Yeast 18S rRNA Dimethylase Dim1p: a Quality Control Mechanism in Ribosome Synthesis?

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Molecular and Cellular Biology

Publisher Rights Statement:
RoMEO blue

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Yeast 18S rRNA Dimethylase Dim1p: a Quality Control Mechanism in Ribosome Synthesis?

DENIS L. J. LAFONTAINE, 1* THOMAS PREISS, 2 AND DAVID TOLLERVEY 1

Institute of Cell and Molecular Biology, The University of Edinburgh, EH9 3JR Edinburgh, Scotland, 1 and European Molecular Biology Laboratory, Gene Expression, Heidelberg, Germany 2

Received 24 October 1997/Returned for modification 5 December 1997/Accepted 21 January 1998

One of the few rRNA modifications conserved between bacteria and eukaryotes is the base dimethylation present at the 3' end of the small subunit rRNA. In the yeast Saccharomyces cerevisiae, this modification is carried out by Dim1p. We previously reported that genetic depletion of Dim1p not only blocked this modification but also strongly inhibited the pre-rRNA processing steps that lead to the synthesis of 18S rRNA. This prevented the formation of mature but unmodified 18S rRNA. The processing steps inhibited were nuclear, and consistent with this, Dim1p was shown to localize mostly to this cellular compartment. dim1-2 was isolated from a library of conditionally lethal alleles of DIM1. In dim1-2 strains, pre-rRNA processing was not affected at the permissive temperature for growth, but dimethylation was blocked, leading to strong accumulation of nondimethylated 18S rRNA. This demonstrates that the enzymatic function of Dim1p in dimethylation can be separated from its involvement in pre-rRNA processing. The growth rate of dim1-2 strains was not affected, showing the dimethylation to be dispensable in vivo. Extracts of dim1-2 strains, however, were incompetent for translation in vitro. This suggests that dimethylation is required under the suboptimal in vitro conditions but only fine-tunes ribosomal function in vivo. Unexpectedly, when transcription of pre-rRNA was driven by a polymerase II PGK promoter, its processing became insensitive to temperature-sensitive mutations in DIM1 or to depletion of Dim1p. This observation, which demonstrates that Dim1p is not directly required for pre-rRNA processing reactions, is consistent with the inhibition of pre-rRNA processing by an active repression system in the absence of Dim1p.

In most eukaryotes, three of the four rRNA species are excised from a single large RNA polymerase I (Pol I) transcript (35S pre-rRNA in yeast) which is processed in a complex pathway involving both endonucleolytic cleavages and exonucleolytic digestions (Fig. 1) (reviewed in references 24, 42, and 46). The fourth mature species, 5S rRNA, is transcribed and processed independently. During pre-rRNA processing, many specific nucleotides within the rRNAs are covalently modified. The major types of posttranscriptional modification are the isomerization of uracil to pseudouridine, 2'-O methylation of the ribose moieties, and base methylation. In eukaryotes, interactions between trans-acting guide small nuclear RNAs (snRNAs) and pre-rRNA identify nucleotides that are to be modified by 2'-O methylation or pseudouridylation (8, 12, 20, 31, 32). Surprisingly, all of the guide snRNAs tested so far in yeast are nonessential for growth, demonstrating that the corresponding modifications are dispensable.

The only base modifications that have been studied in a eukaryote are the m2Am2'A doublet present at the 3' end of the small subunit (SSU) rRNA (18S rRNA). In the yeast Saccharomyces cerevisiae, these modifications are made by the Dim1p dimethylase. In contrast to 2'-O methylation and pseudouridylation, 18S dimethylation does not appear to involve a guide snoRNA cofactor. Moreover, expression of Dim1p in Escherichia coli is able to restore dimethylation to ksgA mutants that lack this activity, presumably showing that Dim1p is able to function in the absence of snoRNA cofactors (23).

Dim1p is essential for viability (23), but the requirement for the dimethylated nucleotides was unclear since cells depleted of Dim1p not only lacked dimethylation but were also strongly defective in the pre-rRNA cleavages at sites A1 and A2 that generate 20S pre-rRNA (Fig. 1) (26). 20S pre-rRNA is the immediate precursor to 18S rRNA, so this had the effect of preventing the synthesis of mature but nonmodified rRNA. Pre-rRNA molecules in which the two dimethylated adenosine residues are replaced by guanosine, which cannot be modified, were processed normally, showing that the m2Am2'Am2'A nucleotides are not themselves required for cleavage (26). Expression of 18S rRNA with the double G substitution did not support growth, but it was not clear whether the lack of dimethylation or the substitution of the A residues, which are themselves universally conserved in evolution, was responsible for this defect.

In E. coli, ksgA strains that lack dimethylation are resistant to kasugamycin, an antibiotic belonging to the aminoglycoside family (14, 15). ksgA strains are only marginally affected for growth, but ksgA extracts show various defects in translation in vitro: (i) initiation requires a higher concentration of IF3 in the absence of IF1 (35), (ii) accuracy is affected (43), and (iii) the affinity between the subunits is decreased (34; reviewed in reference 45). This is consistent with the localization of the m2Am2'A residues at the interface between the ribosomal subunits at a site where crucial interactions take place during translation (7, 29, 41). However, in vitro reconstitution experiments showed that neither dimethylation nor the twin adenosines are crucial for 30S subunit assembly and function (10, 22).

Previous analyses, therefore, had left two outstanding questions. What is the requirement for dimethylated nucleotides in the synthesis and function of eukaryotic ribosomes? What is the basis of the requirement for Dim1p in pre-rRNA processing reactions? Specifically, does a regulatory system monitor the association of Dim1p with pre-rRNA and inhibit process-
ing in its absence, or does Dim1p have an additional function in pre-rRNA processing and/or ribosome assembly that is required for pre-rRNA cleavage? The approach that we adopted was to screen a library of conditionally lethal alleles of DIM1 in order to isolate mutations that uncouple the enzymatic function of Dim1p in methylation from its involvement in pre-rRNA processing.

MATERIALS AND METHODS

Media and plasmids. Standard S. cerevisiae growth and handling techniques were used. 5-Fluoro-orotic acid (5-FOA) was used in minimal medium at 1 g/liter according to the recipe of Boeke et al. (4). For simplicity, only the major processing pathway, from 27SA2 to 5.8S and 25S rRNA, is shown; an alternative pathway generates the minor 5.8S, rRNA, which is to 9 nucleotides 5' extended. The steps that require Dim1p are indicated. (C) Pre-rRNA processing in dim1-l.s. strains. 35S pre-rRNA is cleaved normally at site A0. 35S pre-rRNA accumulates and is cleaved at site A0, providing the 27SA2 that is normally processed to 5.8S and 25S and the aberrant 22S pre-rRNA that is not dimethylated and not processed to 18S rRNA.

FIG. 1. Structure of yeast 35S pre-rRNA and the pre-rRNA processing pathway. (A) 35S pre-rRNA. The sequences encoding the mature 18S, 5.8S, and 25S rRNAs are embedded in the 5' and 3' external transcribed spacers (ETS) and in ITS1 and ITS2. Sites of pre-rRNA processing are indicated with uppercase letters (A to E), and the oligonucleotides used for Northern hybridization and primer extension are indicated with lowercase letters (a to h). The site of dimethylation is denoted as m2A. (B) Pre-rRNA processing pathway. Processing of the 35S primary transcript starts at site A0 in the 5' ETS. The resulting 35S pre-rRNA is processed at sites A1 and A2, giving rise successively to the 32S pre-rRNA and to the 20S and 27SA2 precursors. Cleavage at site A2 separates the pre-rRNAs destined for the small and large ribosomal subunits. The 20S precursor is dimethylated and endonucleolytically cleaved at site D to yield mature 18S rRNA. Cleavage of 27SA2 at site A3, by RNase MRNP, is rapidly followed by exonucleolytic digestion to site B1S, generating the 27SB2 precursor. Mature 25S rRNA and 7S pre-rRNA are released from 27SB2 following cleavages at sites C1 and C2. 7S pre-rRNA undergoes a rapid 5' to 3' extension digestion to site E; generating the mature 3' end of 5.8S rRNA (not represented). For simplicity, only the major processing pathway, from 27SA2 to 5.8S, and 25S rRNA, is shown; an alternative pathway generates the minor 5.8S, rRNA, which is to 9 nucleotides 5' extended. The steps that require Dim1p are indicated. (C) Pre-rRNA processing in dim1-l.s. strains. 35S pre-rRNA is cleaved normally at site A0. 35S pre-rRNA accumulates and is cleaved at site A0, providing the 27SA2 that is normally processed to 5.8S and 25S and the aberrant 22S pre-rRNA that is not dimethylated and not processed to 18S rRNA.
Isolation of conditional alleles of DIM1. The library was screened according to the cotransformation and plasmid-shuffling procedure described by Sikorski and Boeke (37). The shuffling strain was constructed as follows. A complete deletion of DIM1 was created in the diploid strain BMA38 by a one-step PCR strategy (2, 25). The oligonucleotides used for amplification with pRS313 (38) were 5'-GGTTATAAGTTGATGAAATTTGTGACTGCTGATATGCCTCGTTCTG-3' and 5'-TGTCTTCTACCTGTTAGGTAATATTGATATGACACGTACACA-3'. The resulting strain, YDL303, was transformed with plasmid pDL31.42 and sporulated. Haploids containing the deletion rescued by pDL31.42 were identified (strains YDL304A and YDL304B [Table 1]).

*RNA extraction, Northern hybridization, and primer extension. RNA extraction, Northern hybridization, and primer extension were described previously (26). Oligonucleotides a, b, d, e, f, and g were named as d, e, f, g, l, m, respectively, in reference 26. Oligonucleotides c and h are T CCTTCTCAAGAAGGTCG and GACACGAGGTACCAG, respectively. RNA analysis of dim1-1 to dim1-10 alleles were performed in strain YDL304A cured of plasmid pDL31.42 and bearing the corresponding pTLE6 dim1-t.s. plasmid. The resulting wild-type strain was used YDL209 (Table 1).

For the experiment presented in Fig. 7, dim1-1 HIS3 and dim1-9 HIS3 integrative cassettes were recovered from plasmids pTL34 and pTL42 by EcoRI digestion and transformed in strain CH1462 (21). To allow HIS3 selection in strain CH1462 [ade2 ade3] (Table 1), an Ade3 gene was expressed from plasmid pH4467 (ADE3 URA3). The resulting strains, YDL314 (dim1-9) and YDL315 (dim1-10), were transformed with either pTL29 or pGal::DNA and grown at permissive temperature in glucose minimal medium lacking uracil or uracil, respectively, before being transferred to 37°C for 6 h. For GAL Dim1p depletion, strain YDL302 transformed with pTL29 was grown at 30°C in galactose minimal medium lacking uracil and leucine. Cells were harvested by centrifugation, washed, and resuspended in glucose minimal medium lacking uracil and leucine. During growth, cells were diluted with prewarmed medium and constantly maintained in early exponential phase.

In vitro translation. Cytoplasmic S30 extracts of strains YDL321, YDL324, and the isogenic wild-type control strain MBS were prepared as described previously (17, 40). Strains YDL321 and YDL324 were constructed as follows: integrative cassettes (dim1 [TS] HIS3) were recovered from plasmids pTL39 (dim1-2) and pTL43 (dim1-1) by EcoRI/TaqI digestion and transformed into strain MBS. Poly(A) substrates were prepared as described previously (40) with constructs pA3 (preprolactin) and pL2.34A33 (chloramphenicol acetyltransferase [CAT]). Both substrates were capped with the 5'-GpppG analog (New England Biolabs). Translation reactions (40) were for 60 min at 24°C with 0, 2, and 10 ng of preprolactin mRNA or 0, 20, and 100 ng of CAT mRNA. Translation products were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Antibiotic sensitivity assay. As a preliminary experiment, equal amount of cells were plated on yeast extract-peptone-dextrose (YPD), and 5 and 10 µl of various antibiotic stock solutions were spotted on 5-mm sterile filter disks. Stock solutions were as follow: paromomycin (50 mg/ml), G418 (3 mg/ml), hygromycin B (3 mg/ml), cycloheximide (1 mg/ml), and kasugamycin (100 mg/ml). All antibiotics were purchased from Sigma. Dim1p TS strains were found to be hypersensitive to paromomycin and neomycin B. All strains were also sensitive to cycloheximide but to the same extent as the wild-type isogenic control. The other antibiotics tested showed no effect. For the experiment presented in Fig. 10, paromomycin and neomycin B were used at 0, 250, 375, and 500 µg/ml and 0, 100, 400, and 800 µg/ml, respectively. Plates were incubated at the permissive temperature of 23°C.

Indirect immunofluorescence. Indirect immunofluorescence was performed on strains expressing 3× Mtx-Dim1p or Dim1p-3× Mtx fusion proteins (strains YDL101A and YDL102A, respectively [Table 1]). Strain YDL101A, expressing wild-type Dim1p, was used as a negative control. Cells were grown in YPD to an optical density at 600 nm of 0.5 to 1.0, fixed in 37% formaldehyde for 1 h, and permeabilized with Zymolyase in sorbitol buffer (1.2 M sorbitol, 20 mM KPI [pH 7.4]). Cells were incubated for 1 h with either anti-Nop1p antibody (monoclonal antibody 66, dilution 1/50; kindly provided by John Aris [1]) or anti-Myc antibody (Ab9, dilution 1/50; BAbCO). Both antibodies are mouse monoclonal antibodies; therefore, cells were decorated independently. Detection with Texas red was for 1 h at a dilution of 1/50 (Texas red-conjugated AffiniPure F(ab')2, goat anti-mouse immunoglobulin G [H+L]; DiaNovia). DNA was stained with 4′,6-diamidino-2-phenylindole (DAPI). Strains YDL101A, YDL101A, and YDL102A are haploids containing the dim1::URA3 deletion of strain YDL300 (Table 1) rescued by the wild-type or epitope-tagged proteins expressed from plasmids pTL6 (pTL16, 3× Mtx-Dim1p), and pTL25 (Dim1p-3× Mtx), respectively. The growth rates of strains YDL100A, YDL101A, and YDL102A are identical, showing the fusion proteins to be fully functional.

Table 1. Yeast strains used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Reference or comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>D150</td>
<td>a ura3-52 leu2-3,112 ade1-100 his4-519 GAL*</td>
<td>BWGI-7A, L. Guarente</td>
</tr>
<tr>
<td>YDL302</td>
<td>As D150 with URA3 GAL10::dim1</td>
<td>26</td>
</tr>
<tr>
<td>BMA38</td>
<td>as ade2-1/ade2-1 can1-100 can1-100 his3Δ200/his3Δ200 leu2-3,112/leu2-3,112</td>
<td>B. Dujon</td>
</tr>
<tr>
<td>YDL303</td>
<td>As BMA38 with dim1Δ::HIS3/DIM1</td>
<td>Full DIM1 deletion made by PCR in strain BMA38</td>
</tr>
<tr>
<td>YDL304A</td>
<td>as ade2-1 can1-100 his3Δ200 leu2-3,112 trp1-1 ura3-1 dim1Δ::HIS3 +</td>
<td>YDL304A sister strain</td>
</tr>
<tr>
<td></td>
<td>pDL31.42 (URA3 2µm DIM1)</td>
<td></td>
</tr>
<tr>
<td>YDL304B</td>
<td>as ade2-1 can1-100 his3Δ200 leu2-3,112 trp1-1 ura3-1 dim1Δ::HIS3 +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pDL31.42 (URA3 2µm DIM1)</td>
<td></td>
</tr>
<tr>
<td>YDL209</td>
<td>as ade2-1 can1-100 his3Δ200 leu2-3,112 trp1-1 ura3-1 dim1Δ::HIS3 +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pTL6 (LEU2 ARS/CEN DIM1)</td>
<td></td>
</tr>
<tr>
<td>YDL321</td>
<td>as MBS with dim1-2</td>
<td></td>
</tr>
<tr>
<td>YDL324</td>
<td>as MBS with dim1-1</td>
<td></td>
</tr>
<tr>
<td>CH1462</td>
<td>α ade2 ade3 his3 leu2 ura3 can1</td>
<td></td>
</tr>
<tr>
<td>YDL314</td>
<td>As CH1462 with dim1-9</td>
<td></td>
</tr>
<tr>
<td>YDL315</td>
<td>As CH1462 with dim1-1</td>
<td></td>
</tr>
<tr>
<td>YDL300</td>
<td>a ura3-52 ura3-52 lys2-801/lys2-801 ade2-101/ade2-101 ade2-101/ade2-101/ade2-101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>trp1Δ/trp1Δ his3Δ200/his3Δ200 leu2-3,112/leu2-3,112 dim1Δ::URA3/DIM1</td>
<td></td>
</tr>
<tr>
<td>YDL300A</td>
<td>as YDL300 + pTL6 (LEU2 ARS/CEN DIM1)</td>
<td></td>
</tr>
<tr>
<td>YDL301A</td>
<td>as YDL300 + pTL35 (LEU2 ARS/CEN 3× Mtx-Dim1p)</td>
<td></td>
</tr>
<tr>
<td>YDL302A</td>
<td>as YDL300 + pTL25 (LEU2 ARS/CEN Dim1p-3× Mtx)</td>
<td></td>
</tr>
</tbody>
</table>

LAFONTAINE ET AL. MOL. CELL. BIOL.
RESULTS

Isolation of conditional alleles of DIM1. A library of conditional alleles of DIM1 was created by mutagenic PCR and screened by plasmid exchange (37). A diploid strain containing a fully deleted dim1-Δ allele was transformed with a multicopy URA3 plasmid bearing a wild-type copy of DIM1. Haploid dim1-Δ progeny, rescued by the wild-type plasmid, were used as starting strains (strains YDL304A and YDL304B [Table 1]). The ORF of DIM1 was amplified under mutagenic PCR conditions and subcloned into an ARS/CEN LEU2 plasmid (see Materials and Methods). The resulting library was transformed into strain YDL304A. Transformants were replica plated on 5-FOA, which selects for the loss of the wild-type URA3 plasmid. 5-FOA-resistant clones, which have lost the wild-type DIM1 plasmid, were screened for growth defects at various temperatures. Among 1,600 5-FOA-resistant clones, 33 showed a conditional phenotype for growth. Most of them were TS, with some being also slightly CS (Fig. 2). No strain showed only a CS phenotype. Ten alleles, dim1-1 to dim1-10, were selected to be further characterized.

The coding sequences of dim1-1 to dim1-10 were fully sequenced; all contained from one to six substitution mutations (Fig. 3 and Table 2). It may be significant that mutations at four positions were selected twice (Table 2). Position 218 was mutated in both dim1-1 and dim1-4, and an identical substitution (S239P) is present in both dim1-6 and dim1-10. Notably, dim1-4 and dim1-5 have two identical mutations at identical positions (172 and 197), dim1-4 having an additional mutation at a position which is also altered in dim1-1 (position 218). Although mutations were spread over the whole length of the protein, we noticed a degree of clustering centered around positions 170 and 220; in the latter case, these fall in a region which is not conserved in E. coli KsgAp.

None of the mutations fell into the predicted binding site for the cofactor S-adenosylmethionine (residues 60 to 76) (9, 18). The NXPY residues (positions 128 to 131) are conserved in all known SSU rRNA dimethylases, including human Dim1p (23a). These match the consensus sequence (N/D/S)PP(Y/F), which has been shown to be crucial for catalysis in the case of the N-6-adenine methylase EcoKI (48). Two mutations (I126V in dim1-2 and I133V in dim1-3) directly flank the NXPY residues, suggesting that they might directly affect catalysis. dim1-2 uncouples the two functions of Dim1p. RNA was extracted from the 10 dim1 TS strains and the isogenic wild-type strain (strain YDL209 [Table 1]) at the permissive temperature (23°C) and at 2, 8, and 23 h after transfer to 37°C.

Northern hybridization revealed that at the nonpermissive temperature, all dim1 TS strains are inhibited in cleavage at sites A1 and A2, resulting in depletion of the 20S pre-rRNA and 18S rRNA (Fig. 1). These data are presented for five representative alleles (dim1-1, dim1-2, dim1-6, dim1-7, and dim1-10).

<table>
<thead>
<tr>
<th>Allele</th>
<th>Mutation(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>dim1-1</td>
<td>E21G; N213D; V218A; D219G; D224G</td>
</tr>
<tr>
<td>dim1-2</td>
<td>S25G; I126V; F159S; R174S; Y220N; M273T</td>
</tr>
<tr>
<td>dim1-4</td>
<td>Y172D; R197S; V218E</td>
</tr>
<tr>
<td>dim1-5</td>
<td>Y172D; R197S</td>
</tr>
<tr>
<td>dim1-6</td>
<td>N80D; N178D; S239P; M265V</td>
</tr>
<tr>
<td>dim1-7</td>
<td>C173R; H274R; V313A</td>
</tr>
<tr>
<td>dim1-8</td>
<td>N31S; A92E; K278R; L304P</td>
</tr>
<tr>
<td>dim1-9</td>
<td>W223R</td>
</tr>
<tr>
<td>dim1-10</td>
<td>N41S; I238V; S239P</td>
</tr>
</tbody>
</table>

FIG. 2. Conditional growth phenotypes of dim1 TS strains. Dilutions (1× to 10^5×) of strains dim1-1 to dim1-10, along with the wild-type isogenic DIM1 control (strain YDL209) (W.T.), were spotted on minimal plates at 18, 25, 30, and 37°C and incubated for 3 days. Most of the strains are very sensitive to elevated temperatures; some are also slightly CS (dim1-1 and dim1-7).

FIG. 3. Mapping of dim1 TS mutations. Schematic representation of Dim1p (318 residues) drawn to scale. The S-adenosylmethionine binding domain (SAM), the putative catalytic residues (NXPY), and the 32 point mutations (asterisks) identified in the 10 dim1 TS alleles are represented.

TABLE 2. Nature and positions of mutations in dim1 TS alleles
In the dim1 mutants, there is seen an aberrant processing pathway in which the 35S pre-rRNA is processed normally at site A0 but the resulting 33S pre-rRNA is not processed at sites A1 and A2. Instead, cleavage at site A3 in internal transcribed spacer 1 (ITS1) generates the 22S RNA. Concomitant with the appearance of the 22S species, the 20S and 27SA2 pre-rRNAs are lost (Fig. 4A and data not shown). This is followed by depletion of the mature 18S rRNA (Fig. 4B), indicating that the aberrant 22S RNA cannot be processed to 18S rRNA. No alterations in the level of 27SB pre-rRNA (data not shown) or mature 25S rRNA (Fig. 4B) were observed, indicating that subsequent processing of the 3' region of the pre-rRNA was unaffected.

The pre-rRNA processing defects observed in the dim1 TS strains closely resemble those seen on depletion of Dim1p in GAL::dim1 strains (26). The timing of the appearance of the processing defects is strikingly different in the various dim1 TS strains. In the dim1-1, dim1-6, and dim1-9 strains, processing is strongly inhibited 2 h after transfer to 37°C. In contrast, the 22S RNA is only weakly detected in the dim1-2 strain 2 h after transfer to 37°C, and the inhibition of processing is much stronger at later times. The 22S RNA is detected in the dim1-7 strain after 8 h. This may reflect a distinction between mutants in which Dim1p is rapidly inactivated by transfer to 37°C compared to mutations which do not allow synthesis of new, active Dim1p.

Although all strains accumulate 22S pre-rRNA (Fig. 4 and data not shown), there are marked differences in 18S rRNA depletion. dim1-1, dim1-4, dim1-6, dim1-8, and dim1-10 strains all showed strong 18S rRNA depletion, while dim1-5 and dim1-9 strains showed only mild depletion and dim1-2, dim1-3, and dim1-7 strains were only slightly depleted (Fig. 4 and data not shown). No clear correlation could be established between the locations of the point mutations and the phenotypes, but it
is notable that dim1-4, which contains only one additional mutation (at position 218) compared to dim1-5, shows stronger 18S rRNA depletion. A substitution at the same position is present in dim1-1, which shows a similar phenotype. dim1-6 and dim1-10 strains are also severely affected in 18S rRNA synthesis and share an identical mutation at position 239. No attempt was made to further separate the mutations.

The level of pre-rRNA dimethylation was assessed by primer extension with an oligonucleotide complementary to a sequence in ITS1 located 218 nucleotides downstream of the site of modification (oligonucleotide e [Fig. 1A]). Following transfer to 37°C, the primer extension stop corresponding to dimethylation is strongly reduced in all dim1 TS strains (Fig. 5). Northern analysis data (Fig. 4) indicate that the overall levels of pre-rRNA species that contain the site of dimethylation without a pre-rRNA processing defect. Since dimethylation is dispensable in vivo (see below), the TS screen would not have isolated strains defective only in methylation without a pre-rRNA processing defect.

Pre-rRNAs transcribed from the PGK promoter do not require Dim1p for processing. The studies on pre-rRNA processing described above analyzed pre-rRNA transcribed from the chromosomal rDNA by RNA Pol I. Unexpectedly, the processing of pre-rRNA transcribed by the constitutive RNA Pol II PGK promoter is much less sensitive to the dim1-1 and dim1-9 mutations than is processing of the Pol I-transcribed pre-rRNA (shown for dim1-1 in Fig. 7). The Pol II-driven rDNA repeat contains neutral tags within the mature rRNA sequences; these allow the use of hybridization probes that are specific for either the chromosomal or Pol II-transcribed rRNAs. Transfer of the dim1-1 strain to 37°C for 20 h resulted in underaccumulation of the 18S rRNA synthesized from pre-rRNA transcribed from chromosomal rDNA (Fig. 7, lower panel [compare lane 3 with 4 and lane 5 with 6]) as described above. In contrast, the level of 18S rRNA synthesized from pre-rRNA transcribed from the PGK promoter carried on plasmid pTL29 (see Materials and Methods) was reduced to a lesser extent (Fig. 7, upper panel [compare lanes 5 and 6]). Accumulation of 18S rRNA transcribed from a different RNA Pol II promoter, GAL10 (Fig. 7, upper panel [compare lanes 3 and 4]), was reduced to an extent similar to the rRNA transcribed by Pol I. The same effects were seen in the dim1-9 strain (data not shown); other dim1 alleles were not tested. Similar effects were observed in the GAL::dim1 strain (YDL302 [Table 1]) following depletion of Dim1p. Following transfer to glucose, the level of 18S rRNA synthesized by Pol I from chromosomal rDNA (Fig. 8B) is strongly depleted. In contrast, little depletion of the 18S rRNA synthesized from the pPGK::rDNA construct is observed (Fig. 8A). The effects of
genetic depletion of two other components required for pre-rRNA processing at sites A1 and A2 were also tested. On depletion of snR30 (30) or Rrp5p (47), the processing of the PGK-driven pre-rRNAs was inhibited to the same extent as processing of the Pol I-transcribed pre-rRNA (33a).

The processing of the pre-rRNAs transcribed from the PGK-driven rDNA cannot readily be assessed in these strains, since Pol I transcription is much stronger than PGK-driven transcription. However, we interpret these data as showing that the cleavage of sites A1 and A2 is specifically resistant to mutations in DIM1 or depletion of Dim1p in pre-rRNA molecules that have been transcribed from the PGK promoter. The mechanism that relieves the Dim1p dependence may be related to the packaging of the pre-rRNA transcripts with different sets of proteins. Whatever the mechanism, this observation demonstrates that Dim1p is not directly required for pre-rRNA processing at sites A1 and A2, which is specifically resistant to mutations in DIM1 or depletion of Dim1p in pre-rRNA molecules that have been transcribed from the PGK promoter. The mechanism that relieves the Dim1p dependence may be related to the packaging of the pre-rRNA transcripts with different sets of proteins. Whatever the mechanism, this observation demonstrates that Dim1p is not directly required for pre-rRNA processing in vitro. We interpret this as strong evidence for the existence of a system that represses pre-rRNA processing in the absence of Dim1p.

\[m^2A_{1779}m^2A_{1780} \] is not essential in vivo but is required for translation in vitro. At the permissive temperature, the dim1-2 strain showed no pre-rRNA processing defect but predominantly contained nondimethylated 18S rRNA. The dim1-2 strain showed no clear growth inhibition compared to the otherwise isogenic DIM1 strain in liquid or solid minimal medium or complete medium at 23°C (data not shown). This demonstrates that 18S rRNA dimethylation is dispensable for translation in vivo.

In order to test whether dimethylation affected ribosome function at a more subtle level, extracts prepared from wild-type and dim1-2 strains grown at the permissive temperature were tested for the ability to translate exogenous mRNA in vitro. As a control, extracts from a dim1-1 strain that was not impaired in rRNA methylation at the permissive temperature were also tested.

The dim1 alleles were integrated into strain MBS (see Materials and Methods and Table 1), which is particularly suitable for such analysis (17). Standardized amounts of extracts prepared from strains YDL321 (dim1-2), YDL324 (dim1-1), and the isogenic wild-type control strain MBS were incubated with various amounts of either CAT mRNA (Fig. 9B and D) or pre-prolactin mRNA (Fig. 9A). Figures 9A and B present the analyses of two independently isolated dim1-2 strains (YDL321-1 and YDL321-2). Translation products were easily detected at the expected lengths when wild-type extracts were incubated with either of the two mRNAs (Fig. 9A, B, and D, lanes 2 and 3). No product was detected for either mRNA substrate when the dim1-2 extracts were used (Fig. 9A and B, lanes 4 to 9, and
Fig. 9D, lanes 4 to 6). Extracts from the *dim1*-1 strain were less competent for translation than was the wild-type control (Fig. 9D, lanes 8 and 9) but consistently exhibited substantially greater translation than did the *dim1*-2 strain. The reduced translation may be related to the mild processing defect present in the *dim1*-1 strain, which accumulated low levels of the 22S pre-rRNA even at the permissive temperature (Fig. 4A, lane 9). Figure 9C shows the analysis of the level of 18S rRNA dimethylation in the cell extracts used for Fig. 9A and B. We concluded that in the *dim1*-2 strains, the 40S subunits contain nondimethylated 18S rRNA and are not competent for translation in vitro.

dim1 TS strains are hypersensitive to aminoglycoside antibiotics. To identify more subtle effects on translation in vivo, representative *dim1* TS strains were tested for their sensitivities towards a range of antibiotics at the permissive temperature (see Materials and Methods). Strains carrying *dim1*-1, *dim1*-2, and *dim1*-9 were hypersensitive to paromomycin and neomycin B to approximately equal extents (Fig. 10 and data not shown). These two antibiotics belong to the aminoglycoside family and are known to induce mistranslation and suppression of nonsense mutations in yeast (33, 39). This observation suggested that each of the *dim1* TS strains analyzed had an additional assembly defect which resulted in antibiotic sensitivity. This appears to be unrelated to the degree of rRNA dimethylation.
Dim1p is localized to the nucleus with nucleolar enrichment. To determine the subcellular location of Dim1p, the protein was tagged with three copies of the human c-Myc epitope at either the amino- or carboxy-terminal end (see Materials and Methods). Both fusion proteins were expressed in a dim1-Δ deleted background and were shown to be fully functional (strains YDL101A and YDL102A [Table 1]).

The fusion proteins were localized by indirect immunofluorescence. Figure 11D presents the results of the carboxy-terminal fusion (strain YDL102A). The amino-terminal fusion gave an identical signal (data not shown). Comparison to DAPI staining of the DNA (Fig. 11C) and the localization of the nucleolar protein Nop1p (Fig. 11B) reveals that the Dim1p fusion protein is localized to the nucleus with enrichment in the nucleolus, which forms a cap-like structure slightly displaced from the DAPI-stained region. Little cytoplasmic staining was detected.

DISCUSSION

We report here that mutations in DIM1 can uncouple the requirements for Dim1p in pre-rRNA modification and processing. All of the dim1 alleles that were isolated from a temperature-sensitive library were found to block pre-rRNA processing at the nonpermissive temperature (37°C), although the kinetics of inhibition varied. In addition, the dim1-2 allele blocks rRNA dimethylation at the permissive temperature (23°C) but shows no pre-rRNA processing defect at this temperature. This resulted in the accumulation of high levels of nondimethylated 18S rRNA. The dim1-2 strains had no detectable growth defect at 23°C, showing the dimethylation to be dispensable for ribosome function in vivo.

Pre-rRNA molecules in which the two adenosine residues are replaced by guanosines that cannot be modified are processed normally but do not support growth (26). Additionally, these substitutions give rise to a reduced level of 18S rRNA at low temperatures, possibly reflecting an assembly defect, which is often associated with cold sensitivity. From the dim1-2 analysis, it is clear that the lethality of the \(G_{779}^A\) \(G_{780}^A\) cis mutation and the cold-sensitive processing phenotype are due to the substitution of the adenosines at these two universally conserved positions. In E. coli, both dimethylation and the twin adenosines were shown to be dispensable for function and assembly in vitro (10, 22), but their importance in vivo has not been assessed.

Strikingly, extracts prepared from dim1-2 strains grown at 23°C lacked detectable activity for translation in vitro. Extracts prepared from dim1-1 strains, which have normal levels of rRNA dimethylation, were competent for in vitro translation, although with lower activity than in the wild-type extract. While we cannot exclude the possibility that ribosomes synthesized in the dim1-2 mutant have some additional defect, it seems likely that dimethylation is required for in vitro translation in yeast extracts. We speculate that the dimethylation fine-tunes the function of the 40S ribosomal subunit in vivo but is essential under the suboptimal in vitro conditions.

Other rRNA modifications, \(2^{-\text{O}}\)-methyl and pseudouridine formation, are directed by guide snoRNAs (8, 12, 20, 31, 32). In all cases tested, the guide functions of the snoRNAs were completely dispensable for growth, indicating that these modifications are, like Dim1p dimethylation, dispensable for ribosome function in vivo. The requirements for the \(2^{-\text{O}}\)-methyl and pseudouridine modifications, however, have not been tested in vitro.

Prokaryotic \(ksgA\) strains lack rRNA dimethylase activity and are resistant to the aminoglycoside antibiotic kasugamycin (14, 15, 44). Hypersensitivity toward the aminoglycoside antibiotics paromomycin and neomycin B was observed in dim1 TS strains. This could not be correlated, however, with dimethylation; dim1-1 and dim1-9 strains, which do not accumulate nondimethylated SSU rRNA, are as sensitive to aminoglycosides as are dim1-2 strains. We speculate that the dim1 TS strains analyzed bear an additional assembly defect responsible for antibiotic sensitivity. Hypersensitivity to paromomycin and neomycin B has previously been reported in yeast strains carrying mutations in NSR1 and RRPI, which are also required for normal pre-rRNA processing (11, 27). Neither of these proteins were reported to be involved in rRNA modification, and in both cases an assembly defect is likely to underlie the antibiotic sensitivity observed.

Model for a regulatory mechanism in ribosome synthesis. We reported previously that cells depleted of Dim1p are inhibited in cleavage of the 33S pre-rRNA at sites A\(_1\) and A\(_2\) (26), and this was also the case in all of the dim1 TS strains at the nonpermissive temperature. However, dimethylation was found to occur on the 20S pre-rRNA, which is the product of cleavage at sites A\(_1\) and A\(_2\) (Fig. 1), consistent with early reports that the formation of m\(_2\)Am\(_2\)A is a late event in ribosome synthesis (6, 36). Since the cleavages at sites A\(_1\) and A\(_2\)
orational change could be monitored). Cleavages at sites A1 through an interaction with preribosomal particles (a component of the processing machinery senses this interaction. in the nucleolus at an early stage in ribosome synthesis, and a Dim1p does not have a direct role in pre-rRNA processing. Dim1p (26). However, the data left open the alternative possibility that Dim1p had an additional function and was directly required for pre-rRNA processing. During the course of this work, this question was unexpectedly resolved. When transcription of an rRNA unit is driven by an RNA Pol II PGK promoter, the pre-rRNAs produced are largely insensitive to dim-1 and dim-1-9 mutations that strongly inhibit processing of pre-rRNAs transcribed from the chromosomal rDNA driven by RNA Pol I. This phenomenon is not allele specific: the PGK-transcribed pre-rRNAs are also resistant to genetic depletion of Dim1p. Moreover, the otherwise identical pre-rRNA transcribed from a GAL promoter was not resistant to the dim-1 or dim-1-9 mutations. These observations demonstrate that Dim1p does not have a direct role in pre-rRNA processing. We speculate that a repression system blocks pre-rRNA processing in the absence of the binding of Dim1p to pre-rRNA. According to this model, Dim1p normally binds to pre-rRNA in the nucleolus at an early stage in ribosome synthesis, and a component of the processing machinery senses this interaction. This could occur through direct interaction with Dim1p or through an interaction with preribosomal particles (a conformational change could be monitored). Cleavages at sites A1 and A2 occur in the nucleolus; consistent with this, Dim1p was shown to localize mostly to this cellular compartment. If Dim1p has bound to pre-rRNA, processing at sites A1 and A2 proceeds; otherwise, processing is blocked. In mutant strains that lack Dim1p, this leads to the synthesis of a dead-end intermediate, the 22S pre-rRNA, and prevents synthesis of the 18S rRNA. In wild-type strains, pre-rRNA processing is presumably only delayed until Dim1p finds and binds to its target, preventing the formation of mature but nonmodified 18S rRNA. This is desirable since, as shown here, the unmodified ribosomal subunits are impaired in function. The pre-rRNAs that are transcribed from the PGK promoter are very likely to be associated with a different set of hnRNP proteins than are the Pol I transcripts. We speculate that one of these occupies the Dim1p binding site and is detected by the pre-rRNA processing machinery as Dim1p, thus alleviating the need for authentic Dim1p. The m2Am5A modification is highly conserved and is present in both bacteria and eukaryotes. In kasg4 mutant strains of E. coli that lack dimethylation, growth is mildly impaired and the nondimethyalted ribosomes show defects in translation in vitro (reviewed in reference 45). Expression of Dim1p in E. coli restores dimethylation, and E. coli KasgAP is highly homologous to Dim1p. However, while bacteria lacking the KasgAP methyltransferase synthesize the unmodified rRNA, eukaryotes have evolved a regulatory system to prevent this. We anticipate that many such quality control mechanisms act to coordinate the numerous steps of eukaryotic pre-rRNA processing, rRNA modification, and ribosome assembly.

ACKNOWLEDGMENTS

We thank E. Petfalski for analysis of the GAL:·RRP5 and GAL:· snr30 strains, Jaap Venema for supplying the GAL:·RRP5 strain, B. Séraphin and M. Hentze (EMBL) for fruitful discussions, G. Berben (Station de Chimie, Gembloux, Belgium) for making the YDp plasmids available, H. Tekotte (EMBL) for supplying plasmid pH74467, and the EMBL sequencing service. This work was partially supported by the Wellcome Trust. During the course of this work, D. L. J. Lafontaine was the recipient of an EMBO long-term fellowship.

REFERENCES

"Vol. 18, 1998 A QUALITY CONTROL MECHANISM IN RIBOSOME SYNTHESIS? 2369"