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Abstract. Rippling is a form of rewriting that guides search by only
performing steps that reduce the differences between formulae. Termina-
tion is normally ensured by a defined measure that is required to decrease
with each step. Because of these restrictions, rippling will fail to prove
theorems about, for example, mutual recursion where steps that tem-
porarily increase the differences are necessary. Best-first rippling is an
extension to rippling where the restrictions have been recast as heuristic
scores for use in best-first search. If nothing better is available, previously
illegal steps can be considered, making best-first rippling more flexible
than ordinary rippling. We have implemented best-first rippling in the
IsaPlanner system together with a mechanism for caching proof-states
that helps remove symmetries in the search space, and machinery to en-
sure termination based on term embeddings. Our experiments show that
the implementation of best-first rippling is faster on average than Isa-
Planner’s version of traditional depth-first rippling, and solves a range
of problems where ordinary rippling fails.

1 Introduction

Rippling is a heuristic used in automated theorem proving for reduc-
ing the differences between formulae [5]. It was originally designed for
inductive proofs, where we aim to rewrite the inductive conclusion in
such a way that we can apply the inductive hypothesis to advance the
proof. Only rewrites that reduce differences and keep similarities are al-
lowed. Rewrite rules can be applied both ways around and termination is
guaranteed by defining a ripple measure that is required to decrease for
each step of rewriting. Rippling has been successfully used for automat-
ing proofs in a range of domains, for example, hardware verification [8],
summing series [21], equation solving [13] and synthesis of higher-order
programs [16].
Rippling is however not guaranteed to succeed. Proof-planning critics
has been proposed as a solution. Critics analyse failed proof attempts
to suggest patches such as a generalisation or conjecturing and proving
a missing lemma [14]. Sometimes this might not be enough, it may be
necessary to perform a rewrite that does not decrease the ripple measure
or temporarily increases the differences between given and goal. This is
necessary in, for example, proofs involving mutually recursive functions
[5] (§5.9). Ordinary rippling is not flexible enough to deal with this. Best-
first rippling is suggested as a possible solution to these problems [5]



(§5.14). The constraints of rippling are turned into a heuristic measure,
allowing previously illegal steps if nothing better is available.

We have implemented best-first rippling in IsaPlanner [11]; a proof-
planner built on top of the interactive theorem-prover Isabelle [18]. Isa-
Planner’s current implementation of higher-order rippling [12], has been
expanded to allow rewrites that normally would be regarded as illegal
and discarded. Heuristic scores are assigned to the steps of rippling, and
we use best-first search to pick the most promising new state (§4.2). Al-
lowing previously illegal steps introduce a risk of non-termination, which
is dealt with by introducing a check on term embeddings (§4.3). During
development, we also discovered that the search space for rippling often
contained symmetries and developed methods for pruning such branches
accordingly (§4.3). Using best-first search often caused the planner to
conjecture and prove the same lemma several times. A new search strat-
egy was developed, which delays steps waiting for the same lemma (§4.4).

Our experiments show that best-first rippling can successfully solve a
range of problems where the standard depth-first version of rippling fails.
We do not find any problems that are solvable by ordinary rippling but
not best-first rippling. Overall, the run-times for best-first rippling are,
on average, better than for ordinary depth-first rippling, despite the po-
tentially larger search space.

2 Rippling

Rippling works by identifying differences and similarities between two
terms: the given and the goal. It then guides rewriting to reduce the
differences, aiming to arrive at a sub-goal which can be justified by the
given. Application of the given is called fertilisation.

The skeleton represents the parts of the goal that are similar to the
given while wave-fronts represent the differences. A wave-hole denotes a
sub-term inside a wave-front that belongs to the skeleton. In addition,
if the given contains a universally quantified variable the corresponding
position in the goal is called a sink. An example (from [12]) showing how
the parts of a goal (here the inductive conclusion), can be annotated
with respect to a given (the inductive hypothesis) is shown below1:

Given : ∀b : nat. a + b = b + a

Goal : suc(a)
↑

+ bbc = suc(bbc + a)
↓

The wave-front is represented by a box, and the wave-hole by underlining.
The skeleton, coming from the given, a + b = b + a corresponds to the
parts of the goal that are either without annotation or underlined within
the wave front. Note that the universally quantified variable b in the given
becomes a sink in the goal, annotated by bbc. There are two strategies
for making fertilisation possible, known as rippling-in and rippling-out.

1 Note this is one way of annotating this goal; in general a goal may be annotated in
several different ways



Rippling-out will try to remove the differences completely or move them
out of the way, so that the wave-front surrounds the entire term and the
wave-hole contains an instance of the given. Rippling-in tries to move
differences into a sinks. The universally quantified variable in the given
can then be instantiated to the contents of the sink and fertilisation is
possible. The arrow of the wave-front indicates if the wave-front is to be
rippled out (↑) or in (↓). Rippling-in is only allowed if there exists a sink
or an outward wave-front inside the inward wave-front that eventually
may absorb it, in order to make the search space smaller. We lift this
restriction for best-first rippling.

Rippling proceeds by applying rewrite-rules derived from equations, def-
initions, theorems and lemmas. To ensure that fertilisation will even-
tually be possible after rewriting, rippling requires the skeleton to be
preserved between each step. Termination is guaranteed by defining a
ripple-measure, based on the positions of the wave-fronts, which is re-
quired to decrease for each rewrite step. This also helps reduce the size
of the search space, and make it possible to allow rewrite-rules to be
applied in both directions, unlike traditional rewriting where only one
direction is allowed. There are different implementations of ripple mea-
sures. Here, we will use a measure based on the sum of distances from
each outward wave-front to the top of the term tree and from each in-
ward wave-front to the nearest sink. This measure will clearly decrease
as outward wave-fronts are moved towards the top of the term-tree, and
inward wave-fronts towards a sink further down.

Example: As an example illustrating how rippling moves the wave-
front outward to allow fertilisation, consider the step case goal of the
inductive proof of the commutativity of addition, where the given is the
inductive hypothesis. Note that the sinks have been omitted to reduce
clutter, as the proof only uses the rippling-out strategy.

Given : ∀b : nat. a + b = b + a

Goal : suc(a)
↑

+ b = b + suc(a)
↑

with the rules 2:

suc(X) + Y ≡ suc(X + Y ) (1)

X + suc(Y ) ≡ suc(X + Y ) (2)

suc(X) = suc(Y ) ≡ X = Y (3)

The proof of the step-case goal will proceed as follows:

suc(a)
↑

+ b = b + suc(a)
↑

w

w



by rule 1

2 Following the convention for dynamic rippling (§2.1), the rules have not been anno-
tated as wave-rules in static rippling.



suc(a + b)
↑

= b + suc(a)
↑

w

w



by rule 2

suc(a + b)
↑

= suc(b + a)
↑

w

w



by rule 3

a + b = b + a
w

w



Fertilise

True

Notice how each ripple-rewrite moves the wave-front outwards until we
arrive at a state where the goal contains an instance of the given. We
can now simply replace this instance with ‘True’ and conclude the proof.
This is called Strong fertilisation.

In the case that rule 3 were missing, there would have been no more

rewrites possible after the state: suc(a + b)
↑

= suc(b + a)
↑

. We

say that the state is blocked. It is however still possible to apply the
given using substitution, which rewrites the blocked goal to suc(b+a) =
suc(b + a). This is called weak-fertilisation. The resulting goal is true by
reflexivity. In situations where rippling is blocked but weak fertilisation
is not possible, we can attempt to apply a critic [14].

2.1 Static and Dynamic Rippling

There are two main approaches for implementing rippling: static and dy-
namic rippling. They represent and handle annotations in different ways.
Rippling as described by Bundy et al. [5] will be referred to as static rip-
pling. In static rippling, the rewrite-rules are annotated before rippling
starts in such a way that they will ensure measure decrease and skeleton
preservation. The annotated rules are called wave-rules and can be ap-
plied to any goal with matching annotations. Note that a single theorem
or definition may give rise to several wave-rules. Basin and Walsh give a
formal calculus for static rippling in first-order logic and provide a proof
of termination [1]. They represent annotations as function-symbols at
the object level of the goal. The object level annotations require a spe-
cial notion of substitution as standard substitution may produce illegal
annotations. Another problem with static rippling in a higher-order set-
ting, as pointed out by Smaill and Green [20], is that the object level
annotations are not stable over β-reduction. This makes it impossible
to pre-annotate higher-order rewrite rules as they may turn out to be
non-skeleton preserving. To overcome these problems, the use of dynamic
rippling [9, 12], and term embeddings, for representing annotations [20, 9],
are introduced. In dynamic rippling, annotations are stored separately
from the goal and rewrite rules are not annotated in advance. Instead,
all ways of rewriting the goal with a particular rule are generated af-
ter which the annotations are re-computed and measure decrease and



skeleton preservation checked. This means that no specialised version of
substitution is needed.

Dynamic rippling is more suitable as a starting point for our best-first rip-
pling implementation because it initially generates all possible rewrites,
including new subgoals that are non-skeleton preserving and non-measure
decreasing. These would normally be discarded, but we will adapt rip-
pling to instead assign them heuristic scores.

3 Proof-Planning

Rippling has been implemented and used within the context of proof-
planning [3, 6]. Proof planning is a technique for guiding the search for
a proof in automated theorem proving by exploiting that ‘families’ of
proofs, for example inductive proofs, share a similar structure. Instead
of searching the large space of an underlying theorem-prover, the proof-
planner can reason about the applicable methods for a conjecture and
construct a proof-plan consisting of a tree of tactics. A tactic is some se-
quence of steps, known to be sound, that are used for solving a particular
problem in a theorem-prover, such as simplification, induction etc.

The Clam proof-planner [7], written in Prolog, and the higher-order
λClam [19], written in λProlog, both implement rippling. The Clam-
family of proof planners uses a set of methods and methodicals. Methods
specify what conditions have to be true for the method to be applicable
to a goal and what will be true after the method has been applied. They
also carry a reference to the corresponding tactic that will be used in the
theorem-prover when the proof plan is executed. Methodicals combine
several atomic methods into larger compound methods.

3.1 IsaPlanner

Recently, a higher-order version of dynamic rippling has been imple-
mented in IsaPlanner [11, 10], a proof planner written in Standard ML for
the interactive theorem-prover Isabelle [18]. In IsaPlanner, proof plan-
ning is interleaved with execution of the proof in Isabelle giving Isa-
Planner access to Isabelle’s powerful tactics. The resulting proof-plan is
then represented as a proof script in the Isar language [22], executable
in Isabelle and argued to be more readable than the output from ear-
lier proof-planners such as λClam. Rippling in IsaPlanner has also been
shown to be considerably faster than in λClam [12].

As opposed to the Clam-family of proof planners, IsaPlanner plans the
proof through a series of reasoning states. Each reasoning state contains
the partial proof plan constructed so far, the next reasoning technique
to be applied and contextual information. The reasoning techniques are
defined to be functions from a reasoning state to a sequence of new
reasoning states. This sequence represents all the ways the technique
can be applied to its input state. The contextual information contains
knowledge acquired during proof planning, including information about
rippling-annotations and skeletons.



IsaPlanner supports several search strategies, including a generic best-
first search. Search strategies can be applied globally or locally over a
reasoning technique.
IsaPlanner’s implementation of rippling is designed in a modular fashion
to be easily extendable and can support different versions of rippling
with different notions of annotations and ripple measures simultaneously.
Our best-first rippling implementation is a module defined in terms of the
module for ordinary rippling, thereby making best-first rippling available
for any of IsaPlanner’s versions of rippling.

4 Best-First Rippling

Ordinary rippling requires each step in the rippling-process to satisfy
the restrictions of measure decrease and skeleton preservation, otherwise
the step is regarded as invalid. There are however a number of occasions
where these ‘invalid’ ripple-steps would be useful or necessary for the
success of rippling. In proofs involving mutually recursive functions, the
skeleton might be temporarily disrupted but restored in a later step (see
for example [5], §5.9). Another example is a proof where it is necessary
to ‘unblock’ rippling by performing rewrites inside the wave front [4],
which might lead to a temporary increase in the ripple-measure.
In best-first rippling, the measure decrease and skeleton preservation re-
quirements are, instead of being strictly enforced, reflected in a heuristic
score. The heuristic prefers smaller ripple measures and skeleton preser-
vation but previously invalid steps can then be considered if nothing
better is available.
To realise best-first rippling we need dynamic rippling and best-first
search. We must consider all rewrites at any given state, evaluate their
heuristics scores and compare them with all other open states in the
search. The state with the lowest score is the most promising one from
which to continue rippling. IsaPlanner implements dynamic rippling and
has a generic version of best-first search, making it a suitable platform
for implementing best-first rippling.

Example: Breaking the Skeleton As an example, consider the
following problem with mutually recursive definitions of even and odd
(here called evenM and oddM).

Given : evenM(n) ∨ oddM(n)

Goal : evenM( suc(suc(n))
↑

) ∨ oddM( suc(suc(n))
↑

)

with the rules:

evenM(0) ≡ True (4)

evenM(suc(X)) ≡ oddM(X) (5)

oddM(0) ≡ False (6)

oddM(suc(X)) ≡ evenM(X) (7)



This gives the following best-first rippling proof using two-step induction:

evenM( suc(suc(n))
↑

) ∨ oddM( suc(suc(n))
↑

)

w

w



By rule 5

oddM(suc(n)) ∨ oddM(suc(suc(n)) (8)
w

w



By rule 7

evenM(n) ∨ oddM( suc(suc(n))
↑

)
w

w



By rule 7

evenM(n) ∨ evenM(suc(n)) (9)
w

w



By rule 5

evenM(n) ∨ oddM(n)

Fertilisation is now possible. Note that the skeleton is disrupted in steps
8 and 9 (the subgoals are therefore not annotated), but restored in the
following step. These steps are necessary for the completion of this proof
but would not be allowed in ordinary rippling.

Example: Non-Measure Decrease Required The proof of the
theorem evenR(suc(suc(0)) ∗ n), taken from [4], requires us to modify
the argument to the even-function before we can apply fertilisation. As a
result, the rewrites will not move the wave-front, only rearrange the terms
inside it, and the measure will stay the same over a number of steps. Note
that this is the two-step recursively defined even-function, (referred to
as evenR) as opposed to the mutually recursive version defined above.
The proof uses the following rules from the definitions of addition, mul-
tiplication and for the two-step recursive version of evenR:

evenR(suc(suc X)) ≡ evenR(X) (10)

X + 0 ≡ 0 (11)

X + suc(Y ) ≡ suc(X + Y ) (12)

X ∗ suc(Y ) ≡ (X ∗ Y ) + suc(Y ) (13)

Our given and goal gives the following rippling sequence (with the sum-of
distance ripple measure given for each step):

Given : evenR(suc(suc(0)) ∗ n)

Goal : evenR(suc(suc(0)) ∗ suc(n)
↑

) Measure : 2

w

w



By 13

evenR( suc(suc(0)) ∗ n + suc(suc(0))
↑

) Measure : 1



w

w



By 12

evenR( suc(suc(suc(0)) ∗ n + suc(0))
↑

) Measure : 1

w

w



By 12

evenR( suc(suc(suc(suc(0)) ∗ n + 0)
↑

) Measure : 1

w

w



By 10

evenR( suc(suc(0)) ∗ n + 0
↑

) Measure : 1

w

w



By 11

evenR(suc(suc(0)) ∗ n) Measure : 0

Strong fertilisation is now applicable as the wave-front has been fully
rippled out leaving the ripple measure 0. All but the first and last step
in the rippling proof does not change the ripple-measure as the rewrites
are applied to terms inside the wave-front.

4.1 Complications with Best-First Rippling

The price for the greater flexibility of best-first rippling is that the search
space is considerably larger. The increased number of possibilities to
continue rippling also means that rippling rarely will become blocked,
which is when applying fertilisation or critics would normally be consid-
ered. Furthermore, allowing non-measure decreasing and non-skeleton
preserving steps means that best-first rippling will loose the guarantee
for termination, as it is possible to become stuck in a loop by applying
the same rewrite-rule in opposite directions.
Mutually recursive functions are another source of potential non-termination
as it is possible to apply a non-skeleton preserving rewrite rule in a di-
rection such that the subgoal gets larger and larger. Recall the previous
example:

evenM( suc(suc(n))
↑

) ∨ oddM( suc(suc(n))
↑

)

Here we can rewrite evenM( suc(suc(n))
↑

) in two ways, neither of which

preserves the skeleton. We can either apply rewrite-rule 5 from left to
right or, as rewrites are allowed in both directions, rule 7 from right to
left. The latter would give the result

oddM(suc(suc(suc(n)))) ∨ oddM(suc(suc(n))

where evenM has been transformed into oddM by adding a successor-
function rather than removing one. Consider now applying rule 5 from
right to left, which produces a state that does embed the skeleton but
adds yet another successor function:

evenM( suc(suc(suc(suc(n))))
↑

) ∨ oddM( suc(suc(n))
↑

)



Subsequent bad applications could keep alternating between evenM and
oddM , each time adding another successor-function and hence never ter-
minating. Our solution to these problems uses caching of the visited
states and is discussed in §4.3.

4.2 Best-First Heuristic

Best-first rippling requires a heuristic evaluation function for deciding
which state is the most promising to evaluate next in the rippling process.
Valid ripples should be considered before non-measure decreasing or non-
skeleton preserving steps. The ripple measure gives an indication of how
far we are from being able to apply fertilisation and conclude the proof.

We have used IsaPlanner’s sum-of-distance ripple measure during de-
velopment and testing. Rippling with this measure has been shown to
perform better than with other kinds of measures [10]. As mentioned
earlier, best-first rippling has however been implemented in a modular
fashion, allowing use of any type of ripple measure.

IsaPlanner’s best-first search function expects to be supplied with a
heuristic order function used for keeping the agenda sorted in increasing
order. It is therefore not necessary to compute and store explicit nu-
merical scores for the states, just determine their relative ordering. Our
heuristic function for the best-first search takes two reasoning states and
compares them. A state is regarded as less than another state if its
heuristic score is better, thus placing it closer to the front of the agenda.

The heuristic function for comparing reasoning states can be summarised
as follows:

– States to which strong fertilisation can be applied are always pre-
ferred over continued rippling.

– Skeleton preserving states are always given a better score than non-
skeleton preserving states.

– When both states preserve the skeleton, the state with the best ripple
measure is given the lower score. If the states have the same ripple
measure, they are given equal heuristic scores.

– If neither state preserves the skeleton, the reasoning state with the
smallest goal-term scores better.

Strong fertilisation should be preferred over everything else as it applies
the inductive hypothesis and concludes the proof. Skeleton preservation
is always preferred over non-preservation as we only want to apply non-
skeleton preserving steps when there are no other options. States that do
embed the skeleton are ordered based on the ripple-measures. In com-
paring ripple-measures, we need to take into account that, as IsaPlanner
employs dynamic rippling, each reasoning state might have several ripple
measures, one for each way a skeleton embeds. IsaPlanner also supports
rippling with multiple skeletons, each of which may embed in different
ways. For comparisons, we use the best ripple-measure of each state.

The heuristic also handles non-rippling states, such as setting up a rip-
pling attempt or applying fertilisation. Non-rippling steps are simply
preferred before more rippling as a fixed number of non-rippling steps
will either result in a solution (if fertilisation is successful) or a new



ripple-state to which our standard heuristic is applicable if we have to
prove a lemma. Little or no search is needed.
Because best-first rippling does not become blocked as often as ordinary
rippling does, we considered introducing some heuristic measure allow-
ing the application of weak fertilisation and critics before we run out
of applicable rules. We developed a variant of best-first rippling where
weak-fertilisation and IsaPlanner’s lemma calculation critics were applied
eagerly to states where none of the children were skeleton-preserving, i.e.
the state would have been blocked in ordinary rippling. The non-skeleton
preserving children are also kept in the agenda, but given a worse heuris-
tic score than to weak fertilise and/or conjecture a lemma.

4.3 Termination and Reduction of Search Space Size

As mentioned before, allowing rippling with non-measure decreasing wave-
rules means that best-first rippling is no longer guaranteed to terminate.
The same wave-rule now can be applied in opposite directions, causing
loops, and it is possible to apply rewrites that just blow up the size of
the goal-term as described in §4.1. Another source of inefficiency is the
many symmetric branches in the search tree.
To deal with these problems, the best-first implementation caches the vis-
ited states of a ripple sequence. We filter out any new subgoals that are
identical to subgoals previously seen anywhere in the search tree, thereby
pruning symmetric branches. The termination and looping problem is
dealt with by introducing an embedding check, as used in IsaPlanner’s
lemma conjecturing ([10] Chapter 9). If a previous goal-term embeds into
the new sub-goal it is removed, which filters rewrites that would other-
wise cause divergence. Kruskal’s Theorem [15], states that there exists no
infinite sequence of trees such that an earlier tree does not embed into
a later tree. Therefore, the embedding check will restore termination,
which was lost as we relaxed the restriction of ripple-measure decrease.
We have chosen to only check embeddings against other states on the
same branch, if checked against states on alternative OR-branches we
could potentially prune useful states. This approach appears to work well
in practice. Figure 1 illustrates how unproductive branches are pruned
to reduce the size of the search space.

4.4 Delaying Parts of the Search

We discovered that a common problem arising when using best-first or
breadth-first search for rippling is that the same lemma might be conjec-
tured independently at different places in the search space, causing the
planner to pursue several simultaneous attempts on the same lemma.
In IsaPlanner’s standard depth-first rippling this is not an issue. When a
blocked state is encountered, a lemma is conjectured and proved before
backtracking to try more rippling in the original proof attempt. Lemmas
that have already been proved to be true (or failed) are cached, allowing
later blocked states requiring the same lemma to use the previous result,
thus saving time by avoiding symmetric parts of the search space. When



(5) odd(suc(suc n) \/ odd(suc n)
By (1) =>

(3) even(suc n) \/ odd(suc n)

(4) odd(n) \/ odd(suc n)

By (2) => By (1) <=

Pruned: Same−check (3)

By (2) <=

(6) odd(n) \/ even(n) (7) even(suc n) \/ odd(suc n)

(8) even(suc n) \/ odd(suc n) (9) even (suc(suc (suc n) \/ odd(suc n)

Pruned: Same−check (3)

By (2) => By (1) <=

Pruned: embeds (3)

(2)  odd(suc N) == even(N)
(1)  even(suc N) == odd(N)

Fig. 1. Partial search tree for best-first rippling showing how branches are pruned to
avoid loops and redundant rewrites. Note that the two rules are allowed to be applied
in both directions.

using best-first search, it may be the case that after a lemma has been
conjectured and a proof attempt begun, some state in the original proof
attempt has a better heuristic score so rippling is continued from there.
If this second ripple also becomes blocked and requires a lemma which we
already have started a proof of elsewhere, we want to prevent beginning a
second attempt. Instead, the second reasoning state should be suspended
until the lemma has been proved. After the lemma is proved, not only
the state from which it was originally conjectured, but also any other
states waiting for that particular lemma, should be resumed.
Beginning several attempts of the same lemma was one of the major
sources for inefficiencies in implementing best-first rippling. Initially, the
problem was tackled by giving rippling in a lemma attempt a better
heuristic score than rippling the original conjecture. This is however
not always desirable, if a bad lemma is conjectured, we do want the
option to abandon it and explore other possibilities. Experiments also
suggested that this approach may miss solutions to some problems and
generally lead to longer run-times. We chose to instead create a new
generic search strategy in IsaPlanner. This strategy inspects all new
states and may temporarily remove them from the agenda if marked
as delayed. Similarly, the strategy checks if the current state wishes to
resume some delayed states, which are then returned to the agenda. Is-
aPlanner’s lemma conjecturing machinery was augmented with a cache
for lemmas-in-progress in addition to the existing caching of completed
proof attempts. The lemma conjecturing critic inspects the cache and
if an attempt is already in progress, the reasoning state is marked as
delayed and not evaluated further until the proof attempt of the relevant
lemma is finished.

4.5 Storing Skeletons

Ordinary rippling will discard any skeletons that cannot be embedded
in the current goal term as they are not needed any more. Best-first
rippling on the other hand, needs to keep all skeletons. After applying a



non-skeleton preserving step, the previous skeleton must be kept so we
can keep track of whether or not the skeleton is restored in subsequent
steps.
The skeletons and their possible embeddings are stored in IsaPlanner’s
contextual information for rippling. Previously, only the list of possible
embeddings of a skeleton was stored. When a skeleton failed to embed,
all references to the skeleton were removed, making it impossible to later
check if the skeleton could embed into some new state. For best-first rip-
pling, the contextual information for rippling has been modified to store
a list of pairs consisting of both the skeleton and a list of embeddings of
that skeleton (as opposed to only the embeddings list). A skeleton not
embedded in the current subgoal will have an empty list of embeddings,
but will still be kept.

5 Evaluation and Results

Best-first rippling has been evaluated by comparing it to IsaPlanner’s
implementation of ordinary rippling, which uses depth-first search. We
measured the number of successfully solved problems as well as run-
times on both successful and failed proof attempts. Our test-problems
included a set of benchmarks for IsaPlanner, consisting of 55 theorems
in Peano arithmetic and about lists, to test the performance of best-first
rippling compared to ordinary rippling on standard problems. Best-first
rippling has a larger search space and performs some extra work comput-
ing heuristic scores, so we expected it to be slower than ordinary depth-
first rippling. The benchmarks also included a range of non-theorems,
allowing us to test the robustness of best-first rippling. Ideally we would
like to exhaust the search space quickly when no solution can be found,
rather than see non-termination. In addition to IsaPlanner’s benchmarks,
we also tested a set of 39 problems where we would expect to see the
full benefits of best-first rippling, including proofs about mutually recur-
sive functions, proofs involving destructor-style functions (such as the
predecessor function in Peano arithmetic) and proofs where measure in-
creasing steps are required. The mutually recursive problems typically
require induction schemes reflecting the depth of the nested recursive
function definitions. As an example, recall the mutually recursive defi-
nition of even and odd from §4. The two functions are defined in terms
of each other so we use two-step induction. In these cases, the induc-
tion scheme was supplied manually to IsaPlanner/Isabelle, as inference
of induction schemes is currently limited to standard recursively defined
data-types.
We also compared a version of best-first rippling that applies critics when
it is blocked, with a version that eagerly tries to apply critics or weak-
fertilisation when no more skeleton-preserving steps are available. This
was expected to indicate whether applying critics is more efficient than
searching the larger space arising from allowing non-skeleton preserving
steps.
The experiments were conducted on a standard 2 GHz Intel Pentium4
PC with 512 MB of memory running Isabelle2005. Each problem had a
timeout limit of 30 seconds.



The number of successful proofs for the three versions of rippling are
displayed in figure 2. Both best-first rippling with eager application of
critics and the variant without it, managed to find proofs for 76 of the
94 theorems. Ordinary depth-first rippling succeeded to find 49 proofs,
40 from IsaPlanner’s benchmarks compared to 41 for best-first rippling.
The additional benchmark problem solved by best-first rippling was
rev(l) = qrev(l, [ ]), a problem expected to fail as IsaPlanner lacks a
generalisation critic for accumulator variables, but here solved as a side
effect of our caching mechanism3. On the additional set, ordinary rip-
pling proved only 10 theorems compared to 35 for best-first, which was
expected as these were chosen from classes of problems known to be
difficult for ordinary rippling. Figure 3 shows the average run-times for

Fig. 2. Number of success of the 94
theorems in the test set (55 bench-
marks and 39 additional)

Fig. 3. Average run-times in seconds.

proof-attempts while figure 4 shows the time spent on each proof for
best-first and ordinary rippling. Ordinary rippling is slightly faster on
most problems both techniques can solve but the differences are small.
Best-first rippling is however faster on average, due to a few outliers for
ordinary rippling. Ordinary rippling fails or times out more often than
best-first rippling. As a result, best-first rippling is faster than depth-first
rippling overall, and also spends less time on conjectures it cannot prove
thanks to the caching and embedding-check.

The differences in runtime appears to be small between the two variants
of best-first rippling. Conjecturing lemmas eagerly when no skeleton-
preserving steps are available appears to make little difference to the
run-times of the mutually recursive problems in our test set. We also
notice that best-first rippling spent less time on failed proof attempts,

3 The interested reader can find the proof on the project website:
http://dream.inf.ed.ac.uk/projects/bfrippling.



including the non-theorems in the test set, despite the larger number of
allowed rewrites.
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Fig. 4. Each scatter-plot represents a conjecture, with the x-value being the runtime for
ordinary rippling and the y-value the runtime of standard best-first rippling. The ver-
tical and horizontal lines marks the timeout limit of 30 seconds. Failed proof-attempts
have also been plotted along these lines for clarity. A logarithmic scale is used for better
visualisation.

The full collection of test problems, results and function definitions can
be found on-line at http://dream.inf.ed.ac.uk/projects/bfrippling.
The source code is available from the IsaPlanner website:
http://sourceforge.net/projects/isaplanner/.

To summarise the results; best-first rippling proves a number of theo-
rems where ordinary rippling is too restricted to succeed, as expected.
Despite the larger search-space of best-first rippling the differences in
run-times compared to ordinary rippling are small. Best-first rippling
appears to be more robust when presented with non-theorems, less time
is spent on failed proof-attempts compared to ordinary rippling.

6 Related Work

6.1 Depth-First Rippling

The main difference between our work and IsaPlanner’s previous imple-
mentations of ordinary depth-first rippling [10], is that best-first rippling
relaxes the requirements that each state must preserve the skeleton and



decrease the ripple measure. These requirements guarantees the termi-
nation of rippling, something that is lost for best-first rippling. Our im-
plementation instead uses mechanisms for caching of visited states to
avoid loops and a check on term embeddings to restore termination (see
Kruskal’s Theorem [15]). This works well in practise and has the addi-
tional advantage of pruning the search space of symmetric branches.

6.2 Best-First Rippling in λClam

James Brotherston implemented a best-first methodical in the λClam
proof planner [2]. The best-first methodical use a greedy search strat-
egy, considering only the best option at the current node, not previous
nodes higher up in the tree. Higher branches in the search tree are only
investigated on backtracking. Applied to rippling4, Brotherston identi-
fies this as a problem as it does not allow switching focus to the most
promising area of the search. Our best-first search strategy is not greedy
and we can easily switch focus to different parts of the search tree as
IsaPlanner’s reasoning states, held in the agenda, contains the necessary
local contextual information about the proof-plan and next reasoning
technique.

6.3 Best-First Proof-Planning

Manning et al. presents an implementation of best-first proof-planning
in Clam [17]. A best-first heuristic is employed to make choices between
three different proof planning methods; generalisation, simplification and
induction, as a fixed ordering sometimes causes unnecessarily compli-
cated proofs or even causes failure. Our work differs from that of Man-
ning as we are applying best-first search within the rippling technique.
IsaPlanner applies induction and rippling first, then attempts simplifi-
cation or generalisation if the ripple becomes blocked. Despite this, all
proofs in [17] are solvable by best-first rippling, although perhaps not in
the most efficient way.

7 Further Work

As a side-effect of the caching mechanism, best-first rippling manages to
prove the conjecture rev(l) = qrev(l, [ ]) where we would expect rippling
to fail without a generalisation critic that can introduce an accumulator
variable before induction and rippling is attempted. Best-first rippling
does however fail to prove more complicated theorems involving similar
tail-recursive functions. Such problems typically requires a critic to anal-
yse the failed proof attempt in order to suggest a generalisation. Another
limitation of the current implementation is that the user is required to
specify if an induction scheme other than standard one is required. The
Clam proof-planner had a number of critics for finding lemmas, forming

4 Personal communication: internal Blue Book Note series, numbers 1405, 1409, 1425



generalisations, case-splits and revising the induction scheme [14]. Isa-
Planner has currently only one critic, for lemma calculation. We plan to
implement additional critics in IsaPlanner. This is expected to allow a
larger number of problems to be solved automatically, including many
of the problems from the test set where both best-first and ordinary
depth-first rippling currently fail.

The caching techniques we have discussed could also benefit ordinary
rippling. In particular, pruning states already seen from the search space
removes symmetric branches which would potentially improve run-times.

Our test-set mainly consisted of relatively easy theorems. Further exper-
iments will evaluate best-first rippling on harder problems. We also plan
to undertake a larger comparison between rippling and regular rewriting.

8 Conclusions

We have shown that our implementation of best-first rippling is able to
automatically prove a number of theorems where IsaPlanner’s previous
implementation of depth-first rippling fails, for example, proofs about
mutually recursive functions and proofs requiring a temporary increase
in the ripple measure. Rippling has been allowed more flexibility by re-
casting the measure decrease and skeleton preservation requirements into
heuristic scores. In allowing these steps we do however lose the guaran-
tee of termination for rippling. Our solution to this problem introduces
an embedding check (§4.3), where new subgoals in which we can em-
bed previously seen cached goals on the same branch are pruned. This
cuts out branches where subsequent applications of non-skeleton pre-
serving rewrites leads to divergence as described in §4.1 and restores
termination. We also found that the search space often would contain
symmetries, where the same state occurs in several different places. To
improve efficiency, any goal identical to a cached goal is simply pruned.

Using best-first search rather than depth-first search means that it is
possible to switch between rippling in a lemma attempt and rippling in
the original proof, depending on which seems more promising. This often
gave rise to the same lemma being conjectured from different blocked
states. Our new search strategy suspends any states requiring a lemma
for which a proof is already in progress. When a lemma is proved, all
states waiting for it are resumed.

Our test results show that best-first rippling not only is capable of solv-
ing a range of problems not solvable by ordinary rippling, but also has
faster run-times overall thanks to the combination of efficiency measures
described above and the guidance from best-first search. We also com-
pared two versions of best-first rippling to verify if it is beneficial to
apply critics before best-first rippling is blocked, as best-first rippling
might not become blocked as often as ordinary rippling due to the larger
search space. On our test set, we did however find that applying critics
eagerly when no more skeleton preserving states were available, made
little difference.
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