The cerebrospinal fluid inflammatory response to preterm birth

Citation for published version:

Digital Object Identifier (DOI):
10.3389/fphys.2018.01299

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Frontiers in physiology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The Cerebrospinal Fluid Inflammatory Response to Preterm Birth

James P. Boardman1,2, Graeme Ireland1, Gemma Sullivan1, Rozalia Pataky1, Bobbi Fleiss3,4,5, Pierre Gressens3,4,5 and Veronique Miron1*

1 MRC Centre for Reproductive Health, The Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom, 2 Centre for Clinical Brain Sciences, Chancellor’s Building, The University of Edinburgh, Edinburgh, United Kingdom, 3 Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King’s College London, London, United Kingdom, 4 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France, 5 PremUP, Paris, France

Background: Preterm birth is the leading risk factor for perinatal white matter injury, which can lead to motor and neuropsychiatric impairment across the life course. There is an unmet clinical need for therapeutics. White matter injury is associated with an altered inflammatory response in the brain, primarily led by microglia, and subsequent hypomyelination. However, microglia can release both damaging and trophic factors in response to injury, and a comprehensive assessment of these factors in the preterm central nervous system (CNS) has not been carried out.

Method: A custom antibody array was used to assess relative levels of 50 inflammation- and myelination-associated proteins in the cerebrospinal fluid (CSF) of preterm infants in comparison to term controls.

Results: Fifteen proteins differed between the groups: BDNF, BTC, C5a, FasL, Follistatin, IL-1β, IL-2, IL-4, IL-9, IL-17A, MIP-1α, MMP8, SPP1, TGFβ, and TNFβ (p < 0.05). To investigate the temporal regulation of these proteins after injury, we mined a gene expression dataset of microglia isolated from a mouse model of developmental white matter injury. Microglia in the experimental model showed dynamic temporal expression of genes encoding these proteins, with an initial and sustained pro-inflammatory response followed by a delayed anti-inflammatory response, and a continuous expression of genes predicted to inhibit healthy myelination.

Conclusion: Preterm CSF shows a distinct neuroinflammatory profile compared to term controls, suggestive of a complex neural environment with concurrent damaging and reparative signals. We propose that limitation of pro-inflammatory responses, which occur early after perinatal insult, may prevent expression of myelination-suppressive genes and support healthy white matter development.

Keywords: preterm birth, brain injury, inflammation, cerebrospinal fluid, microglia, myelination

INTRODUCTION

Preterm birth is closely associated with white matter injury and life course impairments including cerebral palsy, learning difficulty, autism spectrum disorder, and psychiatric disease (Volpe, 2009; Johnson and Marlow, 2017). A characteristic feature of white matter injury is oligodendrocyte dysmaturation, which is driven in part by immune dysregulation, and
results in hypomyelination (Back and Miller, 2014; Hagberg et al., 2015). Magnetic resonance imaging studies show that
generalized atypical white matter tract development is often
apparent in preterm infants at term-equivalent age (Batalle et al.,
2017; Telford et al., 2017), which suggests that interventions to
prevent injury and support normal myelination may need to
be applied during the perinatal period. Therefore a priority is
to better understand the immune mediators and receptors that
drive preterm white matter injury in order to identify therapeutic
targets that promote healthy white matter development.

Neuropathological analyses of post-mortem tissue have shown
robust activation of central nervous system (CNS)-endogenous
immune cells, microglia, which express pro-inflammatory
markers (iNOS, TNFα, IL-1β, and IL-6) (Yoon et al., 1997;
Haynes et al., 2009); and systemic inflammation due to co-
morbidities of preterm birth such as chorioamnionitis and
necrotizing enterocolitis, is associated with abnormal white
matter on magnetic resonance imaging in vivo (Shah et al., 2008;
Anblagan et al., 2016; Barnett et al., 2018).

Elevated levels of inflammatory proteins in blood or
cerebrospinal fluid (CSF) are associated with perinatal brain
injury and increased risk of adverse neurodevelopmental
outcome (Yoon et al., 1996; Nelson et al., 1998; Savman et al.,
1998; Bartha et al., 2004; Viscardi et al., 2004; Carlo et al., 2011;
Armstrong-Wellis et al., 2015; Basu et al., 2015). However, protein
levels in plasma do not always correlate with those in the CSF
in preterm infants with white matter injury, demonstrating that
blood analyses may not reflect events in the CNS (Ellison et al.,
2005; Rajkumar et al., 2018). Furthermore, a comprehensive
assessment of inflammation-associated factors in preterm CSF
has not been carried out. Here, we asked whether a large-
scaline measurement of inflammatory markers in preterm CSF,
including measures of factors known to be detrimental or
supportive of white matter development, could provide a broader
understanding of the neuropathology of preterm brain injury.

MATERIALS AND METHODS

Participants
We recruited two groups of neonates from the Royal Infirmary
of Edinburgh between June 2014 and September 2015 who
required CSF sampling, usually for the evaluation of suspected
meningitis: 17 preterm neonates with mean (SD) postmenstrual
age (PMA) at birth 27.14 (2.14) weeks; and 20 term infants
with mean (SD) PMA at birth 39.86 (1.86) weeks. The mean
(SD) PMA at CSF sampling was 29.29 (2.86) weeks for preterm
infants and 40.29 (2.0) weeks for term infants. There were
no significant differences in the proportion of infants with
CSF contaminated by blood defined as red blood cell count
>1000 cells/mm³ (50% versus 42%, p = 0.73). Methods for
sampling and storage of CSF, and the clinical phenotype of
participants including plasma C-Reactive Protein, full blood
count, CSF total protein and glucose concentrations and CSF
microscopy have been reported previously (Pataky et al., 2017).
No infant in either group had meningitis; 10 out of 17 of the
preterm infants and 8 out of 20 of the term infants were classified
as having blood stream infection (BSI) at the time of CSF
sampling, defined as either (1) blood culture grew a pathogenic
bacterial species; or (2) the blood culture was negative or grew
coaagulase negative Staphylococcus (CoNS) and the infant had
one or more signs of generalized infection (apnoea, temperature
instability, feeding intolerance, worsening respiratory distress,
or hemodynamic instability) and the attending neonatologist
treated with IV antibiotics for ≥5 days. The difference in
proportion of infants with BSI in each group was not statistically
significant (p = 0.33).

This study was carried out in accordance with the
recommendations of UK National Research Ethics Service
with written informed consent from all subjects. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the South East Scotland
Research Ethics Committee (14/SS/044). Written parental
informed consent was obtained for CSF sampling, and the
study was approved by the UK National Research Ethics Service
(14/SS/044).

Custom Antibody Microarray
A custom antibody array ("G-series" from Tebu-bio/RayBiotech)
against 50 human analytes was generated to detect relative
levels of activin-A (INHBA), Brain-derived neurotrophic
factor (BDNF), bone morphogenetic protein (BMP)2, BMP4, BMP7, betacellulin (BTC), cluster of differentiation
(CD)200, Complement 5a (C5a), C-reactive protein (CRP), Fas
ligand (FasL), follistatin, furin, Galectin-3 (Gal3), granulocyte
macrophage colony-stimulating factor (GM-CSF), insulin-like
growth factor-1 (IGF-1), interferon-gamma (IFNγ), insulin,
interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9,
IL-10, IL-12p40, IL-12p70, IL-13, IL-17A, IL-17B, IL-17C,
IL-17F, IL-18, monocyte chemoattractant protein-1 (MCP1),
macrophage inflammatory protein 1-alpha (MIP1α), MIP1β,
matrix metalloproteinase (MMP) 8, MMP-9, nerve growth factor
(NGF)-β, neurotrophic factor 3 (NT3), Osteopontin (SPP1),
placental growth factor (PLGF), regulated on activation, normal
t cell expressed and secreted (RANTES), stem cell factor (SCF),
tumor necrosis factor (TNF)-α, TNFβ, transforming growth
factor-beta (TGFβ), urokinase-type plasminogen-activator
(uPA), vascular endothelial growth factor-C (VEGF-C). Arrays
were carried out according to the manufacturer’s instructions.
Briefly, antibodies printed onto sub-arrays were dried at room
temperature (RT) for 2 h, then blocked for 30 min. Fifty
microliters of CSF from each case was incubated with one
sub-array for 2 h at RT, then washed with gentle rocking. Sub-
arrays were then incubated with biotin-conjugated sandwich
antibodies for 2 h at RT, washed thoroughly, then incubated with
streptavidin-Cy3. Following washes in water, slides were read at
532 nm excitation frequency.

Antibody Array Data Analysis
Detected values of Cy3 intensity were normalized to an internal
median background level on each slide. Analytes of interest
were defined as those where the median value of the preterm
group was outside the interquartile range of the controls. For
analyses designed to generate hypotheses about group differences
for gene expression studies, the distribution of values according to gestation category (preterm versus term) was investigated using independent samples Mann–Whitney U test, individual test p-values are reported, and a threshold of <0.05 was used to select proteins for microglia gene expression analysis. Analyses were performed using SPSS 21.0 (SPSS Inc., Chicago, IL, United States).

Animal Protocol
Experimental protocols were approved by the Bichat-Robert Debre (France) ethical committee under the reference 2011-14/676-0053, and met the guidelines for the United States Public Health Service’s Policy on Humane Care and Use of Laboratory Animals (NIH, Bethesda, MD, United States). We housed the OF1 strain mice (Charles River; L’Arbresle, France) under a 12 h light-dark cycle with ad libitum food and water. On P1 pups were sexed, all males were kept but litters were maintained at 9–11 pups. Assessments of injury and outcomes were made only in male animals as females do not display white matter injury in response to this paradigm. The preponderance to injury in males is similar to what is observed in preterm born infants (O’Driscoll et al., 2018). Neonatal received twice a day (bid) from P1 to P4 and once on P5 a 5 µl intra-peritoneal (ip) injection of 10 µg/kg/injection recombinant mouse IL-1β in phosphate buffered saline (PBS; R&D Systems, Minneapolis, MN, United States) or PBS alone (control). IL-1β exposure, as reported previously, sets up a complex systemic inflammatory response (Favrais et al., 2011) and then a complex central neuroinflammatory response (Krishnan et al., 2017; Van Steenwinckel et al., 2018). This leads to microgliosis, oligodendrocyte maturation arrest, hypomyelination and cognitive deficits (Favrais et al., 2011; Schang et al., 2014; Krishnan et al., 2017; Van Steenwinckel et al., 2018) reminiscent of what is observed in preterm born infants (Billiards et al., 2008; Verney et al., 2012; Caldinelli et al., 2017; Spittle et al., 2017).

Neural Tissue Dissociation and Magnetic-Activated Cell Sorting
At P1, P5, and P10, we collected brains for cell dissociation and CD11b-positive cell enrichment using a magnetic coupled antibody extraction technique (MACS), as previously described (Schang et al., 2014; Krishnan et al., 2017) and according to the manufacturer’s protocol (Miltenyi Biotec, Bergisch Gladbach, Germany). In brief, we pooled brains (n = 4 at P1, n = 3 at P5, and n = 2 at P10) and after removing the cerebellum and olfactory bulbs they were dissociated using the Neural Tissue Dissociation Kit. A total of six samples per group and per time point were generated with at least four independent litters per group. Using anti-CD11b MicroBeads we captured the CD11b+ cells and after elution, we centrifuged the isolated cells for 5 min at 600 g and then conserved them at −80°C. The purity of MACSed CD11B+ fraction has been validated using FACS analysis of CD11B fluorescence, and with RT-qPCR of the positive and negative cell fractions as previously described (Schang et al., 2014; Krishnan et al., 2017) and revealed the negative fraction has gene expression levels 98% lower than found in the respective primary cultures of astrocytes, neurons, and oligodendrocytes.

Microarray Analysis
As previously published, Miltenyi Biotec (France) performed microarrays (Mouse Agilent Whole Mouse Genome Oligo Microarrays, 8 × 60K) on 6 samples per time point per group for CD11b enriched cell samples from P1, P5, and P10 mice exposed to IL-1β or PBS; a total of 24 samples (Krishnan et al., 2017). Preparation of samples for array analysis has been previously described (Husson et al., 2005; Chhor et al., 2013; Krishnan et al., 2017). The Agilent feature extraction software was used to process microarray image files. We only included signal intensities above background. Signal intensity values were background subtracted and uploaded following instructions by Miltenyi Biotec GmbH (Stefan Tomiuk) and PerkinElmer (Matt Hudson) into GeneSifter Analysis Edition v4.0 for further analysis as previously described (Gustavsson et al., 2007). The pre-processed signal intensity values were median normalized, and the gene expression in neuroinflammatory and PBS controls were compared at P1, P5, and P10 using t-test (p < 0.05) with Benjamini-Hochberg multiple testing correction.

RESULTS
Differential Levels of Inflammation-Associated Proteins in Pre-term vs. Term Infant Cerebrospinal Fluid
To conduct a comprehensive assessment of CNS inflammatory state in preterm infants and associate this with factors affecting myelination, we designed an antibody array assessing expression of 50 proteins with functions in regulating inflammation and myelination (Table 1). This approach was optimal to assess relative protein levels in neonatal CSF because it allowed high-content simultaneous screening of low volumes of fluid with high sensitivity and a broad range of detection.

We found that 28 protein levels had a median value in CSF from preterm infants that was outside the interquartile range of the controls (Table 1, bold type); these represented proteins with known functions in enhancing or resolving inflammation, as well impairing or supporting myelination (Table 1). The distribution of 15 proteins differed in preterm CSF from that of the controls (p-value <0.05), and 5 analytes were increased in preterm CSF at a threshold of p < 0.01: C5a, interleukin (IL)-9, osteopontin (SPP1), Fas ligand (FasL), and follistatin. These data demonstrate that preterm CSF has a distinct inflammatory profile compared to term controls that includes both pro-inflammatory and anti-inflammatory proteins, as well as those which can support or impair myelination.

http://jhu.genesifter.net/login
TABLE 1 | Median (IQR) normalized fluorescence intensity of 50 cerebrospinal fluid analytes from term control infants and preterm infants.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Function</th>
<th>Control</th>
<th>Preterm</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C5a (Hc)</td>
<td>❇️</td>
<td>1378.5</td>
<td>1382.5</td>
<td>3592.6</td>
</tr>
<tr>
<td>CRP</td>
<td>❇️</td>
<td>2844.6</td>
<td>20206.4</td>
<td>35217.1</td>
</tr>
<tr>
<td>GM-CSF (Csf2)</td>
<td>❇️</td>
<td>255.6</td>
<td>91.2</td>
<td>330.2</td>
</tr>
<tr>
<td>IFNy</td>
<td>❇️</td>
<td>403.2</td>
<td>127.0</td>
<td>402.4</td>
</tr>
<tr>
<td>IL-1α</td>
<td>❇️</td>
<td>490.5</td>
<td>81.4</td>
<td>581.9</td>
</tr>
<tr>
<td>IL-1β</td>
<td>❇️</td>
<td>52.1</td>
<td>73.3</td>
<td>108.8</td>
</tr>
<tr>
<td>IL-2</td>
<td>❇️</td>
<td>413.1</td>
<td>77.8</td>
<td>520.5</td>
</tr>
<tr>
<td>IL-6</td>
<td>❇️</td>
<td>580.0</td>
<td>3259.5</td>
<td>706.2</td>
</tr>
<tr>
<td>IL-8</td>
<td>❇️</td>
<td>19466.8</td>
<td>55521.7</td>
<td>18370.4</td>
</tr>
<tr>
<td>IL-9</td>
<td>❇️</td>
<td>188.8</td>
<td>76.1</td>
<td>242.6</td>
</tr>
<tr>
<td>IL-12p40</td>
<td>❇️</td>
<td>62.5</td>
<td>87.3</td>
<td>83.3</td>
</tr>
<tr>
<td>IL-12p70</td>
<td>❇️</td>
<td>164.3</td>
<td>80.0</td>
<td>220.1</td>
</tr>
<tr>
<td>IL-17A</td>
<td>❇️</td>
<td>202.1</td>
<td>45.4</td>
<td>296.4</td>
</tr>
<tr>
<td>IL-17B</td>
<td>❇️</td>
<td>104.6</td>
<td>20.0</td>
<td>107.0</td>
</tr>
<tr>
<td>IL-17C</td>
<td>❇️</td>
<td>508.8</td>
<td>99.8</td>
<td>546.2</td>
</tr>
<tr>
<td>IL-17F</td>
<td>❇️</td>
<td>72.5</td>
<td>73.2</td>
<td>62.6</td>
</tr>
<tr>
<td>IL-18</td>
<td>❇️</td>
<td>80.9</td>
<td>49.6</td>
<td>101.8</td>
</tr>
<tr>
<td>MCP-1 (Ccl2)</td>
<td>❇️</td>
<td>116104.0</td>
<td>10004.9</td>
<td>109752.5</td>
</tr>
<tr>
<td>MIP1α (Ccl3)</td>
<td>❇️</td>
<td>211.5</td>
<td>282.6</td>
<td>1054.5</td>
</tr>
<tr>
<td>MIP1β (Ccl4)</td>
<td>❇️</td>
<td>6715.4</td>
<td>17113.7</td>
<td>26868.7</td>
</tr>
<tr>
<td>PGF</td>
<td>❇️</td>
<td>593.2</td>
<td>375.6</td>
<td>948.0</td>
</tr>
<tr>
<td>RANTES</td>
<td>❇️</td>
<td>182.8</td>
<td>1590.6</td>
<td>736.4</td>
</tr>
<tr>
<td>TNFα</td>
<td>❇️</td>
<td>1095.9</td>
<td>167.4</td>
<td>1242.3</td>
</tr>
<tr>
<td>TNFβ</td>
<td>❇️</td>
<td>452.6</td>
<td>68.8</td>
<td>504.0</td>
</tr>
<tr>
<td>uPA</td>
<td>❇️</td>
<td>8733.4</td>
<td>8969.4</td>
<td>12527.5</td>
</tr>
<tr>
<td>CD200</td>
<td>❇️</td>
<td>98.9</td>
<td>61.3</td>
<td>113.6</td>
</tr>
<tr>
<td>IL-4</td>
<td>❇️</td>
<td>402.7</td>
<td>80.7</td>
<td>430.6</td>
</tr>
<tr>
<td>IL-5</td>
<td>❇️</td>
<td>299.9</td>
<td>58.6</td>
<td>301.9</td>
</tr>
<tr>
<td>IL-10</td>
<td>❇️</td>
<td>481.6</td>
<td>787.9</td>
<td>917.7</td>
</tr>
<tr>
<td>IL-13</td>
<td>❇️</td>
<td>382.8</td>
<td>93.4</td>
<td>416.3</td>
</tr>
<tr>
<td>Activin-A (INHBA)</td>
<td>❇️</td>
<td>238.2</td>
<td>62.7</td>
<td>271.1</td>
</tr>
<tr>
<td>BDNF</td>
<td>❇️</td>
<td>101.6</td>
<td>18.6</td>
<td>145.8</td>
</tr>
<tr>
<td>BTC</td>
<td>❇️</td>
<td>304.7</td>
<td>49.3</td>
<td>354.0</td>
</tr>
<tr>
<td>β-NF</td>
<td>❇️</td>
<td>206.4</td>
<td>169.2</td>
<td>339.6</td>
</tr>
<tr>
<td>NT-3</td>
<td>❇️</td>
<td>85.7</td>
<td>55.20</td>
<td>106.7</td>
</tr>
<tr>
<td>Furin</td>
<td>❇️</td>
<td>360.4</td>
<td>580.5</td>
<td>484.7</td>
</tr>
<tr>
<td>Galectin-3</td>
<td>❇️</td>
<td>1598.1</td>
<td>1419.0</td>
<td>1069.9</td>
</tr>
<tr>
<td>IGF-1</td>
<td>❇️</td>
<td>2005.4</td>
<td>574.4</td>
<td>2048.0</td>
</tr>
<tr>
<td>Insulin (Ins1)</td>
<td>❇️</td>
<td>180.6</td>
<td>70.3</td>
<td>253.8</td>
</tr>
<tr>
<td>SCF (Kld)</td>
<td>❇️</td>
<td>346.7</td>
<td>287.7</td>
<td>419.4</td>
</tr>
<tr>
<td>SPP1</td>
<td>❇️</td>
<td>1209.4</td>
<td>1828.0</td>
<td>3064.4</td>
</tr>
<tr>
<td>TGFβ</td>
<td>❇️</td>
<td>706.2</td>
<td>122.0</td>
<td>919.0</td>
</tr>
<tr>
<td>VEGF-C</td>
<td>❇️</td>
<td>250.6</td>
<td>100.1</td>
<td>233.7</td>
</tr>
<tr>
<td>BMP2</td>
<td>❇️</td>
<td>191.5</td>
<td>168.6</td>
<td>140.3</td>
</tr>
<tr>
<td>BMP4</td>
<td>❇️</td>
<td>116.1</td>
<td>90.1</td>
<td>106.0</td>
</tr>
<tr>
<td>BMP7</td>
<td>❇️</td>
<td>196.5</td>
<td>211.8</td>
<td>246.0</td>
</tr>
<tr>
<td>FasL</td>
<td>❇️</td>
<td>290.1</td>
<td>159.6</td>
<td>967.0</td>
</tr>
<tr>
<td>Follistatin (Fst)</td>
<td>❇️</td>
<td>920.6</td>
<td>286.0</td>
<td>1683.0</td>
</tr>
<tr>
<td>MMP8</td>
<td>❇️</td>
<td>319.7</td>
<td>187.2</td>
<td>416.7</td>
</tr>
<tr>
<td>MMP-9</td>
<td>❇️</td>
<td>156.4</td>
<td>126.2</td>
<td>244.8</td>
</tr>
</tbody>
</table>

Bold type highlights analytes with median concentration in CSF from preterm infants that was outside the IQR of analyte concentration from controls; *p < 0.05, **p < 0.01. ❇️ Pro-inflammatory function; ❇️ anti-inflammatory function; ❇️ supporting oligodendrocyte lineage responses and myelination; ❇️ impairing oligodendrocyte lineage responses and myelination.
DISCUSSION

In this study, we identified a distinct inflammatory signature in preterm CSF relative to term controls. A comprehensive and sensitive measure of CSF protein levels by antibody array identified 15 factors which were relatively increased in preterm samples, and which have been previously associated with regulating inflammation and myelination. This revealed a complex preterm neural environment, with concurrent pro- and anti-inflammatory responses, and pro- and anti-myelination factors. Data-mining of microglia transcriptomes in the context of experimental perinatal brain injury revealed that microglia can express the majority of these factors following insult, and they are dynamically regulated over time, mirroring the complexity of inflammatory and myelination-regulating factors measured in the human samples. Although some of these genes are expressed by microglia in healthy developing brain (Il1b, Ccl3, Tnf, Spp1, and Tgfb1) (Zhang et al., 2014), the rapid increase of pro-inflammatory gene expression in microglia in this experimental model shortly after the first injection of IL-1β, concomitant with sustained expression of genes predicted to impair myelination, highlight the importance of early intervention to limit damage to the developing white matter.

Five proteins were increased in preterm CSF vs. controls at the threshold $p < 0.01$: C5a, IL-9, SPP1, FasL, and Follistatin. C5a is a component of the complement cascade which we previously showed to be increased in human preterm CSF by enzyme-linked immunoabsorbant assay (Pataky et al., 2017), validating our novel approach of using antibody array to identify differentially expressed proteins in CSF samples. Although C5a has been associated with normal brain development (Benard et al., 2008) and neuroprotection (Biggins et al., 2017), it may have damaging functions as inhibition of its receptor C5aR attenuates excitotoxic perinatal brain injury (Pedroni et al., 2013) and C5a is increased in the CSF of children with demyelinating disease (Horellou et al., 2015). In addition, we identified IL-9 as a novel preterm birth-associated CNS cytokine in humans. Although we found it is not regulated by microglia in the IL-1β injury model, it may be expressed by other cell types such as Th9 lymphocytes. In experimental models it has roles in mast cell activation and excitotoxicity (Patkai et al., 2001), neonatal cortical neuronal apoptosis (Fontaine et al., 2008), autoimmune demyelination (Li et al., 2011), and regulation of astrocyte chemokine production (Ding et al., 2015); our data support a role for IL9 in the human inflammatory response to preterm birth. In addition, its expression can be driven by TGFβ (Beriou et al., 2010), which when overexpressed by microglia is associated with hypomyelination (Nobuta et al., 2012). IL-9 may also have direct actions on oligodendrocyte lineage cells, as these express the IL-9 receptor and IL-9 treatment inhibits their differentiation in vitro, although, notably, it can encourage differentiation if co-supplied with IFN-γ (Ding et al., 2015).

The remaining three highly enriched proteins have been implicated in regulating the oligodendrocyte lineage and myelination. Osteopontin (SPP1) in particular has been suggested as a blood biomarker for neonatal encephalopathy (Graham et al., 2018) and it is highly induced by hypoxic...
injury, where a protective role is suggested by decreased oligodendrogenesis in a knockout mouse subjected to hypoxic-ischemic injury (van Velthoven et al., 2011). This beneficial role may be dependent on mode of neural injury or age, as in adult mice SPP1 exacerbates autoimmune-mediated demyelination and is not required for regeneration of myelin on previously myelinated axons (Zhao et al., 2008). Nonetheless, it can directly increase myelin protein expression and myelination in vitro (Selvaraju et al., 2004). Another protein we detected in preterm CSF which may directly modulate myelination is follistatin, which sequesters activin-A to prevent its binding to activin receptors. This would be predicted to impair myelination, as we have recently shown these receptors to be required for oligodendrocyte differentiation and myelin maturation in healthy white matter development and following injury (Dillenburg et al., 2018). Lastly, the increase in Fas ligand in preterm CSF may indicate direct targeting of oligodendrocytes, as it has been associated with induction of oligodendrocyte death in a variety of neurological disorders (Austin and Fehlings, 2008).

Our study has some limitations. Although no infant in the study group had meningitis, a proportion of preterm and term infants had BSI at the time of CSF sampling. Therefore, it is possible that systemic inflammation contributed to observed alterations in the CSF inflammatory profile, although this potential confounding effect is likely to be balanced across the groups.

Our study was not designed to investigate the effect of astrocyte-mediated cytokine production, which could contribute to neuroinflammation as has been suggested by some experimental perinatal white matter injury models...
(Nobuta et al., 2012; Shiow et al., 2017). In future work, investigating gene expression in other cell types including astrocytes and neurones may be informative.

Altogether, these findings identify a CSF signature in response to preterm birth, which reflects a complex environment that can both drive injury and support myelination. The pathological outcome of preterm birth may thus reflect a balance between damaging and reparative factors, which implies that effective therapies may need to operate on multiple targets. We propose that early therapeutic intervention could pre-empt the robust pro-inflammatory response and boost pro-repair mechanisms to support healthy myelination.

DATA AVAILABILITY

All human CSF data generated or analyzed during this study are included in this published article. The microglia gene expression datasets analyzed during the current study are available from the corresponding author on reasonable request.

AUTHOR CONTRIBUTIONS

JB co-designed the study, analyzed the patient data, and contributed to writing the manuscript. GI and GS analyzed the patient samples. BF and PG co-designed the study, carried out the animal experiments, and generated the microglial gene expression dataset. RP collected the human CSF samples. VM co-designed the study, analyzed the microglia gene expression dataset, and co-wrote the manuscript. All authors read and approved the final manuscript.

ACKNOWLEDGMENTS

The authors are grateful to the parents and carers who consented to take part in the study, and to clinical colleagues at the Neonatal Intensive Care Unit of the Royal Infirmary of Edinburgh for referring patients. The diagram in Figure 1A was created with BioRender.

REFERENCES

FUNDING

This work was supported by Theirworld (www.theirworld.org), the MRC Centre for Reproductive Health (MRC G1002033), and a Career Development Award from the Medical Research Council (V.E.M.; MR/M020827/1). The funding body had no role in the design of the study or sample collection, analysis, and interpretation of data, or in writing the manuscript.

AUTHOR CONTRIBUTIONS

JB co-designed the study, analyzed the patient data, and contributed to writing the manuscript. GI and GS analyzed the microglia gene expression dataset. RP collected the human CSF samples. VM co-designed the study, analyzed the microglia gene expression dataset, and co-wrote the manuscript. All authors read and approved the final manuscript.

DATA AVAILABILITY

All human CSF data generated or analyzed during this study are included in this published article. The microglia gene expression datasets analyzed during the current study are available from the corresponding author on reasonable request.

ACKNOWLEDGMENTS

The authors are grateful to the parents and carers who consented to take part in the study, and to clinical colleagues at the Neonatal Intensive Care Unit of the Royal Infirmary of Edinburgh for referring patients. The diagram in Figure 1A was created with BioRender.
Horellou, P., Wang, M., Keo, V., Chrétien, P., Serguera, C., Waters, P.,
Hagberg, H., Mallard, C., Ferriero, D. M., Vannucci, S. J., Levison, S. W., Vexler,
Ellison, V. J., Mocatta, T. J., Winterbourn, C. C., Darlow, B. A., Volpe, J. J.,
Boardman et al. CSF Immune Mediators and Preterm Birth
Nobuta, H., Ghiani, C. A., Paez, P. M., Spreuer, V., Dong, H., Korsak, R. A.,

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Boardman, Ireland, Sullivan, Pataky, Fleiss, Gressens and Miron. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.