Reference intervals for canine hematologic analytes using Siemens Advia 120

OIKONOMIDIS I. Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki

TSOULOUMI T. Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki

PAPOUTSI A. Private practitioner

KRITSEPI-KONSTANTINOU M. School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki

http://dx.doi.org/10.12681/jhvms.18875

To cite this article:

ABSTRACT. Hematologic investigation is essential for the evaluation of health status of companion animals. Appropriate and accurate reference intervals (RIs) are required for the interpretation of laboratory results. Thus, the primary aim of the present study was to establish canine complete blood count (CBC) RIs using Advia 120, a widely used in veterinary medicine automated hematology analyzer. Additional objectives were to evaluate sex as a partitioning factor of RIs and to investigate the effect that breed size has on CBC RIs. Reference individuals were selected by indirect sampling method from the medical records of a veterinary teaching hospital. The reference population comprised 284 adult dogs of both sexes and various breeds. The reference individuals were allocated into 3 groups based on breed size (small-sized, medium-sized and large-sized breeds). Complete blood count results from the dogs that met the inclusion criteria were used for the nonparametric calculation of RIs. Statistical and nonstatistical criteria were employed in order to decide whether sex-specific RIs are needed. Depending on the data distributions, mean or median comparisons were used to determine the effect of breed size and lifestyle on CBC results. Nine outliers were detected based on CBC results. The estimated RIs were generally comparable to those previously reported in the literature. Sex-dependent partitioning of RIs was indicated by the statistical criteria for a few analytes. From a clinicopathologic point of view though, sex-dependent partitioning of RIs is questioned and seems not to be required. Breed size appears to have an effect on CBC RIs. The RIs determined in the present study can be used as a guide for the interpretation of CBC results in dogs and can potentially be adopted by veterinary laboratories using Advia 120. Finally, based on the results of this study, breed size should probably be considered when interpreting CBC results.
INTRODUCTION

Complete blood count (CBC) is a routinely performed blood test for the evaluation of overall health status in companion animal medicine. As for every laboratory test, interpretation of the CBC results is highly dependent on appropriate and accurate reference intervals (RIs). The latter also facilitate the implementation of external quality assurance practices. Siemens Advia 120 is a widely used in veterinary medicine automated hematology analyzer that employs laser flow cytometry technology. However, to our knowledge, there is only one study reporting CBC RIs in dogs using Advia 120 (Moritz et al., 2004). In that study, the reference population was comprised of 46 dogs. According to ASVCP Quality Assurance and Laboratory Standards (QALS) Committee guidelines for the determination of RIs in veterinary species though, the reference population should be ideally ≥120, in order the nonparametric method to be implemented for the calculation of RIs (Friedrichs et al., 2017). Hence, the primary objective of the present study was to establish RIs for hematologic analytes in a thus large population of adult dogs using Advia 120. The secondary objectives were: i) to investigate whether sex-specific RIs are required in dogs, similarly to humans, and ii) to further examine the effect of breed size on CBC RIs.

MATERIALS AND METHODS

Reference individuals were selected by a postcri-ri method. The medical records of the Companion Medicine Clinic of the Department of Veterinary Medicine of the University of Thessaly were used to select dogs that met the inclusion criteria for the study. The dogs were classified into three groups based on breed size (small, medium, large). The reference values were calculated nonparametrically, using the CBC results of the dogs that fulfilled the inclusion criteria for the study. In order to determine if sex-specific RIs are required in dogs, statistical and non-statistical criteria were applied. Depending on the distribution of the data, a comparison of means or medians was performed to examine the possible effect of breed size on the CBC RIs. Nine dogs were excluded from the study, due to clearly abnormal CBC results. In general, the reference values calculated in the present study are similar to those reported in the international literature. Additionally, based on the application of statistical criteria, it was demonstrated that for some CBC parameters different reference values are required for the two sexes. However, from a veterinary point of view, the partitioning of the reference values is questionable and may not be necessary.

Keywords: complete blood count; dog; partitioning; reference values, breed size; sex
Animal Clinic, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece between 2012-2016 were retrospectively reviewed for dogs that have been presented for a routine health examination, castration or minor dental problems. The inclusion criteria were the following: no lactation, no history of illness or medication in the near past, age ≥6 months, complete vaccination and deworming, absence of abnormal findings during physical examination, CBC performed within the same day of sampling.

In our laboratory, blood samples are routinely being centrifuged after the completion of hematologic analysis and the plasma is macroscopically examined for the presence of hemolysis or lipemia. Additionally, when thrombocytopenia (defined in our laboratory as platelets count <200,000/μL) is identified, a blood film is always evaluated for the presence of platelet clumps. Thus, medical records reporting either hemolysis/lipemia or pseudothrombocytopenia were excluded from the study.

A total of 284 dogs fulfilled the defined inclusion criteria. The reference population was comprised of 110 male and 174 female dogs. The mean age of dogs was 6.0 years (range: 0.5-16.0 years), while the mean body weight was 14.9 kg (range: 1.6-52.0 kg).

The exact distribution of canine breeds in the reference population of the study is presented in Table 1. The reference individuals were categorized into 3 groups based on breed size; 133 small-sized breeds, 80 medium-sized breeds and 71 large-sized breeds. Mixed breed dogs were allocated into the aforementioned categories based on their body weight, as previously described (Taylor et al., 2010): small-sized breeds: <10 kg, medium-sized breeds: 10-19.9 kg and large-sized breeds: >20 kg. Out of 284 dogs, 194 had an indoor lifestyle, whereas 90 were housed outdoors.

Blood samples were collected into K3EDTA containing tubes (Deltalab, Barcelona, Spain). All hematologic analyses were performed on Advia 120 automated hematology analyzer (Siemens Healthcare Diagnostics, Deerfield, USA) with the canine setting of the multispecies software. The analytes that were available in all medical records were the following: red blood cells (RBC) count, hemoglobin (HGB) concentration, hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW), white blood cell (WBC) count, differential WBC count (neutrophil, lymphocyte, monocyte, eosinophil and basophil counts), large unclassified cell (LUC) concentrations.
count, platelet (PLT) count and mean platelet volume (MPV). At least one control (Siemens Healthcare Diagnostics, Deerfield, USA) was run daily and prior to blood sample analysis to ensure the good internal quality control.

The statistical software package SPSS 19 (SPSS Inc., Chicago, USA) was used for the calculation of descriptive statistics and comparison studies between breed-specific subgroups. Depending on the raw and transformed data distribution, mean or median comparison was used in order to determine the effect of breed size on CBC results. The RIs were determined using the statistical language R (R Foundation for Statistical Computing, Vienna, Austria) and the package referenceIntervals. Outliers were detected using Horn’s method. The nonparametric and bootstrapping methods were used for the determination of reference and confidence intervals, respectively. Calculated RIs were at the 95th percentile, while confidence intervals were at the 90th percentile.

In order to determine whether sex-specific RIs are required in dogs, both distance and proportion statistic

Table 2: Descriptive statistics and reference intervals for hematologic analytes in dogs (n=275), using Advia 120.

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Unit</th>
<th>N</th>
<th>Mean</th>
<th>Median</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>2.5th Percentile (90% CIs)</th>
<th>97.5th Percentile (90% CIs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red blood cells</td>
<td>10^6/μL</td>
<td>275</td>
<td>6.9</td>
<td>6.9</td>
<td>0.8</td>
<td>4.95</td>
<td>9.27</td>
<td>5.36 (5.06-5.53)</td>
<td>8.67 (8.40-8.80)</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>g/dL</td>
<td>275</td>
<td>15.8</td>
<td>15.8</td>
<td>1.9</td>
<td>11.5</td>
<td>20.8</td>
<td>12.2 (11.6-12.6)</td>
<td>19.4 (18.9-19.6)</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>%</td>
<td>275</td>
<td>47.5</td>
<td>47.4</td>
<td>5.7</td>
<td>33.1</td>
<td>62.2</td>
<td>37.2 (34.9-37.7)</td>
<td>58.7 (57.3-59.5)</td>
</tr>
<tr>
<td>MCV</td>
<td>fl</td>
<td>275</td>
<td>68.9</td>
<td>69.2</td>
<td>3.4</td>
<td>58.4</td>
<td>78.8</td>
<td>61.6 (59.5-62.9)</td>
<td>75.6 (74.5-77.4)</td>
</tr>
<tr>
<td>MCH</td>
<td>pg</td>
<td>273</td>
<td>22.9</td>
<td>23.0</td>
<td>1.2</td>
<td>18.8</td>
<td>26.5</td>
<td>20.1 (19.3-20.4)</td>
<td>25.1 (24.9-26.5)</td>
</tr>
<tr>
<td>MCHC</td>
<td>g/dL</td>
<td>274</td>
<td>33.2</td>
<td>33.3</td>
<td>0.9</td>
<td>30.2</td>
<td>36.4</td>
<td>31.4 (30.5-31.7)</td>
<td>34.9 (34.8-35.7)</td>
</tr>
<tr>
<td>RDW</td>
<td>%</td>
<td>275</td>
<td>13.5</td>
<td>13.4</td>
<td>0.9</td>
<td>11.5</td>
<td>16.9</td>
<td>12.0 (11.8-12.1)</td>
<td>15.7 (15.3-16.0)</td>
</tr>
<tr>
<td>White blood cells</td>
<td>10^3/μL</td>
<td>274</td>
<td>9.6</td>
<td>9.4</td>
<td>2.5</td>
<td>4.4</td>
<td>17.1</td>
<td>5.5 (4.8-5.7)</td>
<td>15.8 (15.1-17.0)</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>%</td>
<td>275</td>
<td>63.3</td>
<td>64.2</td>
<td>9.5</td>
<td>29.3</td>
<td>83.0</td>
<td>42.4 (37.4-46.0)</td>
<td>78.8 (77.5-81.3)</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>10^3/L</td>
<td>273</td>
<td>6.1</td>
<td>5.8</td>
<td>1.9</td>
<td>2.8</td>
<td>12.3</td>
<td>3.2 (2.9-3.3)</td>
<td>11.1 (10.5-12.3)</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>%</td>
<td>274</td>
<td>24.8</td>
<td>22.9</td>
<td>8.4</td>
<td>8.6</td>
<td>54.2</td>
<td>11.6 (10.5-12.5)</td>
<td>44.4 (43.6-49.3)</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>10^3/μL</td>
<td>273</td>
<td>2.3</td>
<td>2.2</td>
<td>0.9</td>
<td>0.7</td>
<td>5.9</td>
<td>1.0 (0.8-1.1)</td>
<td>4.7 (4.5-5.9)</td>
</tr>
<tr>
<td>Monocytes</td>
<td>%</td>
<td>274</td>
<td>5.4</td>
<td>4.9</td>
<td>2.1</td>
<td>2.0</td>
<td>16.1</td>
<td>2.7 (2.4-2.9)</td>
<td>11.9 (10.2-15.9)</td>
</tr>
<tr>
<td>Monocytes</td>
<td>10^3/μL</td>
<td>274</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>1.8</td>
<td>0.2</td>
<td>1.2 (1.0-1.6)</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>%</td>
<td>273</td>
<td>4.9</td>
<td>4.4</td>
<td>3.4</td>
<td>0.1</td>
<td>18.1</td>
<td>0.3 (0.2-0.5)</td>
<td>13.6 (13.1-18.1)</td>
</tr>
<tr>
<td>Eosinophils</td>
<td>10^3/μL</td>
<td>273</td>
<td>0.47</td>
<td>0.40</td>
<td>0.36</td>
<td>0.01</td>
<td>2.06</td>
<td>0.03 (0.02-0.05)</td>
<td>1.45 (1.40-2.06)</td>
</tr>
<tr>
<td>Basophils</td>
<td>%</td>
<td>275</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0</td>
<td>2.8</td>
<td>NG</td>
<td>0.1 (1.2-1.9)</td>
</tr>
<tr>
<td>Basophils</td>
<td>10^3/μL</td>
<td>275</td>
<td>0.04</td>
<td>0.04</td>
<td>0.03</td>
<td>0</td>
<td>0.29</td>
<td>NG</td>
<td>0.01 (0.11-0.16)</td>
</tr>
<tr>
<td>LUC</td>
<td>%</td>
<td>275</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0</td>
<td>6.9</td>
<td>NG</td>
<td>0 (0-0.1)</td>
</tr>
<tr>
<td>LUC</td>
<td>10^3/μL</td>
<td>275</td>
<td>0.10</td>
<td>0.07</td>
<td>0.10</td>
<td>0</td>
<td>1.04</td>
<td>NG</td>
<td>0.37 (0.27-0.42)</td>
</tr>
<tr>
<td>Platelets</td>
<td>10^3/μL</td>
<td>273</td>
<td>354</td>
<td>330</td>
<td>115</td>
<td>149</td>
<td>844</td>
<td>193 (170-206)</td>
<td>661 (630-844)</td>
</tr>
<tr>
<td>MPV</td>
<td>fl</td>
<td>274</td>
<td>11.7</td>
<td>11.1</td>
<td>2.3</td>
<td>8.2</td>
<td>22.9</td>
<td>8.9 (8.5-9.0)</td>
<td>17.5 (17.0-21.8)</td>
</tr>
</tbody>
</table>

CIs, confidence intervals; G, Gaussian; LUC, large unclassified cells; Max, maximum; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular volume; Min, minimum; MPV, mean platelet volume; NG, non-Gaussian; RDW, red cell distribution width; SD, standard deviation.
tical criteria previously proposed were applied (Lahti et al., 2002; Lahti et al., 2004). However, for the final decision, non-statistical criteria were employed, laying emphasis on the clinical relevance of the reported differences between the sex-specific RIs.

RESULTS
Nine dogs were excluded from the study based on profoundly abnormal CBC results (moderate to severe leukopenia [n=1], moderate to severe leukocytosis [n=1], severe monocytosis [n=1], severe eosinophilia [n=2] and severe thrombocytopenia [n=3]). Few outliers (n=1-2) were identified for some analytes using Horn’s method. The results of the statistical analysis and calculated CBC RIs are presented in Table 2.

Sex-dependent partitioning of RIs was statistically indicated for lymphocytes count (based on distance statistical criteria) and monocytes count (based on proportion statistical criteria). Statistically significant differences were noted between small-, medium- and large-sized dog breeds in the following analytes: RBC count (ANOVA, p<0.010), HGB concentration (ANOVA, p<0.001), HCT (ANOVA, p<0.001), MCV (ANOVA, p=0.020), eosinophils count (Kruskal-Walis Test, p=0.020) and PLT count (ANOVA, p<0.001). However, only the differences in RBC count, HGB concentration, and HCT were proven statistically significant between the different breed-specific subgroups with the same lifestyle (Figure 1).

Specifically, among the dogs with indoor lifestyle, statistically significant differences were observed between small-, medium-, and large-sized dog breeds in RBC count (ANOVA, p=0.020), HGB concentration (ANOVA, p=0.004), and HCT (ANOVA, p=0.002). Among the dogs with outdoor lifestyle, statistically significant differences were documented

Figure 1. Boxplots of the red blood cell (RBC), hemoglobin (HGB), and hematocrit (HCT) values of the different breed size-specific subgroups. In the upper row, boxplots of RBC, HGB, and HCT values of small-, medium-, and large-sized dogs breeds with indoor lifestyle are depicted. In the lower row, boxplots of RBC, HGB, and HCT values of small-, medium-, and large-sized dogs breeds with outdoor lifestyle are presented. The lines represent the main body of data, whereas the dot represents an observed outlying point. The boxes represent the interquartile ranges; they are bisected by a line, which stands for the mean value. *P < 0.10, **P < 0.05, ***P < 0.01.
partitioning is the decrease of the variability of the reference population, which eventually leads to the narrowing of RIs. The reference population should comprise a minimum of 40 animals in order to be considered for partitioning of RIs (Friedrichs et al., 2017). Since the aforementioned criterion was met in our study, we investigated whether sex-dependent partitioning of RIs is necessitated. Based on previously proposed statistical criteria for Gaussian and non-Gaussian data distributions (Lahti et al., 2002; Lahti et al., 2004), partitioning was warranted only for lymphocytes and monocytes counts. From a clinicalopathologic point of view though, sex-dependent partitioning of RIs is questioned and seems to not be required for any of the aforementioned analytes, in accordance with the relevant literature (Bourgès-Abella et al., 2011). In that study, sex-specific RIs were required for HCT and PLT count (Bourgès-Abella et al., 2011), this is not confirmed by our results. However, on the grounds of the well-known effect that breed has on hematologic analytes (Lawrence et al., 2013), we suggest that sex should be investigated as a partitioning factor in dogs of the same breed. The need for breed-dependent partitioning of RIs was not investigated in the present study, due to the insufficient number of individual canine breeds.

Several differences were observed between small-, medium- and large-sized breeds; a rather expected finding, based on the existing literature (Lawrence et al., 2013). However, when the breed size-specific subgroups were compared in the context of the same lifestyle, the differences were proven statistically significant only for RBC count, HGB concentration, and HCT, with the larger breed dogs having generally lower values.

Some limitations are recognized in the present study. Our RIs were determined a posteriori, by extracting the reference individuals from a database of medical records. Although the a posteriori determination of RIs is not considered ideal, it is acceptable by the ASVCP QALS Committee (Friedrichs et al., 2017). The main advantage of this method, compared with the a priori method, is the capacity to include a large reference population, whereas the primary disadvantage is the limited control of some preanalytic and analytic factors. In an attempt to overcome the aforementioned limitation, strict inclusion and exclusion criteria were set. Moreover, in the context of the present study, it was investigated whether sex-dependent partitioning of CBC RIs is necessitated or not, while the effect of breed size on CBC RIs was also assessed.

In general, our CBC RIs are in agreement with those previously reported by Moritz et al. (2004). From a clinical point of view, the most significant differences are noted in RIs for RBC count, HGB concentration, HCT and WBC, neutrophils and lymphocytes counts. Specifically, our RIs for RBC count, HGB concentration and HCT are generally shifted downwards. The upper reference limit of WBC count and the lower reference limit of lymphocytes count are also shifted downwards in the present study. In terms of neutrophils count, our RIs are wider than those of Moritz et al. (2004). The observed differences between our RIs and those reported in the literature (Moritz et al., 2004) may be attributed, first and foremost, to preanalytic factors (notably the size, the demographic characteristics and the selection method of the reference population) and secondarily to analytic factors (e.g. statistical analysis).

The need for partitioning of RIs is increasingly discussed in veterinary medicine (Reynolds et al., 2010; Lavoué et al., 2013; Lawrence et al., 2013; Paltrinieri et al., 2014; Hegstad-Davies et al., 2015; Oikonomidis et al., 2018)). The rationale behind partitioning is the decrease of the variability of the reference population, which eventually leads to the narrowing of RIs. The reference population should comprise a minimum of 40 animals in order to be considered for partitioning of RIs (Friedrichs et al., 2017). Since the aforementioned criterion was met in our study, we investigated whether sex-dependent partitioning of RIs is necessitated. Based on previously proposed statistical criteria for Gaussian and non-Gaussian data distributions (Lahti et al., 2002; Lahti et al., 2004), partitioning was warranted only for lymphocytes and monocytes counts. From a clinicalopathologic point of view though, sex-dependent partitioning of RIs is questioned and seems to not be required for any of the aforementioned analytes, in accordance with the relevant literature (Bourgès-Abella et al., 2011). In that study, sex-specific RIs were required for HCT and PLT count (Bourgès-Abella et al., 2011), this is not confirmed by our results. However, on the grounds of the well-known effect that breed has on hematologic analytes (Lawrence et al., 2013), we suggest that sex should be investigated as a partitioning factor in dogs of the same breed. The need for breed-dependent partitioning of RIs was not investigated in the present study, due to the insufficient number of individual canine breeds.

Several differences were observed between small-, medium- and large-sized breeds; a rather expected finding, based on the existing literature (Lawrence et al., 2013). However, when the breed size-specific subgroups were compared in the context of the same lifestyle, the differences were proven statistically significant only for RBC count, HGB concentration, and HCT, with the larger breed dogs having generally lower values.

Some limitations are recognized in the present study. Our RIs were determined a posteriori, by extracting the reference individuals from a database of medical records. Despite the fact that the inclusion criteria were strict, they were not set before sampling, as ideally should have been. Additionally, although the preanalytic and analytic procedures are well standardized in our laboratory, we cannot exclude a minor effect of preanalytic and analytic factors on the calculated CBC RIs. Finally, a limitation concerning the RIs for PLT count is recog-
nized, since data of the microscopic evaluation of platelets in the blood film were available only for dogs that had platelets count <200,000/μL. In this context, dogs with platelets count ≥200,000/μL and platelet clumps were inevitably included in our reference population, while dogs with platelets count <200,000/μL and evidence of platelet clumps in the blood film were indiscriminately excluded from our study. Thus, our platelets count RIs should be considered somewhat biased.

CONCLUSIONS

Complete blood count RIs using Advia 120 were established based on a large reference canine population with pre-existing CBC results and in accordance with ASVCP QALS Committee guidelines for the determination of RIs in veterinary species. In addition, the necessity of sex-dependent partitioning of RIs was investigated, using both statistical and non-statistical criteria, while the effect of breed size of dogs on CBC RIs was also assessed. Our RIs can potentially be adopted by veterinary laboratories using Advia 120 after a proper validation. Sex-dependent partitioning of RIs seems to not be required, while the effect of breed size of the dogs should be taken into consideration when evaluating CBC results. Finally, the present study can also be used as a paradigm for the \textit{a posteriori} determination of RIs based on the official ASVCP QALS Committee guidelines.

ACKNOWLEDGEMENTS

The authors have no acknowledgements to state.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.
REFERENCES

