The role of attributable fraction in the exposed (AFE) in assessing the association of microorganisms with pneumonia

Citation for published version:
Wang, X, Li, Y & Nair, H 2018, 'The role of attributable fraction in the exposed (AFE) in assessing the association of microorganisms with pneumonia', Clinical Infectious Diseases. https://doi.org/10.1093/cid/ciy815

Digital Object Identifier (DOI):
10.1093/cid/ciy815

Document Version:
Peer reviewed version

Published In:
Clinical Infectious Diseases

Publisher Rights Statement:
This is the author’s peer-reviewed manuscript as accepted for publication.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The role of attributable fraction in the exposed (AFE) in assessing the association of microorganisms with pneumonia

Xin Wang¹, You Li¹, Harish Nair¹

¹Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, Scotland, UK

Keywords: attributable fraction in the exposed (AFE); association; pneumonia; children; microorganisms

Corresponding author: Xin Wang
Email: Xin.Wang-2@ed.ac.uk

Alternative corresponding author: You Li
Email: You.Li2@ed.ac.uk
Dear editor,

Recently, the interesting work by Benet et al [1] was published in *Clinical Infectious Diseases* assessing the association between microorganisms and radiographically confirmed primary end-point pneumonia requiring hospital admission in children aged 2–60 months [2]. In this prospective, multicentre, case-control study, the authors quantified the associations by calculating the adjusted population attributable fraction (aPAF) based on odds ratios (ORs) adjusting for gender, age, time period, site and the presence of other pathogens. Despite of the importance of aPAFs in evaluating the impact of these pathogens on pneumonia, the pooled aPAFs could not account for the wide variation in the pathogen positivity among cases between sites (e.g., 34–86% for *Streptococcus pneumoniae*; 7–44% for respiratory syncytial virus). This limits the generalization of the pooled aPAFs to developing countries. Therefore, we recommended that adjusted attributable fraction in the exposed (aAFE) be used to quantify the association between pathogens and pediatric pneumonia as in previous studies [3, 4]. Unlike PAF, AFE depends on the site-adjusted ORs alone, so it allows the input of pathogen positivity among cases at one site to calculate the site-specific PAF or that of site-specific burden of pneumonia positive for a given pathogen to benefit interpretation.

We calculated aAFE based on the adjusted ORs from the paper (Table 1). The aAFE estimates were calculated using Monte Carlo Simulation, with the median value of 10,000 samples simulated from the log-normal distributions of aOR per pathogen and age group as the point estimate, and the 2.5th and 97.5th percentiles as the 95% confidence interval. Of note, although rhinovirus had the third highest aPAF, it had a lower aAFE (44%) compared to many viruses including influenza virus, respiratory syncytial virus, parainfluenza virus 1, 3, 4, and human metapneumovirus in children <5 years, similar to the findings in a systematic review [5]. Rhinovirus is commonly isolated from upper respiratory specimens in healthy individuals as well as those with upper respiratory infection; this may largely explain its high aPAF. This study was conducted mostly in populations with very low PCV vaccine coverage. Further studies investigating the association of multiple pathogens in children with pneumonia in areas with higher coverage will help refine the AFE estimates.
Notes

Potential conflicts of interest. All authors: No reported conflicts of interest.

Reference


Table 1. Adjusted attributable fraction in the exposed (aAFE, %) of microorganisms associated with pneumonia in children by age group (months) \(^1,\,2,\,3\).

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>aAFE (% [95% confidence interval])</th>
<th>2–60 m</th>
<th>2–11 m</th>
<th>12–23 m</th>
<th>24–60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycoplasma pneumoniae</td>
<td>89 (62–97)</td>
<td>NA</td>
<td>NA</td>
<td>90 (41–98)</td>
<td></td>
</tr>
<tr>
<td>Streptococcus pneumoniae</td>
<td>62 (51–70)</td>
<td>66 (49–76)</td>
<td>62 (39–75)</td>
<td>62 (44–73)</td>
<td></td>
</tr>
<tr>
<td>Enterovirus</td>
<td>NA</td>
<td>NA</td>
<td>76 (30–91)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Influenza A</td>
<td>98 (87–100)</td>
<td>NA</td>
<td>97 (78–100)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Influenza B</td>
<td>70 (35–85)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Human metapneumovirus</td>
<td>91 (82–95)</td>
<td>85 (54–95)</td>
<td>92 (74–97)</td>
<td>92 (65–98)</td>
<td></td>
</tr>
<tr>
<td>Parainfluenza virus 1</td>
<td>87 (66–94)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Parainfluenza virus 3</td>
<td>85 (73–92)</td>
<td>78 (43–91)</td>
<td>90 (72–96)</td>
<td>90 (60–97)</td>
<td></td>
</tr>
<tr>
<td>Parainfluenza virus 4</td>
<td>62 (13–82)</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>44 (28–57)</td>
<td>NA</td>
<td>56 (29–73)</td>
<td>41 (10–61)</td>
<td></td>
</tr>
<tr>
<td>Respiratory syncytial virus</td>
<td>92 (87–94)</td>
<td>95 (89–98)</td>
<td>91 (79–96)</td>
<td>78 (56–89)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) We only included the microorganisms whose lower bound of the 95% confidence intervals of adjusted odds ratios exceeded one.

\(^2\) We assumed that the adjusted ORs (95% CIs) follow log-normal distributions. We simulated 10,000 samples based on each log-transformed aOR and 95% CIs for each pathogen-age unit, using log-transformed point estimate as the mean, and using the log-transformed upper and lower limit to estimate the standard error. Then we back transformed the 10,000 samples and applied these samples in the function – adjusted attributable fraction in the exposed (aAFE) = (aOR–1)/aOR – to get the 10,000 samples of aAFE. From these samples, we used the median value as the point estimate of the aAFE, and 2.5 and 97.5 percentile as the 95% confidence intervals.

\(^3\) NA: not available.