Epigenetic Variability Confounds Transcriptome but not Proteome Profiling for Coexpression-based Gene Function Prediction

Running title: Epigenetic similarity explains non-functional co-expression

Piotr Grabowski¹, Georg Kustatscher², Juri Rappsilber¹,²#

¹ Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
² Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK

Corresponding author:
Juri Rappsilber (Lead Contact), Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany, email: juri.rappsilber@ed.ac.uk, phone: +49 30 314-72374

Other contacts:
Piotr Grabowski, Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany, email: grabowski@tu-berlin.de
Georg Kustatscher, Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK, email: georg.kustatscher@ed.ac.uk
Abbreviations

CDS: coding sequence
CV: coefficient of variation
FDR: false discovery rate
FPKM: fragments per kilobase million
GAM: general additive model
GEO: Gene Expression Omnibus
GO: Gene Ontology
LCL: lymphoblastoid cell lines
PCC: Pearson correlation coefficient
RPKM: reads per kilobase million
SILAC: stable isotope labeling with amino acids in cell culture
TPM: transcripts per million
TSS: transcription start site
UTR: untranslated region
Summary:

Genes are often co-expressed with their genomic neighbors, even if these are functionally unrelated. For small expression changes driven by genetic variation within the same cell type, non-functional mRNA co-expression is not propagated to the protein level. However, it is unclear if protein levels are also buffered against any non-functional mRNA co-expression accompanying large, regulated changes in the gene expression program, such as those occurring during cell differentiation. Here, we address this question by analyzing mRNA and protein expression changes for housekeeping genes across 20 mouse tissues. We find that a large proportion of mRNA co-expression is indeed non-functional and does not lead to co-expressed proteins. Chromosomal proximity of genes explains a proportion of this non-functional mRNA co-expression. However, the main driver of non-functional mRNA co-expression across mouse tissues is epigenetic similarity. Both factors together provide an explanation for why monitoring protein co-expression outperforms mRNA co-expression data in gene function prediction. Furthermore, this suggests that housekeeping genes translocating during evolution within genomic subcompartments might maintain their broad expression pattern.

Keywords: proteomics; transcriptomics; gene function prediction; gene expression noise; genome organisation; regulatory interference
Introduction

Genes are not arranged randomly, but tend to be clustered in the genome into co-expressed domains (1). Such clustering can be a regulatory strategy of both prokaryotic and eukaryotic genomes. Interestingly, this does not mean that genes that are co-expressed are necessarily also linked functionally. There exist gene clusters that tend to be co-expressed, yet lack evident co-functionality (1, 2). This is especially visible for bidirectional gene pairs which are co-expressed as a consequence of shared regulatory context, but commonly seem to lack a functional relationship (3). This has an impact on gene co-expression studies which infer functional associations between genes based on similar gene activity. Co-expression of spatially close genes can be driven by stochastic transcriptional bursting (4) or transcriptional interference between neighboring genes (5). The existence of co-expressed gene clusters that lack a functional connection is intriguing given that non-specific gene expression should have a negative impact on cell fitness. Interestingly, Hurst and colleagues have shown that clustered genes mutually reinforce their active state and are less likely to be accidentally silenced, for example by stochastic fluctuations of chromatin states (6). Therefore, clustered genes show lower expression noise, a benefit that may offset the negative impact of their coincidental co-expression. In agreement with this, we have recently demonstrated that co-expression of proximal genes, both in terms of sequence and 3D genomic proximity, is pervasive in the human genome. Importantly, however, co-expression of spatially close, functionally unrelated genes is restricted to their mRNA abundances and is not propagated to the protein level (7). This protein-level buffering of non-functional mRNA co-expression supports the idea that reduction of expression noise is a key driver of the evolution of genome organisation. As a
consequence, function prediction is based better on protein co-expression than mRNA co-expression data (8, 9).

Our previous analysis was based on a panel of human lymphoblastoid cell lines (LCLs) for which the expression changes had a prominent noise component owing to the little variability between the cell lines. A related analysis of human cancer panels also found mRNA - but not protein - co-expression to reflect chromosomal gene co-localization (8). However, it remains to be seen if a similar uncoupling of transcriptome and proteome exists also for strong, regulated and biologically important expression changes. For example, different cell types have different metabolic needs, morphology, organelle numbers and sizes. Even for ubiquitously expressed housekeeping genes, this can amount to large quantitative differences in expression levels. Here, we investigate the impact of genome organisation and epigenetic states on mRNA and protein co-expression across different mouse tissues by integrating multiple published omics datasets. We show that the observations made on cell lines regarding factors governing mRNA and protein co-expression also hold in tissues, with changes in the relative weights of the contributions from genome position versus epigenetic state. We point at possible biases in expression profiling for functional genomics that researchers should take into account.

Experimental Procedures

Mouse tissue mRNA and protein expression dataset assembly

SILAC mouse tissue proteomes were downloaded from (10), normalised SILAC H/L ratios for each tissue extracted and log2-transformed. SILAC kidney values were obtained by averaging expression values for kidney cortex and medulla.
Transcriptomics profiling data of tissues were obtained from (11–15) (links in Supplemental Table S1). Data downloaded from ENCODE were in Gencode M4-aligned bam format with the only exception of the skeletal muscle data which were downloaded in fastq format and aligned using TopHat v2.0.9 and Gencode M4 annotation. The TopHat settings were set to default apart from using “bowtie1” parameter and library type set to “fr-secondstrand”. The bam files were subsequently processed using Cufflinks 2.2.1 with default settings to obtain gene expression (fragments per kilobase of exon model per million mapped reads, FPKM) values. The three tissues downloaded from GEO were in normalized FPKM or RPKM format. All the mRNA expression data were transformed into a common transcripts per million (TPM) unit. In order to make the RNAseq dataset comparable with the proteomics data, each mRNA expression value was divided by a median expression value for a given gene in all 20 tissues (analogously to the Super-SILAC approach (16) used in the proteomics dataset). Finally, the normalised TPM ratios were log2-transformed.

The resulting mRNA and protein expression dataset contains 3391 genes with expression values in at least 8 tissues on both mRNA and protein levels. The proteomics data and mRNA data contain 15.5% and 6.7% missing values, respectively.

The processed dataset is available as Supplemental File 1.

Epigenetics data processing

ChIPseq data for 9 mouse tissues (marks: H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K79me2) were obtained from ENCODE in bigWig format (fold change vs. control). The data for H3K9ac was available only for two tissues. In order to extract mean ChIPseq signal per gene body for all tissues, a UCSC bigWigAverageOverBed command line tool was used in
conjunction with a custom-made bed file based on Gencode M4 mouse gene annotation. The processed ChIPseq dataset is available as Supplemental File 2.

Gene expression correlation analysis

To obtain the between-gene correlation values the data were centered at 0 for each experiment and a Pearson correlation coefficient was calculated using R function “corr.test” from the psych package with the “use” parameter set to “pairwise”. For improved statistical power, correlations were calculated only for genes which had data in at least 8 overlapping tissues (both on protein and mRNA levels). Gene pairs were considered correlated if their PCC value was > 0.5. For subsequent analyses, only correlations with Benjamini-Hochberg adjusted P-values < 0.05 were considered.

Genomic positions of genes and intergenic distances

Mouse gene positions on mm10 genome were obtained from Ensembl Biomart (17, 18) (state on 29.06.2017). For gene distance calculation, first base pair of each gene's outer-most transcription start site (TSS) was used and distances between those positions calculated for each gene pair.

Statistical significance analysis of close-by and other co-regulated genes

Two Pearson Chi-squared tests were performed on two 2x2 contingency tables (for mRNA and protein levels). The first contingency table (mRNA-level) divided gene pairs by two variables. The first variable considered genomic distances between the gene pairs (close-by/other) and the second variable divided the gene pairs according to their mRNA co-expression (gene pairs with mRNA Pearson correlation coefficient > 0.5 and BH-adjusted P-value < 0.05 were
considered correlated and all other pairs were considered uncorrelated). Similarly for the protein-level analysis, the first variable was genomic proximity. In the second variable, pairs were considered to be correlated if they both had mRNA and protein PCC > 0.5 and the BH-adjusted P-value < 0.05.

Analysis of post-transcriptional mechanisms

The miRNA/gene mapping data for mouse brain were obtained from (19). The CDS lengths of co-expressed genes were obtained from Biomart using Ensembl Genes 92 database and the GRCm38.p6 dataset. The genes were considered to have similar CDS length if the ratio of the length of the longer CDS to the shorter CDS was below 1.5. The liver time-series ribosome profiling data was obtained from (20). Ribosome profiling matrices were scaled using the accompanying mRNA expression data and the resulting ratios were log2-transformed. Finally, Pearson correlation coefficients between genes were calculated using R function “corr.test” from the “psych” package (21). Gene pairs with Pearson correlation coefficient > 0.5 and the Holm-adjusted P-value < 0.001 were considered as correlated. Protein translation rates were obtained from (22). For each gene pair, a ratio of their translation rates was calculated, log2-transformed and the absolute values taken. Gene pairs were considered to have similar translation rates if this absolute log2 ratio was lower or equal to 1. The protein degradation profiles were obtained from (23) and gene pairs coding at least one non-exponentially degraded protein were counted.

K-means clustering of mRNA and protein expression data

The Pearson correlation coefficients for all gene pairs were used to cluster the mRNA and protein data separately. An R clustering function “kmeans” was used for this purpose. The first k
value that explained 50% of the variance in the data was selected. The percentage of variance explained was defined as the ratio of the between sum of squares to the total sum of squares for every given k. The parameter “nstart” was set to 3 and “max.iter” set to 20.

Subcellular localization enrichment

Subcellular localization annotation was obtained from Uniprot (24). Proteins localized to more than one subcellular compartment were removed. Endoplasmic reticulum was joined with Golgi as “ER/Golgi” to balance the group sizes. Only “nucleus”, “mitochondrion” and joined “ER/Golgi” groups were considered for subcellular localization enrichments. The expected value for each cluster was defined as the percentage of proteins with the given subcellular localization annotation in the data. The observed value was calculated as a percentage of those proteins in the given cluster. Finally, log2 observed/expected values were calculated for each of the cluster and subcellular localization.

GO enrichment analysis

Gene Ontology enrichments were performed using DAVID online service (25). All Uniprot Accession numbers belonging to each of the clusters were used as a query and the whole mouse genome used as background for statistical analysis. The top 5 significantly enriched terms were reported for each cluster (FDR < 0.01).

Tissue-specific epigenetic cluster profiling

The median log2 fold-change values used in Figure 2E were calculated as follows: the median of the epigenetic signal of genes over all clusters in each tissue served as the expected value. The observed value was the median epigenetic signal in a given combination of cluster and
tissue. Finally, a log2 observed/expected value was obtained showing the relative enrichment of the epigenetic signal between clusters for each tissue.

Calculating epigenetic similarity

Inverted Mahalanobis distance (1 / Mahalanobis distance) was used to calculate the similarity between epigenetic profiles of genes. The “mahalanobis” R function was used with a user-specified covariance matrix.

Calculation of gene positional clustering

Distances between all possible pairs of genes located on same chromosomes were calculated. For each gene, the mean distance to its five nearest neighbors was calculated. The list of genes was sorted by increasing mean distance to their 5 nearest neighbors. Finally, the genes at the top and bottom 5% of the list were labeled as most and least positionally clustered, respectively.

Calculation of gene expression variability

Gene expression variability at the mRNA and protein levels was calculated as the coefficient of variation (CV; standard deviation divided by the mean) of log2-transformed TPM and SILAC ratios. To avoid dividing by zero (for unchanged genes with a log2 ratio of zero), a constant value of 10 was added to all mRNA and protein log2 ratios before calculating the variability.

Data processing and plotting

All data processing was performed in R (26) and the plots made using the ggplot2 package (27). The R scripts used to analyze data and generate most of the figures can be found on our GitHub (https://github.com/Rappsilber-Laboratory/tissue_mRNA_protein_scripts_MCP).
Results & Discussion

Co-expression of nearby gene pairs is buffered at the protein level in mouse tissues

We assembled a mouse tissue expression dataset comprising 3391 genes in 20 different tissues by combining proteomics and transcriptomics from different sources. Protein abundance data were derived from a quantitative proteomics dataset based on metabolic isotope labelling of mice (10). Transcriptomics data were obtained from the ENCODE Consortium (11) and Gene Expression Omnibus (GEO) repository (12) (Figure 1A). The tissue collection comprises few main broad functional categories such as the nervous system (cerebellum, brain cortex), digestive system (stomach, intestine, pancreas), immune system (thymus, spleen) and multifunctional organs such as the liver and kidney. In order to compare the gene expression between multiple tissues with enough statistical power, we used only genes expressed ubiquitously in all tissues as opposed to using tissue-specific genes. These so-called housekeeping genes account for about half of the genome in human (28) and presumably also in mouse. They are involved in basic cellular functions such as energy metabolism (including mitochondrial proteins), genome integrity maintenance, gene expression, protein trafficking and cell structural functions.

To generate a co-expression matrix for all observed gene pairs on both mRNA and protein level, we calculated their Pearson correlation coefficients (PCCs) across the 20 tissues (exemplified in Supplemental Figure S1). Importantly, in comparison to a previous study on lymphoblastoid cell lines (LCLs) (7), the expression changes observed between tissues and consequently many different cell types were substantially larger (fold-change increased by a mean of ~75% for both mRNA and proteins, Figure 1B). We then assessed the quality and information content of the integrated dataset by plotting the mRNA- and protein-level correlations for functionally related gene pairs. As expected, functional gene pairs have much
higher correlation coefficients than randomly shuffled gene pairs (Supplemental Figure S2). This effect is more pronounced on protein than mRNA level (Figure 1C). Subunits of the same complex correlated to a median of 0.59 at protein level and 0.35 at mRNA level. For comparison, in lymphoblastoid cell lines we observed 0.61 and 0.27, respectively. As one would expect, mRNA co-expression appears to be closer linked to function across tissues than closely related cell lines. Nevertheless, protein co-expression remains more indicative of shared function.

Next, we wondered about the impact of gene proximity on their correlated expression. We took gene pairs separated by less than 50 Kb between their transcription start sites ("close-by genes") and looked at their mRNA correlation compared to gene pairs further apart (Figure 1D). We observe 13% of close-by genes to have co-regulated mRNAs. However, only a quarter of these (3.3%) are also co-regulated on the protein level. This suggests that only a fraction of those co-regulated mRNA pairs is functionally related. It is worth noting that even though our mRNA and protein data have similar numbers of data points per gene, the protein data is slightly more sparse (15.5% and 6.7% missing values, respectively). Despite the numerical disadvantage of the protein data set, protein-level correlations are still more informative on the function than mRNA (Figure 1C, Supplemental Figure S2). The data also differs in their measurement-based variation as they were acquired by different technologies. However, we are limiting our comparisons in most cases to within-mRNA and within-protein, avoiding direct mRNA-protein comparison.

As a second line of inquiry into the impact of gene proximity on their correlated expression, we grouped the gene pairs by chromosomes, arranged them in their genomic order and plotted their correlation values as a co-regulation map (Figure 1E). Patches of co-regulated mRNAs are clearly visible on chromosome 17 that are not reflected on the protein level. The
patches are seen along the diagonal, suggesting that neighboring genes tend to be co-transcribed. Patches are also found away from the diagonal. These patches likely reflect large-scale 3D architecture as we have shown in human (7). Fitting a generalized additive model (GAM) to the linear correlation data further highlights the observed co-regulation patches which might be indicative of the chromosome folding (Figure 1F, chromosome 17). The patches are not equally pronounced in all chromosomes, for example see chromosome 2 (Figure 1E, F).

Gene pairs with sustained co-expression have similar post-transcriptional regulation

For many gene pairs, protein co-expression correlates with mRNA co-expression, while for other gene pairs mRNA and protein co-expression are not correlated. In order to identify possible mechanisms leading to buffered or sustained gene co-expression we conducted an analysis of post-transcriptional mechanisms using five published datasets (Figure 2A). First, we looked at how many miRNAs are shared between gene pairs. miRNAs have been implicated in post-transcriptional gene expression control by binding to transcripts and regulating mRNA degradation and protein translation (29). Using miRNA-gene interaction data generated using the CLEAR-CLIP protocol (19), we found that gene pairs with sustained co-expression tend to share significantly more miRNAs than pairs with buffered co-expression (Mann Whitney U test P-value = 0.002). We then looked at protein coding sequence (CDS) lengths which are a general indicator of the extent of post-transcriptional control (30). Gene pairs with sustained co-expression had significantly (Chi-squared Test P-value < 0.0001) more similar CDS lengths than gene pairs with buffered co-expression patterns. Subsequently, we looked at levels of ribosome occupancy using ribosome profiling data from mouse liver (20) and protein translation rates determined using mass spectrometry (22). In both cases, gene pairs with sustained co-expression tend to have similar translation levels (Chi-squared Test P-values < 0.0001 in
both cases). Finally, we looked at protein degradation profiles by considering gene pairs having at least one non-exponentially degraded protein (NEDs) (23). We found that gene pairs with sustained co-expression are significantly enriched in NEDs (Chi-squared Test P-value < 0.0001). Together, this suggests that various post-transcriptional mechanisms are involved in propagating functional gene co-expression to the protein level.

Protein co-regulation clusters are more functional than mRNA co-regulation clusters

To group genes with similar co-expression patterns we used k-means clustering (Figure 2B). This expands our analysis of coregulation from gene pairs to gene groups. This revealed specific co-regulation patterns in which each cluster tends to be co-regulated or anti-regulated with other clusters (Supplemental Figure S3). Of the three transcript-based gene clusters, cluster T1 and T2 are anti-correlated. A similar anti-correlation was observed in human, which could be traced there to chromosome sub-compartments A1 and A2 (7). Briefly, compartments are regions of the genome defined by 3D analysis of chromosome structure (31). Compartment A is characterized by active gene expression while compartment B mostly by suppressed gene expression. It was later discovered that both A and B compartments are divided further into subcompartments A1, A2 and B1 to B4, each with distinct epigenetic marks and spatial interaction patterns (32).

In the absence of equivalent high-resolution HiC data for mouse tissues we tested for epigenetic similarity within these clusters as epigenetic signatures closely link to chromatin subcompartments (32). Indeed, the epigenetic signatures of T1 and T2 clusters resemble those found in chromatin subcompartments A1 and A2 (see next paragraph). Notably, neither in mouse nor in human do the transcript-based gene clusters inform on protein co-expression. The marked exception is given by cluster T3 which displays co-expression behaviour also at the
protein level. Looking at the function of genes present in each of the clusters by performing subcellular localization (Figure 2C) and Gene Ontology (33) term enrichment (Figure 2D) reveals that cluster T3 is enriched for mitochondrial functions. This indicates large differences in the energetic needs of different tissues, which may require gene regulation at both the transcriptional and protein level. The five protein-based gene clusters correlate with each other to various degrees, with the anti-correlations of P2 vs. P4 and P3 vs. P5 being most pronounced. These likely reflect commitments of cell types to different large cellular processes (Figure 2D). Interestingly, we observed a large overlap between the clusters T3 and P3. They had 734 and 686 members, respectively, and around half of the members were shared between them (365 genes). Similarly to cluster T3, the protein cluster P3 was enriched in mitochondrial functions (Figure 2C, D). This suggests that the coordination of mitochondrial protein co-expression could be tightly controlled already on the mRNA level.

Except for P3, the protein-based gene clusters are not reflected in transcript co-expression (Supplemental Figure S3). In summary, one of the three transcript-based gene clusters shows some functional enrichment. However, all five protein co-regulation clusters show well-defined subcellular localization patterns and functional GO term enrichments. As observed in other systems, protein co-expression links closer to function than transcript co-expression (7, 8).

We added a regulatory dimension to the expression dataset by leveraging the ENCODE ChIP-seq data resources for nine different mouse tissues. This allowed us to estimate epigenetic variability of the gene pairs in the data. We calculated ChIP-seq signal enrichment for gene bodies belonging to the mRNA and protein co-regulation clusters (Figure 2E). Transcript clusters T1 and T2, which cover about 80% of the genes, maintain their epigenetic profile across all tissues with T2 being more enriched in activating marks compared to T1. While these two groups are defined through their chromatin state, they do not experience tissue specific
regulation through epigenetic processes. This might be linked to chromatin subcompartments. Indeed, the epigenetic patterns of mouse clusters T1 and T2 closely resemble human chromatin sub-compartments A2 and A1, respectively (7). This suggests a similar chromatin sub-compartmentalisation in mouse as is found in human. In contrast, transcript cluster T3 and most protein clusters display epigenetic variation across tissues indicating the action of an epigenetic program which is in line with epigenetic processes being involved in cell differentiation (34). It may initially surprise that protein clusters have epigenetic tissue-specific changes while transcript clusters T1 and T2 lack these (for example see H3K27ac or H3K4me1). This is consistent with subcompartments dominating the epigenetic signature that is associated with mRNA co-expression. It is worth keeping in mind that we analyze housekeeping genes, for which one would expect adjustments in expression rather than on/off changes and consequently only weak epigenetic influences. Interestingly, a strong between-cluster difference can be seen for the H3K36me3 mark which displays almost no variability between tissues for protein clusters. The H3K36me3 mark has been shown to be implicated in gene expression noise control through a mechanism of transcriptional burst frequency modulation (35) and to be enriched among noise-sensitive, highly expressed genes (36, 37). In full agreement with this, the mRNA cluster enriched in the H3K36me3 mark (T1) has significantly lower expression variability compared to other clusters (Supplemental Figure S4A). Curiously, we also observed a strong expression variability difference for protein clusters P4 and P5 which are enriched for H3K36me3 compared to other three protein clusters. However, it is not clear if the differences in H3K36me3 signal in mRNA and protein clusters are a cause of different expression variability or an effect of differences in the ongoing transcription.

Gene clustering reduces mRNA expression variability in mouse tissues
We determined the gene expression variability (coefficient of variation, CV) of the most and least densely clustered genes, considering sequence proximity (Figure 3A). Transcript expression variability is reduced significantly for genes clustered in the genome sequence while the effect is less pronounced for protein expression variability. Importantly, while gene expression variability generally covariates with expression level, no difference in expression levels was observed here for the top and lowest 5% positionally clustered genes (53000 and 56000 mean TPM, respectively). As observed previously for yeast (38) and human (7) gene clustering may safeguard against accidental silencing and the resulting expression noise. However, gene expression variability is not exactly the same as bona fide gene expression noise. It is interesting therefore that our observations using global between-tissue variability of expression reflect the observations based on expression noise in its classical sense in other systems. As a further link of expression variability between tissues to noise, we noted a strong dependence of both mRNA and protein expression variability on H3K36me3 signal in gene bodies. Genes lacking H3K36me3 signal are the most variably expressed between the tissues while the opposite is true for genes with strong H3K36me3 signal (Supplemental Figure S4B). This resembles the role of this mark in expression noise control (36, 37).

Epigenetic similarity is the main driver of non-functional mRNA co-expression

Co-expression of closeby, unrelated genes can be driven by at least two distinct mechanisms. First, stochastic fluctuations between the on and off state of a chromatin domain can affect multiple genes simultaneously and lead to their co-expression (4, 39). In addition, co-expression can reflect a transcriptional “ripple effect”, where the activation of one gene leads to the upregulation of other genes in its immediate neighborhood (5). We investigated which of these factors drives non-functional mRNA co-expression across mouse tissues. To estimate which
genes may be affected by the same chromatin fluctuations, we first determined the epigenetic profile of each gene, based on 7 histone marks in 9 different tissues reported by ENCODE. We then calculated the epigenetic similarity between all gene pairs using the Mahalanobis distance, which takes into account that some histone marks are co-dependent (exemplified in Supplemental Figure S5). As one might expect, we observed that correlation of mRNA abundances increases dramatically with increasing epigenetic similarity of their respective genes. Interestingly, the effect is largely buffered on the protein level (Figure 3B). This suggests that many mRNA pairs are co-activated as a side-effect of their genes being located in the same genomic neighborhood which in turn confers a specific epigenetic profile. To place the epigenetic similarity and co-regulation into gene position context, we plotted the co-regulation values as a function of both epigenetic similarity and a linear genomic separation of the gene pairs (Figure 3C). Strikingly, epigenetic similarity drives mRNA co-expression irrespective of whether genes are far apart (Figure 3C, sector 2) or closeby in the genome (sector 1). For the gene pairs that are on average within 2 Mb to each other, those that have very different epigenetic profiles are much less likely to be co-expressed than those with similar chromatin features (Figure 3C, sector 4 vs 1). This is most likely an effect of global fluctuations of chromatin factors shown previously in yeast (40). Gene proximity only starts to be a driving factor for genes less than 240 Kb apart (Figure 3D, right-most column) which agrees with previous observations of a local transcriptional ripple effect (5). Notably, most of this mRNA co-expression is non-functional, since the same group of genes show, on average, no co-expression at the protein level (Figure 3E).

Conclusions:
In an LCL cell line panel and in cancer samples, at homeostatic conditions much of mRNA co-expression is non-functional, i.e. does not affect protein co-expression and instead can be traced back to genome organisation. We wondered how much co-expression of mRNA and proteins would be linked when comparing very different cellular states given by multiple fully differentiated tissues. mRNA co-expression is indeed more closely linked to function in mouse tissues than in homeostatic conditions, although protein co-expression is significantly more indicative of function. The epigenetic profiling of co-expression clusters revealed that mRNA co-expression is affected by two distinct epigenetic states, most likely reflecting the different genomic subcompartments in which they reside. As observed in homeostatic conditions, this broad positioning effect on mRNA co-expression is then buffered on the protein level. However, in mouse tissues the non-functional mRNA co-expression is linked more closely to epigenetic states than to linear gene proximity. Epigenetic differences between the tissues dwarf the linear proximity effect on co-expression. Notably, we chose to use housekeeping genes only as they conferred enough data points to be usable in this correlation-based study. It is not clear to what extent do the observations on housekeeping genes generalize to the rest of the genome. Taken together, our observations lend support to the notion of monitoring protein co-expression for functional genomics. However, in order to fully understand the impact of epigenetics on mRNA and protein co-expression and the underlying mechanisms, more in-depth experimental studies are needed.

Author Contributions

JR, GK and PG designed the study, analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.
Acknowledgements

We thank Laurence Hurst for critically reading the manuscript.

Funding

This work was supported by the Wellcome Trust through a Senior Research Fellowship to JR (grant number 103139). The Wellcome Centre for Cell Biology is supported by core funding from the Wellcome Trust (grant number 203149).

References:

open reading frames. *Genome Res.* 25, 1848–1859

Figure legends:

Figure 1: Genomic distance between gene pairs affects their co-expression stronger on the mRNA than on the protein level. (A) We analyzed mRNA and protein expression changes between 20 different mouse tissues. Additionally we analyzed epigenetic profiles of genes by using ENCODE data for 9 different tissues. (B) The global log2-fold changes in the mouse
tissue dataset are larger on both mRNA and protein levels compared to the LCL dataset as used in (7). (C) The co-regulation of enzymes catalysing consecutive metabolic reactions and protein complexes is significantly stronger on protein level compared to mRNA level (Mann-Whitney test P-value < 0.0001 in both cases, m = median). (D) The fraction of close-by genes (< 50 kilobases separation) co-regulated on mRNA level is four times as large as on protein level which suggests that only about a quarter of the proximal mRNA co-regulation is functional. Statistical significance was assessed using a Pearson's Chi-squared test (***P-value < 0.0001). (E) Chromosomal gene co-regulation patterns are visible on mRNA level but disappear on protein level on chromosome 17. However, this effect seems not to be as strong for chromosome 2. (F) The mRNA co-regulation decreases with the linear gene separation albeit not monotonously, reflecting the observed chromosomal co-regulation patches on chromosome 17. This effect is not observed on protein level. No long-range effects can be observed for chromosome 2. The grey area around the lines signifies 95% confidence intervals.

Figure 2: mRNA and protein co-regulation clusters are functionally distinct and display different epigenetic signatures. (A) Analysis of post-transcriptional regulation of gene pairs co-expressed on mRNA level. Gene pairs with sustained co-expression on the protein level share on average more miRNA targeting than pairs with buffered co-expression on the protein level (Mann Whitney P-value < 0.0001). Gene pairs were considered to have similar CDS length if the ratio of the longer sequence to the shorter was < 1.5. Gene pairs were considered to have correlated ribosome profiles if their ribosome occupancy profiles had Pearson correlation coefficient > 0.5 (Holm adj. P-value < 0.001). Gene pairs were considered to have similar translation rates if the absolute log2 ratio of their translation rates was lower or equal 1. For the non-exponentially degraded proteins (NEDs) bar chart, gene pairs containing at least one NED
were counted. (B) K-means clustering of the mRNA and protein co-expression data. Three distinct mRNA clusters and five distinct protein clusters explained ~50% of the variance in the respective data. (C) mRNA co-regulations clusters (T1 - T3) have lower protein subcellular localization enrichments than protein co-regulation clusters (P1 - P5). The significance of enrichments/depletions in each cluster was tested using Pearson’s Chi-squared test. ***P-value < 0.0001, *P-value < 0.05, n.s. = not significant. (D) GO enrichment analysis of the genes in the mRNA and protein co-regulation clusters. More GO terms are enriched in protein than in mRNA clusters. (E) mRNA-based clusters T1 and T2 have uniform epigenetic signal distributions displaying little between-tissue variability as opposed to protein clusters which show large between-tissue and between-cluster variability. Epigenetic signal enrichment in tissue (squares), coefficient of variation for each histone mark (circle), colour code as shown.

Figure 3: The impact of gene proximity and epigenetic similarity on mRNA- and protein-level co-regulation. (A) Positional gene clustering reduces the expression variability on mRNA level. We calculated the expression variability (coefficient of variation, CV) of the 5% most and 5% least positionally clustered genes on the genome (i.e. considering their sequence proximity). The difference is significant (using Mann-Whitney test) on both mRNA level (***P-value = 0.00029) and protein level (*P-value = 0.019). When using 10% and 1% most and least clustered genes, we obtain the same statistical results as with 5% (data not shown). Boxplot drawn in the style of Tukey, i.e. box limits indicate the first and third quartiles, central lines the median, whiskers extend 1.5 times the interquartile range from the box limits. Notches indicate the 95% confidence interval for comparing medians. (B) Gene co-regulation increases with epigenetic similarity at the mRNA level, whereas it remains largely independent from epigenetic similarity at the protein level. (C) Epigenetic similarity is the major driver of the mRNA
co-regulation. Gene pairs were considered co-regulated if their mRNA level correlation was > 0.5 and the BH-adjusted P-values < 0.05. The bins were created by dividing gene pair distances and epigenetic similarity (1/Mahalanobis distance) into 10 roughly equal sets. This yielded 100 unique bin combinations. The colour signifies the percentage of co-regulated mRNA in each bin. The mean gene pair distance in the left-most column is 115 Mb and 2 Mb in the right-most column. White stars (*) mark corner sectors which have significantly higher mRNA co-expression compared to an equal-sized random background sample as judged by Kolmogorov-Smirnov test. The procedure was repeated 1000 times. The mean P-values for sectors 1, 2, 3 and 4 were 0, 10^{-13}, 0.039 and 6*10^{-9}, respectively. P-value of 0 is reported by the KS test for extremely low values. (D) Effects in linear distance are confined to very close proximity. The 10 bins constituting the right-most column in Figure 3C were extracted and magnified. The mean gene pair distance for the left-most column is 4 Mb and 240 Kb for the right-most column. (E) Protein-level co-regulation of housekeeping genes is not generally affected by epigenetic similarity or linear distance.
Figure 1

A. 20 mouse tissues combined reference RNAseq (ENCeD / GEO) ChIP-seq (ENCeD) SILAC-MS (Geiger et al.)

B. Density

Across LCLs
Across tissues

mRNA
protein

log2 fold-change

D. Co-regulated gene pairs [%]

Close-by genes
Other genes

mRNA
protein

C. Consecutive reactions

Gene pair count

mRNA m = 0.25
protein m = 0.46
P = 0

D. Direct complexes

Gene pair count

mRNA m = 0.35
protein m = 0.59
P = 0

E. Chromosome 17

Gene co-regulation [PCC]

mRNA
protein

Correlation (PCC)

F. Chromosome 17

Gene pair distance [Mb]

Gene in chromosomal order

Gene pair count

Chromosome 2

Gene in chromosomal order

Gene pair distance [Mb]
Figure 3

A

Gene expression variability (CV)

5% most clustered genes (linear)
5% least clustered genes (linear)

B

Gene co-regulation [PCC]

Epigenetic similarity

1/Mahalanobis distance

mRNA
protein

C

Binned by increasing epigenetic similarity

Percentage of coregulated mRNAs

linear proximity

D

Percentage of pairs with coregulated mRNA levels

linear proximity

E

Protein-level coregulation