFP}) \) to \(\text{tg}(\text{kdrl}:\text{EGFP}) \), which have endothelial cells labelled with EGFP (11), confirmed the perivascular location of renin cells. Renin is not detectable in the endothelial cells, which is consistent with the distinct lineage of larval zebrafish renin cells to haemangiobalsts and endothelial cells (58). Renin is also not detectable in the endothelium of adult fish. *ren*:LifeAct-RFP was detected in 1) afferent arterioles, at or close to the vascular pole entering the glomerulus, termed the juxtaglomerular (JG) region 2) in the pre-glomerular arteries 3) in the efferent arterioles (Fig. 1E-H). Branches of pre-glomerular arteries were present both with and without *ren*:LifeAct-RFP (Fig. 1F). As similarly reported in the developing mammalian metanephros (26, 62), renin reporter expression at the afferent arterioles and pre-glomerular arteries was circumferential and discontinuous (Fig. 1E, H, K). In contrast, expression at efferent arterioles was continuous (Fig. 1E, H, K).
The use of LifeAct to direct RFP to filamentous actin (F-actin) allowed for the visualisation of intracellular myofilaments (60), and increased RFP labelling in thin-bodied mural cells. Renin-expressing cells of the pre-glomerular arteries and JG cells formed multicellular epithelioid-like cell clusters composed of tens of cuboidal shaped cells (Figs. 1I, K & 2K). Conversely, efferent ren:LifeAct-RFP expressing cells, displayed flattened cell bodies thinly covering arterioles (Figs. 1J-K & 2J), as similarly observed in the pectoral arteries of larval fish (58). Regardless of morphology, as reported in other fish species, perivascular renin cells were always comprised of a single cell layer (Figs. 1I & 2K) (33).

Smooth muscle and pericyte markers in renin cells.

The relationship of renin-expressing cells to smooth muscle cells (SMC) expressing (acta2) and pericytes expressing (pdgfrb) was analysed using tg(ren:LifeAct-RFP, acta2:EGFP) and tg(ren:LifeAct-RFP, pdgfrb:EGFP) fish, respectively. With an inverse relationship to smooth muscle actin (SMA), mammalian renin expression increases along metanephric afferent arterioles with decreasing distance from the glomerulus (35, 36, 48, 62). In zebrafish, all renin-expressing cells co-expressed acta2:EGFP (Fig. 2A-F) and no inverse relationship between acta2 and ren was evident. Occasional cell clusters at non-specific vascular locations expressed a lower acta2:EGFP (Fig. 2F), which may represent nascent renin cells acquiring a SMC phenotype during maturation (40). SMCs between renin cell clusters had thinner cell bodies than epithelioid ren-expressing cells (Fig. 2C-E). Expression of mammalian pericyte markers NG2 and CD146 precede αSMA during embryonic renin cell differentiation (69). The expression of pdgfrb:EGFP in epithelioid renin cells (Fig. 2G-I) suggests that as observed in mammals, zebrafish mesonephric renin cells maintain a functional relationship with pericytes (69).

Renin cell intracellular structure

The intracellular structure of ren:LifeAct-RFP -expressing cells was assessed by immunogold electron microscopy and lysotracker green. The acidic milieu of mammalian renin granules is thought to be
required for the activation of prorenin by cleavage of its pro segment to active renin (84). To test for the presence of acidic granules in fish, ren:LifeAct-RFP -expressing cells were stained with the acidotrophic dye lysotracker green, which stains lysosomes and other intracellular acidic organelles. Acidic granules were present in renin-cell clusters at both the afferent arterioles and pre-glomerular arteries (Fig. 3A-B). By comparison, very few acidic organelles were observed in the efferent arterioles (Fig. 3C).

F-actin visualised in ren:LifeAct-RFP -expressing cells was most prominent at the luminal side of the cells, and to a lesser extent at renin-cell to renin-cell boundaries (Fig. 2B-E). Mammalian renin cells with an intermediate SMA and renin phenotype contain visible myofilaments, which are difficult to detect in fully differentiated cells of the JGA (22, 73).

Immunogold stained ren:LifeAct-RFP cells contained either a highly vacuolated structure with small 50-200 nm electron dense granules of various sizes, or a cytoplasm packed with numerous uniformly sized electron dense granules. As with mammalian renin cells, different intracellular structures suggest different stages of cell maturity. Renin cells (Fig. 4A-D) with a more vacuolated structure are believed to be representative of an immature endocrine structure. The partially filled protogranules (Fig. 4B) and paracrystalline granules (Fig. 4C) observed in zebrafish renin cells are also reported in immature mammalian counterparts (74). Cells with highly packed granules (Fig. 4E-H), ranging from 150-400 nm in size, are expected to represent a fully endocrine renin-secreting cell. Renin granules in zebrafish are similar to the mean 230 nm size of carp renin granules (32). No large mammalian-like granules (approximately 500 nm in size), are present in the zebrafish kidney (71).

Physiological challenge and ren transcription

In mammals, low sodium (23, 85), or RAS inhibition by ACE inhibitors (18, 36, 66), both increase renin transcription, plasma renin activity, and renin cell distribution down the afferent arteriole (17, 41).
RAS inhibition blocks the ANG II-mediated homeostatic negative feedback mechanism that supresses renin secretion (22). Consistent with a functional RAS, our data show that ren is upregulated by both captopril and decreasing salinity (Fig. 5), as reported in larval zebrafish (25, 58). This supports a RAS-mediated sodium homeostasis in adult zebrafish. In mammalian whole kidney, upregulation of renin transcription results from renin cell recruitment, or upregulation within individual cells (66).

Transcriptional ren responses to kidney injury

The response of ren transcription to kidney injury was assessed by use of a well-characterised acute kidney injury (AKI) model. The aminoglycoside antibiotic gentamicin is toxic to proximal tubular cells (28, 43, 86). Post-injury, adult zebrafish undergo nephron repair followed by de novo nephrogenesis to fully restore kidney function by 21 days. The response of whole kidney renin transcription was tested during the injury phase, and during nephron repair and regeneration (43). Renal injury was confirmed two days post injection by a marked upregulation of kidney injury molecule 1 (kim1) and a concurrent decrease of the proximal tubular marker slc201a1, a sodium-dependent phosphate transporter (Fig. 6A-B). This was associated with a significant upregulation of ren transcription (Fig. 6I) implying RAS activation in response to renal injury.

Early markers of nephron progenitors were upregulated during nephron repair and neo-nephrogenesis. Upregulation of lhx1a (Fig. 6E) eight days post-injury confirmed a reparative response involving activation of renal progenitor cells. There was a trend towards increased transcription of both Wilm’s tumor (wt1) homologues, but these were not statistically significant (Fig. 6C-D). De novo nephrogenesis is in its early stages eight days post injury and was demonstrated in our study by a maintained low and high transcription of slc201a1 and kim1, respectively. During this early phase of kidney repair, ren transcripts returned to normal levels suggesting that the RAS may have a limited function during early kidney repair and neo-nephrogenesis. In the zebrafish mesonephros, renin cells
are not associated with individual new nephrons until the latter stages of neo-nephrogenesis (Fig. 2L-M).

The requirement for RAS in renal repair and regeneration was tested using pharmacological RAS inhibition during injury recovery. Expression of ren was significantly upregulated as expected with RAS blockade by captopril. Captopril treatment had no marked effect on the resolution of AKI, as determined by the lack of any change in expression of slc20a1a and kim1 transcripts eight days post injury (Fig. 6F).

Spatial variation of ren expression

Early nephron progenitor markers are ubiquitously expressed across the head, trunk, and tail regions of the kidney (13). Transcripts of ren and wt1 were determined in the head kidney and compared to the trunk and tail regions. No significant spatial differences were observed in either wt1 homologues, and both genes were similarly upregulated across the kidney during regeneration (Fig. 7A-B). Conversely, ren:LifeAct-RFP expression (Fig. 1D) and ren mRNA transcripts (Fig. 7C) were significantly higher in the tail and trunk regions than the head kidney. As previously observed (Fig. 6F), ren was not significantly upregulated during regeneration.

Discussion

This first study of renin expressing cells in the zebrafish mesonephros reveals two distinct morphologies of renin cell. Only epithelioid-like renin cells contained a secretory intracellular structure consistent with active renin secretion. The ren:LifeAct-RFP transgene faithfully recapitulates renin expression in both adult and larval zebrafish (58). As characteristic of the mammalian
mesonephros and developing metanephros (27), zebrafish ren is exclusively detected in perivascular cells (19). A low expression of renin mRNA is detectable in the mammalian metanephric proximal tubule (10, 64), but not in zebrafish. The localisation of intrarenal perivascular renin cells in zebrafish is similar to that observed in developing mammals (26, 62). In the human mesonephros (9), and initially the developing mammalian metanephros (9, 26, 62), renin expression is associated with pre-glomerular arteries and arterioles prior to a postnatal restriction to the JGA (20, 22, 26, 47, 62, 73). In the mammalian, and piscine mesonephroi (12, 33), there is no association between renin cells and the distal tubules. Consequently, although present at the pole of the afferent arteriole, mesonephric JG renin cells are not part of a structured JGA.

The lack of granulation in efferent renin cells suggests these post-glomerular perivascular cells differ in their function to their secretory counterparts. In mice, 20-40% of efferent arterioles are renin positive, of which a portion are granulated (73). By virtue of their low cell volume in comparison to the cuboidal secretory renin cells, acidic granules are sparse in their efferent counterparts. Without secretory granules, efferent renin cells are expected to have a limited capacity for the regulated excretion of active renin, but may constitutively secrete pro-renin.

The mesenchymal precursor of the renin-expressing cell is postulated to belong to a pericyte lineage. Mammalian pericytes markers (Rgs 5, NG2 and CD 146) are detected in both adult and embryonic renin cells (4, 7, 67, 70). Pericytes and renin cells both derive from mesenchymal FoxD1 cells (16, 39, 63, 65). Their relationship is evident in experimental renal injury where CoRL repopulate multiple glomerular cell niches, including the mesangium (2, 53-55, 68). The expression of individual pericyte markers in renin cells may be species-specific, since neither adult nor embryonic murine renin cells express Pdgfrb, nor do they rely on its expression for their differentiation (49). In larval fish, pdgfrb- and ren-expressing cells both require Notch signalling for their differentiation and both arise from the lateral mesoderm to occupy the same cell niche at the ventral dorsal aorta (3, 58). As for mammalian
renin cells (49), zebrafish \textit{pdgfrb}-expressing cells do not rely on \textit{pdgfr} signalling for their differentiation (3).

Mammalian renin cells have a reversible phenotype switching from contractile smooth muscle cells to an endocrine renin phenotype during development or physiological challenge (7, 17, 40, 62, 66). In some instances, renin cells of the JGA loose detectable SMA (29, 49, 51). Zebrafish renin cells do not loose SMA expression towards the glomerulus and maintain expression of early pericyte markers. Although the differentiation and phenotypic switch of renin cells may differ across vertebrates, their physiological function appears to be conserved.

Prior to their maturation into JG cells with a full endocrine phenotype (6, 15, 57), embryonic renin cells present at branch points may release paracrine tropic factors required for angiogenesis of nascent renal vessels (56, 58). Experimental ablation of renin cells or RAS during development results in renal vascular defects (21, 39, 77). In the renal vasculature of rats (56), and the anterior mesenteric artery of larval zebrafish (58), renin-expressing cells are associated with branch points. In mice, renin is not preferentially expressed at intrarenal vessel branch points (62). Despite the ubiquitous distribution of nephron progenitors expressing \textit{wt1} across the zebrafish kidney tissue (86), renin cells are lower in density in the head kidney. In our studies of the zebrafish mesonephros, which continually undergoes \textit{de novo} nephrogenesis (86), no angiogenic sprout tips associated with renin cells were observed. In mammals, the RAS may be implicated in angiogenesis via the angiotensin 2 (AT2) receptor-mediated activation of \textit{Vegf}, a potent stimulator of vasculogenesis and angiogenesis (30).

The endocrine phenotype of mesonephric renin cells in zebrafish was confirmed by the presence of either an immature or fully granulated ultrastructure, as characteristic of mammalian renin cells. Embryonic or intermediate mammalian renin cells contain a variable number of small electron dense protogranules (74), as observed in adult zebrafish. Paracrystalline granules, which largely contain prorenin in mammals (72), were also present in the zebrafish renin cells. The numerous uniformly sized electron dense granules characteristic of mature renin cells are also reported in other fish species.
and are approximately half the size of mammalian granules. The activation of mammalian renin by the cleavage of pro-renin is proposed to occur due to the acidic milieu of secretory granules (84). The presence of acidic granules suggests that renin activation is likely to be conserved in the zebrafish.

The response of mesonephric renin cells to salinity variation, pharmacological RAS inhibition, and renal injury is consistent with their endocrine function within a functional RAS. With the exception of the MAS receptor, zebrafish contain all components of the RAS including ACE 1 and 2, and both angiotensin (AT) receptors (14). Our data in adult zebrafish showing the modulation of renin mRNA with varying salinity is consistent with a role for the RAS in ion homeostasis, which is also evident in larval zebrafish (25, 34). The robust response of ren transcription to tubular injury may be due to tubular obstruction and a reduction in glomerular filtration, or the impaired tubular reabsorption of solutes stimulating tubuloglomerular feedback and associated renin secretion (5, 46). Indeed, the zebrafish gentamicin injury model is known to result in tubular obstruction due to the formation of epithelial casts (24, 44). Impaired solute transport is also expected with a significant decrease in slc20a1a-expressing proximal tubular cells.

RAS activity is required for renal development (21, 58, 77), and may be activated during nephron repair and regeneration (78). Eight to nine days post-injury, both tubular repair and de novo nephrogenesis occur in the zebrafish (43). Aggregates of nephron progenitor cells expressing wt1 and lhx1a reach a peak by nine days post-injury (13, 86). In our study, upregulation of lhx1a confirms the activation of nephron progenitors during repair and regeneration, but this was not associated with an upregulation of ren. These data show that although the RAS is activated during renal injury, RAS activity is similar to baseline levels during the initial phase of renal repair.

These data from zebrafish show that, whilst forming two distinct morphological populations, mesonephric renin cells share numerous similarities to their embryonic mammalian counterparts. The characteristic granular and epithelioid renin cell phenotype is maintained in fish. Functionally, mesonephric renin cells respond to RAS-mediated challenges in a similar manner to mammals.
demonstrating the conservation of the physiological actions of the RAS across vertebrates. Our studies demonstrate the relevance of adult zebrafish as an excellent model species for evaluating the mechanisms associated with the clinical improvement of renal function under RAS inhibition.

Grants

This work was financially supported by a British Heart Foundation Centre of Research Excellence award and Kidney Research UK. The authors also acknowledge financial support from the Wellcome Trust for the zebrafish facility.

Acknowledgements

The authors thank Prof. K. Kawakami, Prof. D. Lyons, and Dr. T. Czopka for Tol2 kit plasmids; Prof. Didier Stainier for the *acta2*:GFP line; Prof. B. Peault, Dr Charlotte Buckley and Dr. C. Tucker for helpful discussions; and facility staff for fish husbandry.

Disclosures

None

References

58. Rider SA, Mullins LJ, Verdon RF, MacRae CA, and Mullins JJ. Renin expression in developing zebrafish is associated with angiogenesis and requires the Notch pathway and endothelium. *American journal of physiology Renal physiology* ajprenal.00247.02015, 2015.

Figure Legends

Figure 1. Distribution and morphology of mesonephric renin cells. A: The location and morphology of mesonephric renin cells was assessed across the whole kidney by *in situ* hybridisation and tg(ren:LifeAct-RFP, kdrl:EGFP). A-C: *In situ* hybridisations with background structures stained by methyl green and ren mRNA detected by NBT (blue). Perivascular ren is associated with intrarenal vessels (A-B) and not detected in proximal (†) or distal tubules (*), nor inside glomeruli (dashed outline). Scale bars 20 µm. GFP and RFP fluorescently label endothelial and renin cells, respectively. D: Ventral view of the whole adult kidney in tg(ren:LifeAct-RFP) showing prominent and sparse expression of ren:LifeAct-RFP in the trunk and tail regions compared to the head kidney, respectively. E-G: Maximum intensity projections of tg(ren:LifeAct-RFP, kdrl:EGFP). E: Group of glomeruli and associated vasculature showing ren:LifeAct-RFP at the afferent arterioles (white ovals) and weaker ren:LifeAct-RFP at the efferent arterioles (white arrows). A larger pre-glomerular artery is indicated by the yellow arrow. Scale bar 50 µm. F: Expression of ren:LifeAct-RFP at pre-glomerular arteries. The white arrow shows a branch to an efferent arteriole with ren:LifeAct-RFP and the asterisk shows a branch without ren:LifeAct-RFP. G: Juxtaglomerular (JG) ren:LifeAct-RFP at the afferent arteriole. Scale bars 25 µm. H: Schematic showing localization of renin cells (red) in the renal vasculature (green); renal artery (RA), pre-glomerular artery (PGA), afferent arteriole (AA), efferent arteriole (EA). I-J: Single 1 µm optical sections of tg(ren:LifeAct-RFP, kdrl:EGFP). I: Cross
section of multi-cell epithelioid renin cluster at a pre-glomerular artery. Boundaries of cuboidal shaped renin cells are demarcated by ren:LifeAct-RFP. J: Cross section of an efferent arteriole showing the thin and small cell body (arrow) of an efferent perivascular renin-expressing cell. Scale bars 10 µm. K: Schematic showing the cross sections of (1) JG and pre-glomerular renin cell clusters (red arrows) with intermediate smooth muscle cells (green arrow), and (2) efferent arteriolar renin cells. JG and pre-glomerular renin cells are present as multicellular clusters. Efferent renin cells surround the endothelium with thin-bodied cells that have a low cytoplasmic volume.

Figure 2. Expression of smooth muscle and pericyte markers in mesonephric renin cells. To determine the relationship of renin-expressing cells with smooth muscle cells and pericytes, ren:LifeAct-RFP fish were crossed to transgenic lines for established mural cell markers. In mammals and fish, Pdgfrβ is an early marker of pericytes and smooth muscle actin (Acta2) is a marker of mature pericytes and smooth muscle cells. Expression of perivascular cell markers was assessed in JG, pre-glomerular and efferent ren:LifeAct-RFP expressing cells. A: Maximum intensity projection of tg(ren:LifeAct-RFP, acta2:EGFP) shows co-expression of acta2-EGFP and ren:LifeAct-RFP in the juxtaglomerular (JG) afferent and efferent cells (glomerulus white outline, efferent arteriole white arrow, afferent arteriole yellow arrow). Scale bar 50 µm. B-E: Single 0.5 µm optical sections of tg(ren:LifeAct-RFP, acta2:EGFP). B: Shows JG renin cell clusters strongly express acta2. Circular filamentous actin are highest in density at the luminal region of renin expressing cells. Scale bar 50 µm. C: Both acta2-EGFP and ren:LifeAct-RFP are also co-expressed in pre-glomerular arteriolar renin clusters (white arrows) in tg(ren:LifeAct-RFP, acta2:EGFP). Scale bar 25 µm. D: Clusters of ren:LifeAct-RFP express acta2-EGFP at a pre-glomerular branch point in tg(ren:LifeAct-RFP, acta2:EGFP). Scale bar 25 µm. E: Detail of pre-glomerular arteriolar cells from plate D showing renin cells have a cuboidal shape in contrast to neighbouring and thinner-bodied smooth muscle cells (white arrow). Scale bar 10 µm. F: Expression of acta2:EGFP is always present but variable as shown by the projection of weaker expression in some pre-glomerular renin cell clusters. Scale bar 25 µm. G-H: 0.5 µm optical sections of tg(ren:LifeAct-RFP, pdgfrβ:EGFP) showing detail of pdgfrβ-EGFP
expression at both a pre-glomerular artery (G), and in JG cells (H). Scale bars 10 µm. I: A single 0.5 µm optical section of tg(ren:LifeAct-RFP, pdgfrβ:EGFP) showing co-expression of ren:LifeAct-RFP and pdgfrβ-EGFP in the afferent JG cells (yellow arrow). The efferent arteriole (white arrow) also expresses pdgfrβ-EGFP; glomerulus white outline. Scale bar 25 µm. J-K: Confocal projections of nuclei stained with DAPI (grey) inside ren:LifeAct-RFP -expressing cells (yellow outlines) confirm the multi-cellular structure of renin cell clusters (J). In renin cells of the efferent arterioles, nuclei are flattened occupying a thin-bodied cell (K). Nuclei not outlined within ren:LifeAct-RFP regions are endothelial. Scale bars 10 µm. L-M: Tg (ren:LifeAct-RFP, wt1b:GFP) showing early- (L) and late-stage(M) nascent nephron clusters expressing Wilm’s tumor (wt1b:GFP). Expression of ren:LifeAct-RFP is only detected in the latter stages of nephron development and is associated with the juxtaglomerular cells of the afferent arteriole. Glomeruli (*). Scale bars 25µm.

Figure 3. Presence of acidic intracellular vesicles in renin cells. To test for the presence of acidic granules in individual cells across the mesonephric kidney, whole kidney squashes of tg(ren:LifeAct-RFP) were stained with lysotracker green. Single 0.5 µm optical sections were taken by confocal microscopy to assess staining in ren:LifeAct-RFP expressing cells. A: A juxtaglomerular ren-RFP cell cluster with regions of punctate intracellular lysotracker staining (white arrows). B: Pre-glomerular arteriolar renin cell cluster also with regions of punctate lysotracker staining (white arrows). C: Efferent arteriole showing very occasional lysotracker stained vesicles (arrows). All Scale bars 10 µm.

Figure 4. Intracellular ultrastructure of mesonephric renin cells. The intracellular structure of renin expressing cells was determined by electron microscopy. Renin expressing cells in tg(ren:LifeAct-RFP) were identified using 15 nm immunogold labelling against ren:LifeAct-RFP. Example immunogold particles are highlighted with black arrows and mitochondria with ‘M’. Immunogold staining is specific, only being present in the cytoplasm and not nuclei. A: Gold-labelled ren:LifeAct-RFP cell with a highly vacuolated intracellular structure and several mitochondria. The rectangle outline is of plate B. Scale bar 2 µm. B: A higher magnification of plate A shows detail of clear vesicles, some of
which are partially filled with electron dense material (white arrows). Scale bar 400 nm. C & D: Immunogold labelled cells with a vacuolated intracellular structure and occasional 50-200 nm electron dense granules with paracrystalline content (white arrows). Insert in C shows detail of highlighted (white arrow) paracrystalline granules in C. Scale bars (C) 200 and (D) 500 nm. E: Standard EM showing renin and endothelial cells, the latter recognisable by elongated nuclei. The vessel lumen is visible (L). Rectangle outline is of plate G. Scale bar 2µm. F & G: Higher magnification of E showing numerous 150-400 nm electron dense granules. Scale bars (F & G) 1 µm. H: Intracellular structure of immunogold labelled cell showing electron dense granules of similar size (150-350 nm). Scale bar 1 µm.

Figure 5. Transcriptional response of whole kidney ren to salinity and captopril. To determine if variation in salinity initiated a homeostatic response, adult fish were exposed to varying ambient salinities. A: The 24 hr exposure to varied salinity decreased ren expression with increasing salinity and vice versa. B: The upregulation of ren due the lack of a negative feedback on transcription associated with RAS inhibition was determined in fish treated with 0.5 mM waterborne captopril for four days. This resulted in a significant upregulation of renin mRNA.

Figure 6. Effect of renal damage on renin expression and effect of RAS inhibition on kidney regeneration. To test responses of ren transcription to renal injury and regeneration, mRNA expression was tested in whole kidney. The role for RAS during regeneration was tested using captopril RAS inhibition from 24 hrs post injection. Renal damage was induced by 65 mg kg⁻¹ I.P. gentamicin injection and analysed at two days post injection (dpi). Whole kidneys were analysed both with and without 0.5 mM waterborne captopril during kidney regeneration at eight dpi. A: The decrease of the proximal tubular marker, solute carrier slc20a1a, confirms damage of the proximal tubule at both two and eight dpi. B: Kidney damage is also confirmed by the upregulation of kidney injury molecule (kim1) at two and eight dpi. C & D: The slight increase of both Wilms’s tumor homologues is not significant at 8 dpi. Wilms’s tumor 1b is upregulated in regenerating kidneys
subject to captopril treatment. E: The nephron progenitor marker LIM homeobox 1a (lhx1a) is upregulated eight days post injection confirming a regenerative response. Expression of lhx1a is not affected by captopril treatment. F: Renin mRNA is upregulated with the renal injury at two dpi. Expression of ren subsequently decreases to control levels after the renal tissue progresses from an injury phase to regeneration at eight dpi. As occurs under normal conditions, renin expression is increased by captopril in regenerating kidneys.

Figure 7. Effect of kidney regeneration on ren expression in head kidney versus tail and trunk regions. To determine any involvement of renin in kidney regeneration, ren mRNA was assessed in separate regions of the regenerating kidney. Differences in mRNA transcripts were tested between the head kidney and trunk and tail region. Regenerating kidneys were selected based on the up regulation of the nephron progenitor marker, Wilm’s tumor. Renal damage and the subsequent regenerative response was induced by 75 mg kg⁻¹ I.P. injected gentamicin. Expression of mRNA was analysed at nine days post injection (dpi). A-B: Both homologues of the Wilm’s tumor, are increased at nine dpi but differences between regions are not significant. C: The tail and trunk kidney region has significantly more ren mRNA than the head kidney. Slight increases in ren mRNA with regeneration were not significant at nine dpi.

Table

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward</th>
<th>Reverse</th>
<th>UPL probe</th>
</tr>
</thead>
<tbody>
<tr>
<td>rps18</td>
<td>GATGGGAAATACAGCCAGGTC</td>
<td>CCAGAAGTGACGGAGACCAC</td>
<td>41</td>
</tr>
<tr>
<td>eef1a1/1 (ef1a)</td>
<td>CCTCGTCCAATTCAGG</td>
<td>CCTGAACAGCCCCATGTT</td>
<td>67</td>
</tr>
<tr>
<td>ren</td>
<td>AGGCAAGTGAGGGAGTCATC</td>
<td>CCATCCTTGCAAAACAGGAT</td>
<td>43</td>
</tr>
<tr>
<td>wt1a</td>
<td>TTACCTGTCAACTGCATGG</td>
<td>GCGTGGGCATAGTGGTTA</td>
<td>1</td>
</tr>
<tr>
<td>wt1b</td>
<td>GCCCTGGAATCTGTTAGC</td>
<td>CAGAAGGAGCTGCTGAAG</td>
<td>107</td>
</tr>
<tr>
<td>slc201a1</td>
<td>GACTCCCAGTCGACTACTCA</td>
<td>CGGAAAGATGCAATC</td>
<td>36</td>
</tr>
<tr>
<td>Primer</td>
<td>Sequence 1</td>
<td>Sequence 2</td>
<td>UPL Probe Number</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>havcr1 (kim1)</td>
<td>AAACCAGAGCTCGCTAGAA</td>
<td>CCACAGCCATCTCTCTTTGT</td>
<td>74</td>
</tr>
<tr>
<td>lhx1a</td>
<td>AGTCCGAGAAGATCGAAC</td>
<td>GGCGAGTGCTCGTTTGA</td>
<td>80</td>
</tr>
</tbody>
</table>

Table 1. Primer sequences and Roche UPL probe number for q-PCR analysis.
Figure 1

G & preglomerular renin cell clusters
Efferent renin cells

1. JG & pre-glomerular renin cell clusters
2. Efferent renin cells
Figure 3
Figure 4
Figure 5

A

24hr salinity

B

4 day captopril

Relative expression

0.0 1.0 2.0 3.0

11°C CW 13°C CW 10 mM Na & K

0.0 1.0 2.0 3.0

Control 0.5 mM captopril

* **
Figure 6

A. slc20a1a
B. kim1
C. wt1a
D. wt1b
E. lhx1a
F. ren

Relative expression graphs showing the expression levels of various genes under different conditions.
Figure 7

A wt1b

B wt1a

C ren