Activin A inhibits activation of human primordial follicles in vitro

Citation for published version:

Digital Object Identifier (DOI):
10.1007/s10815-010-9395-6

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Assisted Reproduction and Genetics

Publisher Rights Statement:
RoMEO green

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Activin A inhibits activation of human primordial follicles in vitro

Chi Christina Ding · K. Joo Thong · Archie Krishna · Evelyn E. Telfer

Abstract

Purpose To determine whether Activin A affects the activation and survival of human primordial follicles in vitro.

Methods Ovarian cortical biopsies from eight women undergoing elective caesarean sections or benign gynaecological procedures were taken and cut into small pieces (1–3 mm³), cultured in serum-free medium for 7 days with/without human recombinant Activin A at a concentration of either 50 or 100 ng/ml. Ovarian tissue were analysed by histology for follicle viability, development and density.

Result(s) Significant activation of primordial follicles within cultured cortical tissue was observed after 7 days in control medium. However, medium supplemented with Activin A at 50 ng/ml resulted in significant inhibition of follicular activation. Increasing the concentration of Activin A to 100 ng/ml reversed the inhibitory effect. The effect of Activin A appeared to be specific to activation of non-growing (primordial) follicles into the growing population since no significant differences in follicle viability was observed between treatment groups.

Conclusion(s) Activin A at a concentration of 50 ng/ml can inhibit the spontaneous activation of human primordial follicles in vitro indicating that this may be a component of the signalling mechanisms that maintain follicular quiescence.

Keywords Primordial follicle · Activin A · In vitro culture · Ovarian cortical tissue

Introduction

It is estimated that one in 715 of the adult population has been treated for cancer in childhood [1, 2]. Advances in treatments now highlight the adverse affects of such medicines on female fertility. Chemotherapy regimens vary in their gonadotoxicity [3] but for many young women premature ovarian failure (POF) is a likely outcome. To preserve their fertility options many women are now able to store ovarian cortical tissue prior to treatment. However, the option to use this tissue is currently limited to transplantation that may not be suitable for all women [4]. There is therefore a pressing demand for improvement in the area of female fertility preservation and this underpins the drive to develop techniques to support oocyte growth from the abundant population of primordial follicles to maturity in vitro [5]. Such culture systems have been developed for mice and offspring have been produced from oocytes developed in vitro from primordial follicles [6, 7]. Similar culture systems have been difficult to develop in humans but the feasibility of this approach has been demonstrated by the development of human antral follicles from...
primordial / primary stages using a two-step culture system [8]. To optimise these systems a greater understanding of factors regulating early follicle development is required.

Maintenance of the “resting” primordial pool of follicles appears mainly to be regulated by inhibitory factors [9] and the removal of ovarian tissue from its in vivo environment induces spontaneous activation and growth of primordial follicles [8, 10–13]. This spontaneous activation may lead to increased degeneration therefore it is important to optimise culture conditions to support these early stages. Previous work has shown that Activin A promotes growth and improves health of human preantral follicles grown in vitro and the aim of this study was to determine whether Activin had a similar effect at primordial stages.

Activins, which belong to the superfamily of TGFβ, are homodimers composed of two inhibin β subunits termed βA and βB. Three isoforms of Activin exist, differing in their β subunits (βAβA as Activin A, βBβB as Activin B and βAβB as Activin AB). Activin A is the most abundant isoform of activins and the most extensively studied member of the TGFβ family. Activin is produced by granulosa cells of the ovary and it has been localised in granulosa cells from primary to tertiary follicles [14]. Similar to other TGFβ family members, Activin A influences many facets of cell activities such as proliferation, differentiation, motility and apoptosis through the transmembrane receptor mediated Smad pathway. It has complex regulatory mechanisms modulated by extracellular binding proteins (follistatin, β glycan), intracellular antagonistic I-Smads and post transcription modulators [15, 16]. Activin A has been demonstrated to promote granulosa cell proliferation in a dose dependant manner [17, 18].

Studies into the role of Activin A in early folliculogenesis have produced conflicting results that appear to be stage, age and dose dependent. While, Activin A is generally believed to have a stimulatory role on the preantral stage of follicular development [7, 8, 19–22], there are studies that show its inhibitory role in follicular growth and development at this stage [23, 24]. The aim of this study was to determine whether Activin affected the activation of primordial follicles in vitro and the subsequent health of growing follicles.

Materials and methods

Patients

Ovarian cortical biopsies of approximately 5–10 mm² were collected after informed consent from 8 women aged 26–39 years (mean ± SD=33±5 years) undergoing elective caesarean sections (n=5) or benign gynaecological procedures (n=3) at the Edinburgh Royal Infirmary. Written consent was obtained from each patient, and the study was approved by the local ethics committee.

Ovarian tissue culture

Tissue collected during the surgical procedure was transported immediately to the laboratory on a gauze soaked in normal saline (n=8). Under sterile conditions, the biopsy tissue was cut into smaller pieces of 2 mm² (range of 1–3 mm²). A piece from each fresh biopsy sample was taken and fixed immediately for histological analysis, whilst the remainder were cultured in pre-warmed 24 well culture dishes (Nunclon, Nunc, Denmark) with inserts (0.4 um Millicell Culture Plate Inserts, Millipore, France) for 7 days. Three pieces of tissue from each specimen were added to each well containing 200 ul of either control medium [McCoy’s 5A modified medium supplemented with Human Serum Albumin (5 mg/ml), Penicillin G/Streptomycin Sulphate (0.1 mg/ml), c-GMP (1.1 mg/ml), Fresh Ascorbic Acid (50 ug/ml), L-Glutamine (3 mM), Transferrin (2.5 ug/ml), Selenium (4 ng/ml), Insulin (10 ug/ml) and FSH (0.5 IU/ml), all Sigma Chemicals Poole] with or without either 50 or 100 ng of Activin A (Invitrogen) inside and outside of the insert in a humidified incubator at 37°C with 5% CO₂ in air. Every second day 200 ul of culture medium within the inserts was removed and replaced with fresh medium.

Fixation and histological analysis

Cultured tissue was removed after 7 days and fixed in Bouin’s solution for 12 h then dehydrated in increasing concentrations of ethanol (70%, 90% and 100%). Following dehydration, tissue was immersed in cedar wood oil (BDH Laboratory Supplies, Poole UK) for 24 h then placed in toluene (Fisher Scientific UK Ltd, Loughborough UK) for 30 min to remove all traces of the oil. Tissue was then embedded in paraffin wax at 60°C for 4 h, the wax being renewed every hour to ensure complete clearance of all the toluene. 6 um thick sections were cut, mounted on gelatine coated slides and left to dry overnight prior to staining with haematoxylin and eosin.

A complete morphological analysis and follicle count was carried out on every 10th section. Follicles were only counted and photographed when the oocyte nucleolus was present to avoid double counting. Developmental stages of viable follicles were classified based on granulosa cell morphology surrounding the follicle: (1) Primordial stage: oocyte surrounded by a layer of flattened granulosa cells; (2) Primary stage: oocyte surrounded by a complete layer of cuboidal granulosa cells; (3) secondary stage: oocyte surrounded by two or more layers of cuboidal granulosa cells. The proportion of follicles at different developmental stage is defined as percentage of viable follicle over the total count.
Follicles were classified for viability using a previously described method [8]: type 1: intact oocyte (regular shape and even cytoplasm) in contact with a complete layer of granulosa cells and less than 10% of pyknotic granulosa cells present; type 2: misshapen oocyte still surrounded by granulosa cells with more than 10% pyknotic granulosa cells; type 3: oocyte dissociated from granulosa cells with more than 10% pyknotic granulosa cells; type 4: fragmented oocyte with more than 10% pyknotic granulosa cells. For analytical purposes, results were then grouped into viable follicle (including type 1 and 2 follicles) and nonviable follicle (including type 3 and 4 follicles). Follicle viability or proportion of viable follicles is defined as percentage of the number of viable follicles out of the total scored.

The integrated measuring tool in the ImageJ software (http://rsbweb.nih.gov/ij/) was used to measure tissue area after calibration with a stage micrometer. The volume of a tissue slide is computed by multiplying the tissue area with the known thickness (6 um) of each section. The sum of the volume of all slides for a tissue sample is therefore the volume of the tissue. Follicle density of a tissue is defined as the number of follicles divided by the tissue volume.

Statistical analysis

Statistical comparisons between groups for all data (viability, development and density) were carried out using t-test. Before analysis, the percentage data were normalized using arcsine transformation. Bonferroni’s correction was used to correct for multiple testing. Significance is reported at the 0.017 level (0.05 before Bonferroni’s correction). Data are presented as mean ± SEM.

Results

A total of 1137 follicles from eight patients were examined under the light microscope. The numbers of follicles obtained from each patient together with their age are shown in Table 1.

71% of follicles in freshly isolated uncultured tissue (Fig. 1) were identified as primordial. After 7 days of culture significant activation of primordial follicles was observed (73.7% growing) in the control medium, however tissue cultured in medium supplemented with Activin A at 50 ng/ml demonstrated significant inhibition of activation of the primordial population compared with the control medium [53.6% of follicles at primordial stage in presence of 50 ng/ml Activin A compared with 26.3% in control medium (p<0.003)] (Fig. 2). Tissue cultured at the higher dose of Activin A (100 ng/ml) did not show this inhibitory effect after 7 days in culture and the proportion of primordial follicles was not significantly different from that in control media (31.6%).

The proportion of viable follicles after 7 days of culture was significantly reduced by culturing but not affected by treatment with Activin A (42.5% in control group, 41.1% in 50 ng/ml and 51.3% in 100 ng/ml Activin A) compared with the fresh uncultured tissue at day 0 (92.9%) (P=0.001 between the uncultured tissue and all cultured groups, P>0.313 between all cultured groups). (Fig. 3)

<table>
<thead>
<tr>
<th>Patient</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Mean</th>
<th>SEM</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>34</td>
<td>36</td>
<td>29</td>
<td>38</td>
<td>30</td>
<td>34</td>
<td>39</td>
<td>26</td>
<td>33</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>Follicle No.</td>
<td>258</td>
<td>188</td>
<td>116</td>
<td>180</td>
<td>170</td>
<td>52</td>
<td>111</td>
<td>62</td>
<td>142</td>
<td>8.7</td>
<td>1137</td>
</tr>
</tbody>
</table>

Table 1 Display data on age and the number of follicles studied for each individual patient.

Fig. 1 Follicles photographed under 400× magnification using a light microscope (a) Uncultured fresh ovarian tissue with primordial follicles (b) Primordial follicle after 7 days culture supplemented with 50 ng/ml Activin A
Whilst variation in follicle density was observed between patients, no significant differences were observed between any of the treatment groups either before or after culture (Fig. 4).

Qualitative assessment of the surrounding cellular compartments of follicles indicates there may be a correlation between the inhibition of follicles and increased stromal cell density (Fig. 5). The most dense stroma was found in fresh uncultured tissue followed by tissue cultured with supplemented Activin A (50 ng/ml similar to 100 ng/ml) and the least dense stroma was found in the tissue cultured with control medium.

Discussion

Central to our understanding of female fertility and developing in vitro growth systems is to know how the “resting” population of primordial follicles is regulated. Components of this regulation involve suppressive and activating factors [25, 26]. This is the first study to examine the role of Activin A in the activation of human primordial follicles and we have found that Activin A has a dose dependent inhibitory effect on this process. The proportion of primordial follicles activated to grow was significantly
lower in the presence of 50 ng/ml of Activin A compared with control or medium containing 100 ng/ml Activin A.

Activin A has been associated with a stimulatory role during the growing stages of follicle development in a range of species and we have previously shown that its presence enhances in vitro growth of human preantral follicles [8]. However, inhibitory actions of Activin A on small secondary murine follicles have been reported [23]. Indeed, inhibitory roles of activin A have been documented in various cells and tissues such as CHO-K1 (Chinese hamster ovary) cell line [27], and more recently in the luteinisation of human granulosa cells [28]. The exact mechanism of Activin A’s inhibitory action is not known but there is some evidence in mice that changes in intraovarian concentration of Activin affects follicle development in a stage dependent manner [23] and the data presented here agrees with that.

Activin ligands act as homodimers of βA subunits (activin A) or βB subunits (activin B) binding transmembrane receptors, which signal through either Smad or extracellular signal-regulated protein kinase (Erk) pathways to affect cell function [29]. The subunits along with the activin receptors type I, IIA and IIB are expressed in ovarian cells during follicular development in human ovaries [30]. Activin or activin receptors have not been localised in human primordial or primary follicles but activin type II receptor has been localised in human secondary follicles [31]. Therefore the effect on primordial follicle activation observed in this study may be the result of an indirect effect of Activin acting via another cell type, possibly stromal cells.

Little is known about the underlying signalling pathways that affect primordial follicle activation but a growing
body of evidence is now emerging to show that the phosphatidylinositol-3’-kinase (PI3K-AKT) pathway is a major regulator of early follicle/oocyte development and that components of this pathway are involved in controlling the rate of activation from the non-growing population of follicles [32]. A recent study showed that the phosphatase PTEN acts within the oocyte as a negative regulator of PI3K-AKT and suppresses activation of follicle development in mice [33]. Whether Activin signalling in this culture model affects the PI3K pathway either directly or indirectly should be investigated further.

The absence of an inhibitory effect on follicle activation observed at the higher concentration of Activin A (100 ng/ml) is in accordance with findings from other published animal studies. Mouse ovaries cultured in the presence of 100 ng/ml of Activin A showed no significant difference on the activation of primordial follicles when compared to the control group [34]. This higher dose of Activin-A may be stimulating an increased production of follistatin therefore reducing the biological activity of Activin or it could be altering the differentiation of somatic cells and therefore altering the downstream effect of activin signaling. Further studies using our culture models will be required to elucidate these actions.

It has been suggested that Activin A may inhibit follicular development through atretogenic action. Intrabursal injection of Activin A has been reported to increase the number of atretic follicles and decrease granulosa cell proliferation [35]. The results presented here indicate that the increased proportion of non-growing follicles observed in 50 ng/ml Activin (54%) compared to control group (26%) was not due to an increase in atresia since no differences in total numbers or viability were detected between groups suggesting that the reduction of the growing follicle in Activin A (50 ng/ml) group is a result of growth inhibition. Our result is in accordance with other reported studies [23, 27, 34] demonstrating a neutral effect of Activin A on follicle survival.

Conclusions

In summary, based on our results, we suggest Activin A may play a role in inhibiting and controlling the recruitment of primordial follicles and their early growth in humans. The exact mechanism for the inhibitory action of Activin still needs to be determined. This may involve studies into the possible differential effects on the neighbouring stromal cell compartment. Further studies to elucidate the reversibility of this dose dependent effect may shed light on the complex interplay/mechanism responsible for the fine regulation of selection and the activation of growth of primordial follicles from the dormant pool.

Acknowledgements The authors thank Mr John Binnie for his outstanding technical assistance, and the women who took part in this research. We would also like to thank the Edinburgh Assisted Conception Unit for funding the project through its Endowment Fund.

Investigations on Human Subjects This study was approved by the local ethics committee.

Conflict of Interest Statement No conflict of interest for any of the submitting authors in reference to the submitted material.

References

17. Li S, Maruo T, Ladines-Llave CA, Samoto T, Kondo H, Mochizuki M. Expression of transforming growth factor-alpha in


