Multimodal Analysis of Group Attitudes Towards Meeting Management

Citation for published version:

Digital Object Identifier (DOI):
10.1145/3279981.3279984

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published in:
Group Interaction Frontiers in Technology (GIFT’18)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Multimodal Analysis of Group Attitudes Towards Meeting Management

Gabriel Murray
University of the Fraser Valley
Abbotsford, Canada
gabriel.murray@ufv.ca

Catherine Lai
University of Edinburgh
Edinburgh, UK
clai@inf.ed.ac.uk

ABSTRACT
We present experimental results on the task of automatically predicting group members’ attitudes about management of their meeting, based on linguistic and acoustic features derived from the meeting recordings and transcripts. The group members’ attitudes were gathered from detailed post-meeting questionnaires. A key finding is that features of linguistic content by themselves yield poor prediction performance on this task, but the best results are found by combining acoustic and linguistic features in a multimodal prediction model. When trying to automate the detection of group member attitudes that might be manifested subtly in their language and behaviour, a multimodal analysis is key.

CCS CONCEPTS
• Computing methodologies → Natural language processing; Machine learning approaches; • Human-centered computing:

KEYWORDS
group sentiment, meeting management, multimodal interaction, speech and language processing, social signal processing, leadership

ACM Reference Format:

1 INTRODUCTION
Meetings are an important and ubiquitous part of working life. Understanding how to successfully manage and direct meetings is a vital step towards improving workplace satisfaction and employee engagement and productivity [1, 9]. Thus, a system for automatic analysis of a group’s attitudes towards their management, their own group processes, and towards each other, could be very useful for providing feedback to a group or the group leader. This sort of analysis could also help managers decide how a group is comprised, how team leaders are trained, and how the meetings are structured.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

GIFT’18, October 16, 2018, Boulder, CO, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6077-7/18/10...$15.00
https://doi.org/10.1145/3279981.3279984
contains the key results. Finally, we conclude in Section 6, along with some thoughts on future work.

2 RELATED WORK

Renals et al. [19] provide an overview of research on multimodal signal processing applied to meetings, including verbal and non-verbal analysis. Much of that work was carried out on the AMI corpus [4], which we also utilize and describe in more detail in Section 3. With respect to that body of work, the analysis of attitudes in meetings is closely related to research on detecting sentiment (or subjectivity) in meetings. In practice, this means predicting external annotations of individual dialogue act segments as positive-subjective, negative-subjective, non-subjective, and so on [12, 18]. However, it is possible that the sentiment a person explicitly conveys during a meeting inaccurately or incompletely conveys their actual attitudes about the meeting. For example, it is possible for someone to express positive comments in the meeting but to nonetheless be unhappy about the direction of the meeting, or vice versa. In light of this, we attempt to detect attitudes from within the group that are revealed through post-meeting questionnaires, thus reflecting their private states.

Recent work by Murray [11] has similar goals of detecting meeting participants’ true sentiment, based on features of the group interaction. That work estimated sentiment based on analysis of participant summaries that were authored by each participant after each meeting. In our current work, we instead use feedback from post-meeting questionnaires that focus on specific attitudes towards the meeting. These questionnaires have previously been used by Lai et al. [8] to investigate how turn-taking dynamics impact attitudes towards group cohesion, satisfaction, and leadership in these meetings. However, that study focused on individual participant attitudes and did not explore speech cues beyond turn-taking.

In our current work, we focus primarily on speech and language features. We also specifically focus on group attitudes about meeting management and direction as a first step to understanding how these these participant ratings relate to other work on leadership in group interaction.

Related work on leadership involves analysis of how leadership emerges during task-based interaction [21, 22]. Those studies utilize the ELEA corpus [20], which consists of recordings of small groups collectively performing a ranking task. The participants are not assigned roles, and so it is possible to analyze how some participants take on a leadership role, and how all members perceive each other in terms of leadership. In contrast, participants in the AMI meeting corpus were assigned roles, with one of them acting as project manager (i.e. leader). However, participants other than the project manager can still play a role in how the meeting direction is managed. Thus, the current study focuses on how spoken language reflects how participants feel about meeting management aggregated at the group level, rather than specifically evaluating the project manager or detecting leadership styles and emergent leaders.

As mentioned above, a good deal of work on social signal processing (SSP) has focused on non-verbal features, such as prosody, gestures, and turn-taking [3]. In fact, SSP has been explicitly defined as focusing on non-verbal or non-linguistic aspects of social interaction [13, 16]. In this work, we investigate the usefulness of linguistic content features in addition to acoustic features from the speech signal. In general, we view non-verbal aspects of interaction as a very rich source of information that provides context and elaboration for understanding language in interaction [5].

3 PREDICTION OF GROUP ATTITUDES ABOUT MEETING MANAGEMENT

The goal of this project is to develop a system to automatically predict group attitudes regarding the management and direction of the meeting. We hypothesize that linguistic features will be useful for this prediction task. In this section, we describe the meeting corpus used, and how the attitudes towards meeting management were measured. We then describe the multimodal features that were extracted for this prediction task.

3.1 CORPUS AND PARTICIPANT QUESTIONNAIRES

For these experiments, we utilize 120 scenario-based meetings from the AMI meeting corpus [4].1 In the AMI scenario meetings, teams were tasked with designing a remote control and bringing it to market. Each team consisted of four participants, with each participant assigned a unique role: project manager, user interface designer, marketing expert, or industrial designer. Each role was associated with specific information and materials. Each team completed a series of four meetings. While the scenario and assigned roles were pre-determined, the discussion and decisions were not scripted, and the teams and individual members had freedom in how they developed and contributed to the product at each phase. In these experiments, we make use of manual transcripts of each meeting, which have been segmented into dialogue act units (DAs).

Meeting Management Ratings: After every meeting, each participant filled out a post-meeting questionnaire. The design of the post-meeting questionnaire is described in [17]. The full set of questions can be found in [8]. The questions ask participants to rate the meeting experience in terms of process satisfaction, cohesiveness, leadership, and other factors. The individual participants privately rated their agreement with 16 statements about the meeting, on a 1 (`not at all`) to 7 (`very`) scale. For the purposes of this study, we are concerned with Question 3, which directly addressed meeting management and direction:

- Q3: The meeting was directed in a good manner.

To get a snapshot of the overall group attitude about the management of the meeting, we sum the ratings for this criterion over all four participants to get a group rating regarding the management of the meeting. The questionnaire rating is not merely a rating of the project manager (PM), though the PM typically plays a large part in directing the meeting. The AMI scenario dictates that each group member has distinct responsibilities for moving the design and decision-making processes forward through the sequence of meetings. Furthermore, the PM may have strong opinions on this criterion, e.g. being disappointed that other team members did not take on more leadership and responsibility. For that reason, in these

1http://corpus.amipproject.org/
experiments we do not omit the PM’s score from the aggregated
group score.

In the experiments contained herein, the goal is to automatically
predict the group score. The group score can range from 4 (all
participants give the lowest rating) to 28 (all participants give the
highest rating). Figure 1 shows the actual distribution of group
scores.

One noticeable aspect of the ratings in Figure 1 is their wide
variation, ranging from 14 to 27. There are clearly extreme cases
where participants are either very satisfied or dissatisfied with the
direction of the meeting. That provides substantial motivation for
our current work on predicting management ratings, given that
there are real differences in these ratings across meetings.

3.2 SPEECH FEATURES

We extract acoustic features corresponding to the Interspeech 2010
Paralinguistic Challenge feature set [23], using openSMILE [6]. This
feature set includes a number of standard spectral representations
of the speech signal: 15 Mel-frequency Cepstral Co-efficients (MFCC)
and associated delta features; 8 Line spectral pair frequencies (LSP);
log power of Mel-frequency bands 0-7 (LMFB). The feature set
also includes features representing speech prosody. These include
speaker PCM loudness (LOUDNESS); pitch in terms smoothed F0
envelope, F0 contour, and voicing probability (PITCH); and voice
quality via pitch-period jitter, differential jitter, and shimmer (VQ).
Moving average smoothing is applied to frame level features before
calculating aggregate statistics. In the following experiments, we
only look at meeting level standard deviation features, yielding 76
speech features in total. The features are extracted from the entirety
of each meeting. That is, we focus on acoustic variability within
the group as a predictor of meeting management satisfaction.

3.3 LINGUISTIC FEATURES

We extract a number of transcript-based lexical, syntactic, and
psycholinguistic features, and they are again extracted from the
entirety of each meeting.

Psycholinguistic: Words are scored for their concreteness, im-
ageability, typical age of acquisition, and familiarity [26].2 We also
derive SUBTL scores for words, which indicate how frequently they
are used in everyday life [2].

Dependency Parse Features All sentences are parsed using spaCy’s dependency parser [7].3 We extract several features, in-
cluding the branching factor of the root of the dependency tree,
the maximum branching factor of any node in the dependency
tree, sparse bag-of-relations features, and the type-token ratio for
dependency relations.

Sentiment We use the SO-Cal sentiment lexicon [25], which
associates positive and negative scores with sentiment-bearing
words, indicating how positive or negative their sentiment typically
is.

GloVe Word Vectors Words are represented using GloVe vec-
tors [15],4 and the vectors are summed over sentences. We then
create a document vector that is the average of the sentence vec-
tors. The first five dimensions of the document vectors are used as
features.

Lexical Cohesion We measure cohesion using the average cosine similarity of adjacent sentences in a document, using the GloVe
vectors.

Sentence and Document Length We include the average num-
ber of words per sentence, and average number of sentences per
meeting (i.e. document).

Part-of-Speech Tags We use spaCy’s part-of-speech tagger,
and use a sparse bag-of-tags representation for the most frequent
tags, as well as the type-token ratio for tags.

Bag-of-Words We use a bag-of-words representation for the
most common 200 non-stopwords in the dataset, and also calculate
the type-token ratio for words.

Filled Pauses Finally, we also consider the number of filled
pauses such as uh and um in the discussion.

4 EXPERIMENTAL SETUP

In this section, we briefly describe the predictive models used, and
the evaluation metrics.

4.1 MACHINE LEARNING MODELS

We report results for three machine learning models, including two
tree-based approaches, Random Forests (RF) and Gradient Boosted
Trees (GB). For both RF and GB, the number of estimators was set
to 50 and the maximum number of features was set to 20. The third
model we compared with was k-nearest neighbours (kNN), with
k = 20. We use the Scikit Learn implementations for each model
[14].

4.2 EVALUATION

For evaluation of all of the systems, we use Mean Squared Error
(MSE) scores. To maximize the amount of training data, we used a
leave-one-out procedure. After removing meetings that had missing
data for these meeting management ratings, we had a total of 120
meetings, giving us 119 in each training fold.

1 http://websites.psychology.uwa.edu.au/school/MRCDatabase/uwa_mrc.htm
2 https://spacy.io/
3 https://nlp.stanford.edu/projects/glove/
We also present feature-level analysis using feature importance scores for the tree-based models, where each importance score is determined by the average reduction of MSE when the feature is used as a split point in the decision trees.

5 RESULTS

Table 1 shows the MSE results for the machine learning models, as well as for a baseline approach in which the mean score from the training fold is predicted. Gradient Boosted Trees performed best overall, and all three machine learning models exhibited performance better than the baseline. The best GB model is significantly better than the baseline, according to a paired t-test on the squared residuals for each set of predictions ($p < 0.05$).

<table>
<thead>
<tr>
<th>Model</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline (Mean Prediction)</td>
<td>9.02</td>
</tr>
<tr>
<td>kNN (k=20)</td>
<td>8.78</td>
</tr>
<tr>
<td>Random Forests</td>
<td>7.47</td>
</tr>
<tr>
<td>Gradient Boosted Trees</td>
<td>6.96</td>
</tr>
</tbody>
</table>

Table 1: MSE: All Features

We also report results from experiments using feature subsets, including just linguistic features, just speech features, and all of the features. Gradient Boosted Trees were used for these further experiments. Table 2 summarizes the results for these subsets. Interestingly, linguistic features by themselves are not effective for this prediction task, and that particular model performs worse than the baseline. However, the model using the combined linguistic and speech feature set performs best overall. This demonstrates that it is worthwhile to extract linguistic features to accompany other multimodal features when trying to automatically detect participant attitudes in group interaction.

<table>
<thead>
<tr>
<th>Feature Subset</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linguistic Only</td>
<td>9.57</td>
</tr>
<tr>
<td>Speech Only</td>
<td>7.51</td>
</tr>
<tr>
<td>All Features</td>
<td>6.96</td>
</tr>
</tbody>
</table>

Table 2: MSE: Feature Subsets, GB Models

Figure 2 shows the actual scores vs. predicted scores for each meeting. While there is a strong positive correlation between the actual and predicted scores, we can see a few cases where a meeting score was much lower than predicted.

The results above show that adding linguistic features can improve speech based models of meeting satisfaction. However, given the general nature of the lexical feature set, it is likely that some linguistic features have more relevance to meeting management than others. With this in mind, we examine the usefulness of individual linguistic features. In the following analysis, we focus on linguistic features other than the sparse bag-of features. Figure 3 shows the top 10 features in terms of feature importance for the Gradient Boosted Trees models. Interestingly, sentiment features did not appear in the top 10 features, while GloVe features (the \(vdim \) features in the graph) appear to be very useful. This suggests some abstraction over lexical information, beyond what is captured in our linguistic features, is required for this task. It also suggests that further work on learning lexical feature representations directly from the transcript is a promising future approach for learning representations of group interaction in general. We also see that type-token ratio is relatively useful, as is the dependency parse feature based on the maximum branching factor of any node (\(maxchild_{sc} \)). This means that complexity of lexical content may be a useful measure for characterizing a meeting in terms of its management.

The psycholinguistic features, particularly concreteness (CNC), familiarity (FAM), imageability (IMG), and age of acquisition (AOA), also appear to be effective features. Figure 4 shows the relationship between IMG and the outcome variable. There is a weak positive correlation between the two variables, showing a slight tendency for meetings with higher management ratings to feature language that is more easily associated with mental images, i.e. has higher specificity. There are similar weak positive correlations between the outcome variable and each of AOA and CNC, whereas the outcome variable has a weak negative correlation with FAM. Taken together,
these suggest that meetings with higher ratings for management and direction tend to have language that is more concrete and sophisticated, while meetings with lower management ratings tend to have language that is more vague, abstract, and yet familiar (i.e. generic). However, further detailed analysis of actual instances and their placement with respect to important events in meetings, e.g. decision points, and participant roles is necessary to support this idea more robustly.

6 CONCLUSION

In this paper, we have shown that multimodal features can be used to predict group members’ attitudes about the management and direction of their meeting, at a rate significantly better than baseline performance. Gradient Boosted Trees performed the best overall. Linguistic features on their own did not yield competitive performance, but the best results were found by combining speech and linguistic features. This highlights the advantage of taking a multimodal approach to automatically detecting private affective states that may be manifested subtly in the group interaction.

We initially hypothesized that using linguistic features could improve model interpretability. That is, it would be easier and more effective to explain why a prediction was made in terms of word types, sentiment, and lexical cohesion, than in terms of acoustic features or gestures. However, the results suggest there are dependencies between lexical and acoustic features that need to be taken into account when explaining model predictions. Moreover, feature analysis indicated that the less interpretable word embedding features played an important role in the combined model. Nevertheless, the analysis suggested a number of potential avenues for further investigation with respect to interpretability. In particular, we identified concreteness and imageability of lexical content as a potentially informative cues for group satisfaction with respect to meeting management. Future work will look at the relationship between the more interpretable linguistic features and lexical representations learned from the data such as word embeddings. We also note that the acoustic features used in these experiments only give a very coarse representation of the meeting. Further work will look at combining linguistic features with a richer set of acoustic features at a more fine-grained level using sequence analysis techniques.

Another future direction will be to examine some of the extreme cases where a meeting is rated either very high or very low in terms of management and direction, and supplement the regression experiments described here with classification experiments that attempt to discriminate between the two cases in terms of multimodal features of the discussion. We will also carry out more in-depth feature analysis to determine which factors are highly associated with good or poor meeting management. We also plan to perform more detailed analysis of the effect of roles on predicting group-level attitudes towards meeting management. We will compare the current results with models that omit the ratings of the PM, and also look at cases where the PM had a strongly negative opinion regarding the direction of the meeting. Finally, we will also develop multi-level models for individual attitudes that explicitly take into account participant role and the place of the meeting in the scenario sequence.

Acknowledgement Gabriel Murray was supported by an NSERC Discovery Grant.

REFERENCES