Nop58p is a common component of the box C+D snoRNPs that is required for snoRNA stability

Citation for published version:
Nop58p is a common component of the box C+D snoRNPs that is required for snoRNA stability

DENIS L.J. LAFONTAINE and DAVID TOLLERVEY
Institute of Cell and Molecular Biology, The University of Edinburgh, Edinburgh, Scotland

ABSTRACT
Eukaryotic nucleoli contain a large family of box C+D small nucleolar RNA (snoRNA) species, all of which are associated with a common protein Nop1p/fibrillarin. Nop58p was identified in a screen for synthetic lethality with Nop1p and shown to be an essential nucleolar protein. Here we report that a Protein A-tagged version of Nop58p coprecipitates all tested box C+D snoRNAs and that genetic depletion of Nop58p leads to the loss of all tested box C+D snoRNAs. The box H+ACA class of snoRNAs are not coprecipitated with Nop58p, and are not codepleted. The yeast box C+D snoRNAs include two species, U3 and U14, that are required for the early cleavages in pre-rRNA processing. Consistent with this, Nop58p depletion leads to a strong inhibition of pre-rRNA processing and 18S rRNA synthesis. Unexpectedly, depletion of Nop58p leads to the accumulation of 3′ extended forms of U3 and U24, showing that the protein is also involved in snoRNA synthesis. Nop58p is the second common component of the box C+D snoRNPs to be identified and the first to be shown to be required for the stability and for the synthesis of these snoRNAs.

Keywords: methylation; pre-rRNA processing; ribosome; snoRNA; yeast

INTRODUCTION
Eukaryotic ribosomal RNAs (rRNAs) are synthesized from precursor rRNAs (pre-rRNAs) through a complex processing pathway (Fig. 1; see Eichler & Craig, 1994; Lafontaine & Tollervey, 1995; Venema & Tollervey, 1995; Sollner-Webb et al., 1996; Tollervey, 1996 for recent reviews). While these processing reactions take place, the pre-rRNAs are covalently modified on both the sugar residues (2′-O-methylation) and bases (pseudouridine formation and base methylation) (Maden, 1990; Maden & Hughes, 1997) and assemble with the ribosomal proteins into ribonucleoprotein (RNP) particles (Warner, 1989; Raué & Planta, 1991). Most of these steps occur in the nucleolus, a specialized subnuclear compartment (Reeder, 1990; Hernandez-Verdun, 1991; Mélese & Xue, 1995).

Eukaryotic nucleoli contain a large number of small, metabolically stable RNAs known collectively as the small nucleolar RNAs (snoRNAs) (reviewed in Fournier & Maxwell, 1993; Bachellerie et al., 1995; Maxwell & Fournier, 1995); some 150 snoRNA species are predicted to be present in human cells. Recently, it has become apparent that these snoRNAs fall into two classes that are structurally and functionally distinct (Balakin et al., 1996; Ganot et al., 1997b; Tollervey & Kiss, 1997; reviewed in Lafontaine & Tollervey, 1998). These are designated the box C+D and the box H+ACA snoRNAs after conserved sequence elements that are believed to be sites of RNA–protein interactions. The only exception is the RNA component of the endonuclease RNase MRP, which is related to RNase P (Forster & Altman, 1990; Lygerou et al., 1994; reviewed in Morrissey & Tollervey, 1995).

Within each major family of snoRNAs, two functionally distinct groups can be discerned. A small number of snoRNA species—the box H+ACA snoRNA snR30 and the box C+D snoRNAs U3 and U14—are required for cleavage of the pre-rRNA at the early processing sites, A0, A1, and A2 (Fig. 1; Li et al., 1990; Hughes & Ares, 1991; Morrissey & Tollervey, 1993). Since these cleavages are required for synthesis of the 18S rRNA, this group of snoRNAs is essential for viability. In contrast, the vast majority of snoRNAs function as guide RNAs for the covalent modification of the pre-rRNA and are dispensable for growth. Extended base pairing between a box C+D snoRNA and the rRNA places a predicted protein binding site, box D or D′, at a precise distance of 5 nt from each site of 2′-O-methylation (Cavaillé et al., 1996; Kiss-László et al., 1996, 1998; Nicoloso et al., 1996). Similarly, the box H+ACA snoRNAs each form a complex
pseudoknot structure with the rRNA in which base-paired regions flank a site of pseudouridine (Ψ) formation (Ganot et al., 1997a; Ni et al., 1997). This positions the conserved boxes H or ACA at a fixed distance of ~14 nt from the uracil that is modified by base rotation. In each case this positional information, as well as the overall structure of the snoRNA/pre-rRNA hybrid, is believed to be used by the catalytic activity to select the site of modification. The rRNA 2’-O-methyltransferase has not yet been identified but Cbf5p, which is stably associated with the box H+ACA snoRNAs, is likely to be the rRNA Ψ synthase (Koo-nin, 1996; Henras et al., 1998; Lafontaine et al., 1998a; Watkins et al., 1998a).

The members of each class of snoRNA are associated with common protein components in small nucleolar ribonucleoprotein (snoRNP) particles. Nine proteins common to RNase MRP and RNase P have been identified in yeast (Lygerou et al., 1994; Chu et al., 1997; Dichtl & Tollervey, 1997; Chamberlain et al., 1998), likely representing the complete inventory. Similarly, it is probable that all of the proteins common to the box H+ACA snoRNPs have been found. These are Gar1p (Girard et al., 1992; Balakin et al., 1996; Ganot et al., 1997a), Cbf5p (Lafontaine et al., 1998a), Nhp2p, and Nop10p (Henras et al., 1998; Watkins et al., 1998a). Understanding of the composition of the box C+D class of snoRNPs is less complete, despite the fact that the first component of the box C+D snoRNAs, fibrillarin (Nop1p in yeast), was identified well before any other snoRNP protein (Ochs et al., 1985; Schimmang et al., 1989; Henriquez et al., 1990; Lapeyre et al., 1990; reviewed in Maxwell & Fournier, 1995).

Genetic depletion of Nop1p inhibited cleavage of the pre-rRNA at sites A0, A1, and A2 (Fig. 1) consistent with its association with the U3 and U14 snoRNAs (Schimmang et al., 1989; Tollervey et al., 1991). However, different conditional thermosensitive (ts) alleles of Nop1p had distinct phenotypes, exhibiting defects in either pre-rRNA processing, in pre-rRNA methylation, or in assembly of the ribosomal subunits (Tollervey et al., 1993). The nop1-3 allele was specifically inhibited for pre-rRNA methylation with little effect on processing, presumably reflecting a general defect in the activities of the methylation guide snoRNAs. NOP58 was identified in a screen for synthetic lethality with nop1-3 and Nop58p was shown to be an essential nucleolar protein that copurifies with Nop1p (Gautier et al., 1997). During the course of the present work, Nop58p was independently isolated in a screen for nucleolar antigens and called Nop5p (Wu et al., 1998). Immunoprecipitation with antibodies that recognize Nop5p was reported to coprecipitate four small RNA species that were proposed to be the snoRNAs U3, U14, U18, and snR13 based on their gel mobility (Wu et al., 1998).

The genetic and physical interactions between Nop58p and Nop1p led us to investigate whether Nop58p is itself a common component of the box C+D snoRNPs.

RESULTS

Nop58p is specifically associated with the box C+D snoRNAs

To test whether Nop58p physically interacts with the snoRNAs, we made use of a construct in which the Protein A epitope of *Staphylococcus aureus* is fused in frame with the start codon of Nop58p (Gautier et al., 1997). Immunoprecipitation with antibodies that recognize Nop58p was shown to coprecipitate four small RNA species that were proposed to be the snoRNAs U3, U14, U18, and snR13 based on their gel mobility (Wu et al., 1998).
et al., 1997). This construct was expressed in a deleted nop58-Δ background and shown to be fully functional (Gautier et al., 1997).

Immunoprecipitation of ProtA-Nop58p with IgG-agarose beads resulted in the coprecipitation of all tested box C+D snoRNAs: U3, U14, U18, U24, snR4, snR13, and snR190 (Fig. 2A, lanes 4–6 and data not shown). The experiment was performed at two salt concentrations: 150 mM KAc (Fig. 2A–C, lanes 4–6) and 500 mM KAc (data not shown). The H+ACA snoRNAs were reported to coprecipitate nonspecifically with Nop1p at 150 mM salt but not in the more stringent conditions of 500 mM KAc (Ganot et al., 1997b). Coprecipitation of the box C+D snoRNAs with Nop58p was observed at both salt concentrations. No precipitation of any RNA was seen with an otherwise isogenic NOP58 strain expressing only non-tagged Nop58p (Fig. 2A-C, lanes 1–3).

Nop58p bears a highly charged, carboxyl KKD/E repeat domain that is also present in other nucleolar proteins (Gautier et al., 1997; Weaver et al., 1997; Lafontaine et al., 1998a). This domain was previously shown to be dispensable both for the nucleolar localization of Nop58p and for its association with Nop1p (Gautier et al., 1997). To test for the potential involvement of the KKD/E repeats in snoRNA association, we used a construct in which a stop codon was introduced by site-directed mutagenesis in the NOP58 coding region upstream of the KKD/E motif (Gautier et al., 1997). This resulted in the expression of a fusion protein lacking the carboxy-terminal domain. The C+D snoRNAs were recovered with similar efficiency using this construct or the full-length ProtA-fusion protein (Fig. 2A, lanes 7–12). The association of ProtA-Nop58pΔKKD/E with the snoRNAs was unaltered at salt concentrations of 150 mM or 500 mM KAc (Fig. 2A, compare lanes 7–9 with 10–12).

With either ProtA-Nop58p or ProtA-Nop58pΔKKD/E little coprecipitation was observed for the box H+ACA snoRNAs tested: snR3, snR10, snR11, snR30, snR31, snR33, snR36, snR37, or snR42 (Fig. 2B and data not shown). For some species, for example snR3 and snR37, the level of coprecipitation appeared to be above the background in the nontagged strain, but was substantially lower than that of the box C+D snoRNAs. We attribute this to a low level of recovery of higher order nucleolar structures. The MRP RNA was not detectably coprecipitated with Nop58p (Fig. 2C).

We conclude that Nop58p specifically interacts with the box C+D snoRNAs and that this interaction is not dependent on the presence of the charged KKD/E carboxyl domain.

FIGURE 2. Nop58p specifically interacts with the box C+D snoRNAs. Immunoprecipitation on IgG-agarose was performed on lysates from the ProtA-NOP58 and ProtA-NOP58ΔKKE strains and an isogenic wild-type control (NOP58) at the concentrations of KAc indicated. RNA was extracted from equivalent amounts of total (T), supernatant (S), and pellet (P) fractions and separated on a 8% polyacrylamide gel and analyzed by Northern hybridization. A: Probes specific for box C+D snoRNAs. B: Probes specific for box H+ACA snoRNAs. C: probe to the RNase MRP RNA.
Nop58p is required for the stability of the box C+D snoRNAs

To determine whether Nop58p is required for the stability of the box C+D snoRNAs, a conditional mutant was made by replacing the chromosomal NOP58 promoter region with a repressible GAL10 promoter (see Fig. 3A and Materials and Methods) using a one-step PCR technique (Lafontaine & Tollervey, 1996). Transcription driven from GAL promoters is strongly repressed when strains are grown on glucose medium, allowing the effects of depletion of essential proteins to be followed.

The analyses were performed in duplicate on two independently isolated GAL::nop58 strains (YDL522-17 and YDL522-20). The data are presented only for strain YDL522-20 as identical results were obtained with the second strain. The GAL::nop58 strains and the otherwise isogenic wild-type control strain (NOP58, strain YDL401) were grown in permissive rsg (raffinose + sucrose + galactose) medium and transferred to glucose-based medium. The growth rate was monitored and total RNA was extracted at various time points after transfer.

Following transfer to glucose medium, the GAL::nop58 strain is progressively impaired in growth (Fig. 3B). The growth defect follows the depletion of the NOP58 mRNA (Fig. 3C). In most strains the expression of proteins from genes under GAL regulation results in substantial overexpression from the strong GAL promoter. This usually contributes to long delays before the onset of the depletion phenotypes (see, e.g., Lafontaine et al., 1995; Dichtl & Tollervey, 1997). In this construct, the structure of the fusion between the GAL promoter and NOP58 gene fortuitously provides a reduced rate of NOP58 transcription even under permissive conditions (0 h time point) (Fig. 3C, compare lanes 1 and 3). On rsg medium, the growth rate of the GAL::nop58 strain is reduced by 20% (a doubling time of 150 min for the GAL::nop58 strain and 120 min for the wild-type).

The steady-state level of various snoRNAs was assessed in the GAL::nop58 strain by Northern hybrid-

![FIGURE 3. Genetic depletion of Nop58p. A: Schematic representation of the structure of the GAL::nop58 allele. B: Growth of the GAL::nop58 (circles) and NOP58 (squares) strains following transfer to glucose medium. Cell density was measured at regular intervals and the cultures were periodically diluted to be continuously kept in exponential growth. The results are presented on an exponential scale with the OD values corrected for the dilution factor. C: Northern hybridization of the NOP58 mRNA in a GAL::nop58 strain. RNA was extracted from NOP58 and GAL::nop58 strains following growth on permissive rsg medium (0-h lanes) and at intervals following transfer to glucose medium (6–24-h lanes) and separated on a 1.2% agarose gel containing formaldehyde.](image-url)
Nop58p is a core component of the box C+D snoRNP.

As shown in Figure 4, specific oligonucleotide probes or antisense RNA transcripts (see Materials and Methods) were used to test for depletion of all tested box C+D snoRNAs: U3, U14, U18, snR4, snR190 (Fig. 4A), U24 (Fig. 5A,B), and snR13 (data not shown). Consistent with the reduced synthesis of the NOP58 mRNA under permissive conditions (Fig. 3C), the levels of the C+D snoRNAs are reduced even under permissive conditions (Figs. 4A and 5A, lane 3). No depletion was observed for any of the box H+ACA snoRNA tested: snR3, snR10, snR11, snR30, snR31, snR33, snR36, snR37, or snR42 (Fig. 4B and data not shown). The RNase MRP RNA was also unaffected (Fig. 4C).

Among the box C+D snoRNAs tested, some variation in sensitivity to the depletion of Nop58p was observed, with higher residual levels of U3 and U24 than other species. For both of these snoRNAs low levels of longer forms were detected on depletion of Nop58p (Figs. 4A and 5). These extended species were investigated in more detail for U24. Higher resolution Northern blots showed that both shorter and longer forms of U24 were accumulated (Fig. 5B). Primer extension from an internal U24 oligonucleotide revealed that the 5′ end of U24 is unaltered in the Nop58p depleted strain (Fig. 5C). RNase protection was used to map the 3′ ends of U24 (Fig. 5D). An antisense transcript overlapping the 3′ end of U24 was annealed to total RNA. The RNA hybrids formed were digested with RNase A + T1 and the protected fragments were resolved on a polyacrylamide gel (see Materials and Methods). The signal detected in the wild-type NOP58 strain correspond to the position of the authentic 3′ end of U24. In the GAL::nop58 strain, a protected fragment extended by 5 or 6 nt is detected and accumulates over the time course of depletion (Fig. 5D). This would be in good agreement with the gel mobility of the major extended RNA species seen by Northern hybridization. Why the band corresponding to the size of the mature U24 is not lost from the RNase protection during Nop58p depletion is unclear; we assume this to be an artifact due to the structure of the snoRNA or antisense RNA transcript.

Yeast U24 is encoded in the intron of the BEL1 gene (Qu et al., 1995) and is produced from the debranched intron-lariat by exonuclease activities (Ooi et al., 1998;
We conclude that depletion of Nop58p interferes with normal 3' processing of U24 snoRNA. The stability of Nop1p/fibrillarin, the other major box C+D snoRNP protein component, was also tested on Nop58p depletion (Fig. 6). Equivalent amounts of total protein extracted from cells depleted for various time points of transfer in nonpermissive conditions were used in an immunoblot experiment with anti-Nop1p antibody. This analysis revealed that the steady-state level of Nop1p is not affected by the depletion of Nop58p. We conclude that Nop58p is specifically required for the stability of the box C+D snoRNAs and that Nop1p is stable in the absence of snoRNA association.

Nop58p is required for 18S rRNA synthesis

Depletion of U3 and U14 snoRNAs in the GAL::nop58 strain was predicted to inhibit pre-rRNA processing. This was therefore analyzed by Northern hybridization (Fig. 7) and primer extension (Fig. 8) using a set of oligonucleotide probes specific for the pre-rRNA species and mature rRNAs (see Fig. 1A for the locations of the probes used).

In wild-type strains, the 35S pre-rRNA is cleaved sequentially at sites A0, A1, and A2 (see Fig. 1B); these processing reactions require the box C+D snoRNAs U3 and U14 (Li et al., 1990; Hughes & Ares, 1991). Cleavage at A0 produces the 33S pre-rRNA (which cannot be detected in wild-type strains by Northern hybridization). We conclude that Nop58p is specifically required for 18S rRNA synthesis.

FIGURE 5. 3' extended forms of the U24 snoRNA accumulate in GAL::nop58 strains. A: Northern analysis of the steady-state levels of U24. B: Longer exposure of the hybridization shown in A. C: Primer extension mapping of U24 3' ends. D: RNase A/T1 mapping of U24 5' ends. RNA was extracted from NOP58 and GAL::nop58 strains following growth on permissive rsg medium (0-h lanes) and at intervals following transfer to glucose medium (6–24-h lanes) and either separated on an 8% polyacrylamide gel and analyzed by Northern hybridization or processed for primer extension or RNase A/T1 analysis.

FIGURE 6. Steady-state level of Nop1p/fibrillarin on Nop58p depletion. Proteins were extracted from NOP58 and GAL::nop58 strains following growth on permissive rsg medium (0-h lanes) and at intervals following transfer to glucose medium (6–24-h lanes) and either separated on 15% SDS-PAGE gel and analyzed by Western-blotting with anti-Nop1p antibody. Nop1p (Mr 34.5 kDa) migrates with an apparent size of 38 kDa (Schimmang et al., 1989).
FIGURE 7. Northern analysis of rRNA and pre-rRNA synthesis in a GAL::nop58 strain. A: Probes against mature 25S and 18S rRNA (oligonucleotides a and f). B: Probe against the 5′ region of ITS1 (oligonucleotide b). C: Probe against ITS1 between sites A₂ and A₃ (oligonucleotide c). D: Probe against the 3′ region of ITS1 (oligonucleotide d). E: Probe against the 5′ region of ITS2 (oligonucleotide e). The oligonucleotides used are depicted in Figure 1A. Oligos d and e do not distinguish between 27SA₂ and 27SA₃. RNA was extracted from NOP58 and GAL::nop58 strains following growth on permissive rsg medium (0-h lanes) and at intervals following transfer to glucose medium (6–24-h lanes), separated on a 1.2% agarose gel containing formaldehyde and analyzed by Northern hybridization.

In agreement with the Northern data, primer extension through the 5′ ETS from primer a (complementary to the 5′ end of 18S rRNA) showed an increase in the stop at position +1, the 5′ end of the 35S pre-rRNA (Fig. 8). In contrast, the level of the stop at site A₀, the 5′ end of the 33S pre-rRNA was reduced.

Prime extension through ITS1 from primer e (complementary to a sequence in the 5′ region of ITS2) confirmed the strong inhibition of cleavage at site A₂ (Fig. 8). In contrast, the stop at site A₃, the 5′ end of 27SA₃, was not affected in the GAL::nop58 strain. The stop at site B₁₅, the 5′ end of the 27SB₅ and 7₅S pre-rRNAs, was also unaffected (Fig. 8), indicating that subsequent processing of the 27SA₃ pre-rRNA is not inhibited by Nop58p depletion. The alternative pre-rRNA processing pathway through processing at site B₁₅ (see legend to Fig. 1B) was also unaffected by Nop58p depletion as shown by the stop at site B₁₅, the 5′ end of the 27SB₅, and 7₅S pre-rRNAs (Fig. 8) and by the unaltered ratio of mature 5.₈S₅₅:5.₈S₇S (data not shown) in the GAL::nop58 strain.

We conclude that Nop58p is specifically required for pre-rRNA cleavage at sites A₀, A₁, and A₂. The inhibition of processing is most likely a consequence of the reduced levels of the U3 and U14 snoRNAs. As judged by primer extension, depletion of U3 leads to a strong reduction in the steady-state level of the 33S pre-rRNA, whereas depletion of U14 does not (Hughes & Ares, 1991; Beltrame et al., 1994). The loss of the 33S pre-rRNA is, therefore, likely to be a specific conse-

In the GAL::nop58 strain (Fig. 8), the 23S pre-rRNA is normally processed, whereas the 27SA₂ pre-rRNA is processed to mature 18S rRNA (data not shown) were not affected by depletion of Nop58p, indicating that subsequent processing of the 27SA₂ pre-rRNA is normal. Consistent with the levels of the snoRNAs (Figs. 4A and 5A,B), pre-rRNA processing in the GAL::nop58 strain is partially inhibited under permissive conditions (0 h samples), and is progressively more inhibited after transfer to glucose medium (6–20 h samples).

Consistent with the level of the stop at site A₀, the 5′ end of the 33S pre-rRNA was predominantly cleaved at site A₁ (Fig. 7E) and the mature 25S pre-rRNA (Fig. 7A) and 5.₈S rRNA (data not shown) were not affected by depletion of Nop58p, indicating that subsequent processing of the 27SA₃ pre-rRNA is normal. Consistent with the levels of the snoRNAs (Figs. 4A and 5A,B), pre-rRNA processing in the GAL::nop58 strain is partially inhibited under permissive conditions (0 h samples), and is progressively more inhibited after transfer to glucose medium (6–20 h samples).

Consistent with the level of the stop at site A₀, the 5′ end of the 33S pre-rRNA was predominantly cleaved at site A₁ (Fig. 7E) and the mature 25S pre-rRNA (Fig. 7A) and 5.₈S rRNA (data not shown) were not affected by depletion of Nop58p, indicating that subsequent processing of the 27SA₃ pre-rRNA is normal. Consistent with the levels of the snoRNAs (Figs. 4A and 5A,B), pre-rRNA processing in the GAL::nop58 strain is partially inhibited under permissive conditions (0 h samples), and is progressively more inhibited after transfer to glucose medium (6–20 h samples).

FIGURE 7. Northern analysis of rRNA and pre-rRNA synthesis in a GAL::nop58 strain. A: Probes against mature 25S and 18S rRNA (oligonucleotides a and f). B: Probe against the 5′ region of ITS1 (oligonucleotide b). C: Probe against ITS1 between sites A₂ and A₃ (oligonucleotide c). D: Probe against the 3′ region of ITS1 (oligonucleotide d). E: Probe against the 5′ region of ITS2 (oligonucleotide e). The oligonucleotides used are depicted in Figure 1A. Oligos d and e do not distinguish between 27SA₂ and 27SA₃. RNA was extracted from NOP58 and GAL::nop58 strains following growth on permissive rsg medium (0-h lanes) and at intervals following transfer to glucose medium (6–24-h lanes), separated on a 1.2% agarose gel containing formaldehyde and analyzed by Northern hybridization.

In agreement with the Northern data, primer extension through the 5′ ETS from primer a (complementary to the 5′ end of 18S rRNA) showed an increase in the stop at position +1, the 5′ end of the 35S pre-rRNA (Fig. 8). In contrast, the level of the stop at site A₀, the 5′ end of the 33S pre-rRNA was reduced.

Primer extension through ITS1 from primer e (complementary to a sequence in the 5′ region of ITS2) confirmed the strong inhibition of cleavage at site A₂ (Fig. 8). In contrast, the stop at site A₃, the 5′ end of 27SA₃, was not affected in the GAL::nop58 strain. The stop at site B₁₅, the 5′ end of the 27SB₅ and 7₅S pre-rRNAs, was also unaffected (Fig. 8), indicating that subsequent processing of the 27SA₃ pre-rRNA is not inhibited by Nop58p depletion. The alternative pre-rRNA processing pathway through processing at site B₁₅ (see legend to Fig. 1B) was also unaffected by Nop58p depletion as shown by the stop at site B₁₅, the 5′ end of the 27SB₅, and 7₅S pre-rRNAs (Fig. 8) and by the unaltered ratio of mature 5.₈S₅₅:5.₈S₇S (data not shown) in the GAL::nop58 strain.

We conclude that Nop58p is specifically required for pre-rRNA cleavage at sites A₀, A₁, and A₂. The inhibition of processing is most likely a consequence of the reduced levels of the U3 and U14 snoRNAs. As judged by primer extension, depletion of U3 leads to a strong reduction in the steady-state level of the 33S pre-rRNA, whereas depletion of U14 does not (Hughes & Ares, 1991; Beltrame et al., 1994). The loss of the 33S pre-rRNA is, therefore, likely to be a specific conse-

Consistent with the level of the stop at site A₀, the 5′ end of the 33S pre-rRNA was predominantly cleaved at site A₁ (Fig. 7E) and the mature 25S pre-rRNA (Fig. 7A) and 5.₈S rRNA (data not shown) were not affected by depletion of Nop58p, indicating that subsequent processing of the 27SA₃ pre-rRNA is normal. Consistent with the levels of the snoRNAs (Figs. 4A and 5A,B), pre-rRNA processing in the GAL::nop58 strain is partially inhibited under permissive conditions (0 h samples), and is progressively more inhibited after transfer to glucose medium (6–20 h samples).

In agreement with the Northern data, primer extension through the 5′ ETS from primer a (complementary to the 5′ end of 18S rRNA) showed an increase in the stop at position +1, the 5′ end of the 35S pre-rRNA (Fig. 8). In contrast, the level of the stop at site A₀, the 5′ end of the 33S pre-rRNA was reduced.

Primer extension through ITS1 from primer e (complementary to a sequence in the 5′ region of ITS2) confirmed the strong inhibition of cleavage at site A₂ (Fig. 8). In contrast, the stop at site A₃, the 5′ end of 27SA₃, was not affected in the GAL::nop58 strain. The stop at site B₁₅, the 5′ end of the 27SB₅ and 7₅S pre-rRNAs, was also unaffected (Fig. 8), indicating that subsequent processing of the 27SA₃ pre-rRNA is not inhibited by Nop58p depletion. The alternative pre-rRNA processing pathway through processing at site B₁₅ (see legend to Fig. 1B) was also unaffected by Nop58p depletion as shown by the stop at site B₁₅, the 5′ end of the 27SB₅, and 7₅S pre-rRNAs (Fig. 8) and by the unaltered ratio of mature 5.₈S₅₅:5.₈S₇S (data not shown) in the GAL::nop58 strain.

We conclude that Nop58p is specifically required for pre-rRNA cleavage at sites A₀, A₁, and A₂. The inhibition of processing is most likely a consequence of the reduced levels of the U3 and U14 snoRNAs. As judged by primer extension, depletion of U3 leads to a strong reduction in the steady-state level of the 33S pre-rRNA, whereas depletion of U14 does not (Hughes & Ares, 1991; Beltrame et al., 1994). The loss of the 33S pre-rRNA is, therefore, likely to be a specific conse-

Consistent with the level of the stop at site A₀, the 5′ end of the 33S pre-rRNA was predominantly cleaved at site A₁ (Fig. 7E) and the mature 25S pre-rRNA (Fig. 7A) and 5.₈S rRNA (data not shown) were not affected by depletion of Nop58p, indicating that subsequent processing of the 27SA₃ pre-rRNA is normal. Consistent with the levels of the snoRNAs (Figs. 4A and 5A,B), pre-rRNA processing in the GAL::nop58 strain is partially inhibited under permissive conditions (0 h samples), and is progressively more inhibited after transfer to glucose medium (6–20 h samples).
The effects of depletion of Nop58p on 2′-O-methylation were assessed by metabolic labeling. A GAL::nop58 strain and the otherwise isogenic wild-type control (NOP58) were grown in minimal rsg medium and transferred to glucose for 6 h before being pulse-labeled for 5 min with either [3H]-methionine or [3H]-uracil. Total RNA was extracted from the same numbers of cells, separated on 1.2% agarose/formaldehyde gels, transferred to Genescreen membranes and visualized by fluorography. Consistent with the results of Northern hybridization, the 35S pre-rRNA was accumulated while the 27SA and 20S pre-rRNAs were underaccumulated in the Nop58p depleted strain. Synthesis of the 18S rRNA was inhibited compared to 25S rRNA (data not shown). In duplicate experiments, identical areas of membranes corresponding to the positions of the mature 18S and 25S rRNAs were excised and submitted to liquid scintillation counting. Surprisingly, in three independent experiments the incorporation of tritiated methionine into the rRNAs in the Nop58p depleted strain was not substantially decreased as compared to the incorporation of tritiated uracil (data not shown). Incorporation of both isotopes was, however, greatly reduced in the Nop58p-depleted strain, presumably because of its slow growth rate. We conclude that methylation of the pre-rRNA is substantially more resistant to reduced snoRNA levels than is pre-rRNA cleavage.

DISCUSSION

We report here that the essential nucleolar protein Nop58p is specifically associated with one of the two major classes of snoRNAs, the box C+D snoRNAs. Immunoprecipitation using Nop58p epitope-tagged with Protein A efficiently precipitated all tested box C+D snoRNAs. The association of Nop58p with the box C+D snoRNAs was found to be specific, since neither the box H+ACA snoRNAs nor the RNase MRP RNA were significantly coprecipitated. In addition, Nop58p was shown to be required for the stability of the box C+D snoRNAs; genetic depletion of Nop58p leads to the dramatic depletion of most box C+D snoRNAs tested. This effect was specific because neither the H+ACA snoRNAs nor the RNase MRP RNA were affected. We conclude that Nop58p is a core component of the box C+D snoRNPs, and is the first protein shown to be required for the stability of these RNA species. UV cross-linking of box C+D RNA reporter constructs in mouse nuclear extracts and Xenopus oocytes identified putative snoRNP proteins that require intact boxes C and D and the conserved 5′-3′ terminal stem for binding. Among these were fibrillarin and a protein of 65–68 kD apparent molecular weight (Caffarelli et al., 1998; Watkins et al., 1998b), in good agreement with the predicted size of human Nop58p (Wu et al., 1998).

Searches of the complete genomic sequences of the Archaea Archaeoglobus fulgidus (Klenk et al., 1997), Methanobacterium thermoautotrophicum (Smith et al., 1997), and Methanococcus jannaschii (Bult et al., 1996) identified predicted proteins in each organism with clear homology to Nop58p. Comparison to the yeast/human alignments indicate that the archaeal proteins are rather
Nop58p is a core component of the box C+D snoRNP

more homologous to Nop58p than to Nop56p. Homologs of the other common protein component of the box C+D snoRNPs, Nop1p/fibrillarin, have previously been identified in Archaea (Amiri, 1994) and are also present in the complete genomic sequences. Strikingly, the genes encoding the homologs of Nop58p and Nop1p appear to be cotranscribed as an operon in both A. fulgidus and M. thermoautotrophicum, strongly supporting their functional conservation. In M. jannaschii the genes are closely located in the genome but do not appear to form an operon. The presence and genomic organization of the homologs of both known box C+D snoRNP proteins suggests that homologs of the box C+D snoRNAs may also be present in Archaea (see Lafontaine & Tollervey, 1998 for further discussion).

There are similarities between the proteins associated with the box C+D and box H+ACA snoRNAs. Both groups are associated with a protein that contains a glycine/arginine rich repeat (GAR domain or RGG box); the box C+D snoRNAs are associated with Nop1p, and the box H+ACA snoRNAs with Gar1p. Similarly, both groups are associated with proteins containing a KKD/E domain; Cbf5p (dyskerin in humans; Heiss et al., 1998) is associated with the box H+ACA snoRNAs and Nop58p with the box C+D snoRNAs. However, whereas the H+ACA snoRNP proteins Cbf5p, Nhp2p, and Nop10p are each required for the stability of Gar1p (Henras et al., 1998; Lafontaine et al., 1998a), Nop58p is not required for the stability of Nop1p.

The bulk of the box C+D snoRNAs are predicted to act as guides to select sites of 2'-O-methylation in the pre-rRNA. However, two box C+D species, U3 and U14, are required for pre-rRNA processing. Genetic depletion of U3 inhibits pre-rRNA cleavage at sites A₀, A₁, and A₂; depletion of U14 strongly inhibits cleavage at A₁ and A₂, but has less effect on processing at site A₀ (Fig. 1B; Li et al., 1990; Hughes & Ares, 1991; Beltrame et al., 1994). These three early cleavages are all greatly inhibited in the Nop58p depleted strain (see also Wu et al., 1998). This leads to a strong impairment in the synthesis of the 18S rRNA, preventing synthesis of the small ribosomal subunits. This inhibition most likely underlies the lethality seen on deletion of the NOP58 gene (Gautier et al., 1997) or on genetic depletion of Nop58p.

Incorporation of [3H]-uracil into newly synthesized pre-rRNA was strongly reduced (approximately fivefold after 6 h in minimal glucose medium), presumably because of the slowed growth rate of the Nop58p depleted cells. Surprisingly, the incorporation of [3H]-methionine into methyl groups in the pre-rRNA was reduced to the same extent. The reduced level of pre-rRNA detected by uracil labeling is unlikely to be due to destabilization of under-methylated pre-rRNA; in strains carrying the ts-lethal nop1-3 mutation, methylation of the pre-rRNA was very strongly inhibited with little effect on pre-rRNA or rRNA synthesis (Tollervey et al., 1993). The residual levels of the box C+D snoRNAs present in the Nop58p depleted strain appear to be sufficient to direct the efficient methylation of the low residual levels of pre-rRNA, although it may be that a few specific sites of 2'-O-methylation are more severely inhibited than is indicated by the data on bulk methylation. In contrast, cleavage of the pre-rRNA at sites A₀/A₁/A₂ was strongly inhibited under the same conditions. This indicates that higher levels of U3 and/or U14 are required to support pre-rRNA cleavage than are generally required for activity of the methylation guides. It is notable that strains depleted of Nop1p/fibrillarin are strongly inhibited for pre-rRNA processing but have only a mild methylation defect, even though the nop1-3 allele shows strong inhibition of methylation (Tollervey et al., 1991, 1993). One explanation would be that the pre-rRNA/snoRNA association must be sustained for longer periods of time to direct the cleavage reactions. Binding of U14 to the pre-rRNA in the 18S rRNA region and binding of U3 to the 5' ETS region are required for the early pre-rRNA cleavages (Beltrame & Tollervey, 1992, 1995; Liang & Fournier, 1995) and the time taken for these three cleavages to occur may become limiting under conditions of snoRNA depletion. Moreover, there is likely to be a limited time window for the cleavage of sites A₀/A₁/A₂. If the pre-rRNA is cleaved at site A₀ by RNase MRP, the resulting 23S RNA is very rapidly degraded by the exosome complex of 3' → 5' exonucleases (P. Mitchell, E. Petfalski, D. Tollervey, unpubl.) preventing synthesis of the 18S rRNA.

Comparison of different box C+D snoRNAs revealed some variation in the residual levels on depletion of Nop58p. For U3, a longer species accumulated, clearly showing an effect on synthesis of the snoRNA. The 5' end of mature U3 corresponds to the tri-methyl guanosine cap of the primary transcript, and the extended form is therefore very likely to be 3' extended. In vertebrates and yeast, spliceosomal snRNAs are processed from precursors with 3' extensions (Madore et al., 1984a, 1984b; Yuo et al., 1985; Chanfreau et al., 1997; Abou Elela & Ares, 1998), and U3 may be similarly processed. Longer forms of U24 were also accumulated, together with low levels of shorter forms. The 5' end of U24 was unaffected by depletion of Nop58p whereas RNase protection experiments detected species 3' extended by 5–6 nt, showing these changes to be due to alterations in 3' processing. Yeast U24 is encoded in the intron of the BEL1 gene (Qu et al., 1995) and the snoRNA is obligatorily synthesized from the intron following debranching of the intron lariat; very low levels of mature U24 are synthesized in a dbr1-Δ strain that lacks debranching activity (Ooi et al., 1998; Petfalski et al., 1998). This strongly indicates that both ends of U24 are synthesized by exonuclease activities and, indeed, the 5' → 3' exonucleases Rat1p and Xrn1p were identified as the activities responsible for the 5' processing (Petfalski et al., 1998). In vertebrates, the 5' and 3' ends of all tested intron-encoded snoRNAs are synthesized by exonucleases
The box C+D sequences, together with a stem structure that normally brings them together in the snoRNA secondary structure are the only elements essential for the synthesis and stability of this class of snoRNA, and their presence is the only feature that is clearly conserved among the box C+D snoRNAs (Baserga et al., 1991; Huang et al., 1992; Caffarelli et al., 1996; Watkins et al., 1996; Xia et al., 1997). A simple model for the involvement of Nop58p in snoRNA stability is through protection from the exonucleolytic activities that normally generate the mature ends. If so, the alteration in the 3′ end of U24 on depletion of Nop58p suggests that this interaction might be via binding to the conserved box D at the 3′ end of the snoRNAs. Curiously, inspection of the 3′ end of U24 (CUGAUUGAUOH) (Qu et al., 1995) reveals the presence of a consensus box C motif (UGAUGA), partially overlapping the box D element (CUGA). We speculate that on depletion of Nop58p, the putative box C binding protein(s), which normally binds to the 5′ end of the snoRNA, also binds to the cryptic 3′ box C element. This might confer extra protection to U24 and explain why this species is more resistant to Nop58p depletion.

During depletion of Nop58p, Nop1p was reported to be delocalized to the nucleoplasm and cytoplasm (Wu et al., 1998). In the conditions used (up to 12 h in glucose medium) the snoRNAs were presumably strongly depleted. This indicates that Nop1p does not localize to the nucleolus on its own, but rather is localized to and/or anchored to the nucleolus in association with snoRNPs. The association of the box C+D snoRNAs with the nucleolus does not require complementarity to the pre-rRNA (Lange et al., 1998b). Instead, both snoRNA stability and nucleolar targeting require the conserved box C+D elements and the terminal stem (Lange et al., 1998a, 1998c; Samarsky et al., 1998). It seems probable that Nop58p stabilizes the snoRNAs via binding to one or both of these sequence elements and is, therefore, a good candidate to provide the nucleolar targeting signals. Testing of this hypothesis will require the separation of the role of Nop58p in snoRNA stability from its putative targeting function.

MATERIALS AND METHODS

Construction of Nop58p epitope tagged and GAL::nop58 strains

Strains used for the immunoprecipitation experiments, ProtA-NOP58, ProtA-NOP58ΔKKE, and the wild-type isogenic control (NOP58) were generously provided by T. Gautier (Université I, Grenoble) and were described previously (Gautier et al., 1997). In these haploid strains, a chromosomal nop58Δ::HIS3 deletion is rescued either by plasmids, pRS315-ProtA-NOP58, pRS315-ProtA-NOP58ΔKKE, or pRS315-NOP58. Both ProtA-NOP58 and ProtA-NOP58ΔKKE epitope-tagged fusions of Nop58p were showed to be fully functional. The control ProtA-NOP1 strain was a generous gift from E. Hurt.

The GAL::nop58 strain was constructed in strain YDL401 (Lafontaine & Tollervey, 1998) by use of a one-step PCR strategy (Lafontaine & Tollervey, 1998). This resulted in the direct fusion on the chromosome of a HIS3-pGAL cassette in front of the ATG of NOP58. The oligonucleotides used for the amplification with plasmid pTL26 were oligonucleotide 1, 5′-TGCTTTTCGCAAAAAATTTTGTATATTGGTATTTGAAAATA GACGTCCTTGGGCTCCTCTAGT-3′ and oligonucleotide 2, 5′-ACCAAGCTGAAGTTTCAGTTAAAACGTAAGCGATTGT ATGAGGAGGTTGCGAATTCCTTGAA-3′. Transformants were screened for glucose sensitivity and by PCR on yeast colonies. RNA analyses presented in Figures 3, 4, and 7 were performed in duplicate on two independently isolated GAL::nop58 strains (YDL522-17 and YDL522-20); analysis presented in Figures 5 and 8 were made on strain YDL522-20.

Immunoprecipitation of ProtA-Nop58p and ProtA-Nop58pΔKKE

Immunoprecipitation experiments were performed essentially as described in Lafontaine et al. (1998a). Yeast whole-cell extracts were prepared as described in Séraphin & Rosbash (1989). Lysates were made in buffer A (20 mM Tris HCl, pH 8.0, 5 mM MgCl₂, 1 mM DTT, 0.2% Triton X-100, 0.5 mM PMSF, and 150 mM or 500 mM K acetate), and supernatants were cleared by centrifugation (56,000 rpm, 4 °C, 20 min). Lysates equivalent to 37.5 OD₆₀₀ of cells were incubated on a rotating wheel for 2 h at 4 °C with 100 μL of IgG-agarose beads (Sigma, A2909), prewashed in buffer A, in a total volume of 400 μL. Pellets were washed four times for 20 min in 1 mL of buffer A. Each gel lane (T, S, P) was loaded with RNA from a fraction of the preparation equivalent to 10 OD₆₀₀ of cells.

GAL::nop58 time course, RNA extraction, Northern-blot hybridization and primer extension

For depletion of Nop58p, cells growing exponentially in permissive rsg conditions (2% galactose, 2% sucrose, and 2% raffinose complete medium) at 30 °C were harvested by centrifugation, washed, and resuspended in prewarmedYPD (2% glucose complete medium). During growth, cells were diluted with prewarmed medium and constantly maintained in exponential phase. RNA extraction, Northern hybridization, and primer extension were as described in Lafontaine et al. (1995, 1998b). Standard 1.2% agarose/formaldehyde and 8% acrylamide gels were used to analyze the processing of the high-and low-molecular weight RNAs species, respectively. Nine micrograms of total RNA were used for the Northern and primer-extension experiments presented in Figures 3–5, 7, and 8.
Oligonucleotides used for pre-rRNA hybridization were: oligo
a = CATGGCTTAACTTTGAGAC, b = CGGTGTTAATGT
CCTA, c = TTGTTTACCTGGGGGCCC, d = CGAGGTAC
GAAATTTCTGTG, e = GGCACGATTTCCAAGTT, f =
CTCCGCTTATGGATAGGC, g = CGAGATAACTATCTAA
AAG, and h = TTCGCGTTCTTCTCATC.

Oligonucleotides used for snoRNA hybridization were: oligo
anti-U3 = UUAUUGGCAUCUGU, snR190 = CGCTATGG
CGAATCGG, snR4 = CACATCCACATCAGGCC, U14 =
TCATCTGACACATCTTAGG, U18 = TGCATACTGGAT
AGTC, U24 = TCAGATCTTTGAGATAAA, snR13 = CA
CCGTCTAGTATTGGCC, snR37 = GATAGTATTAAACCG
TACTG, snR11 = GAGCAATCGTACTCTG, snR31 = GT
AGAACGAATCATGCC, snR3 = TCGATCTTCTGACTGCT,
snR33 = GATTGCCAACACACTTCT, snR36 = CATCACGC
TCAAGAATCG, snR42 = CTCCCTAAGACATCACAA, and
MRP = AATTAGGGATCAGGCTCCAGAACGC. Antisense tran-
scripts specific to snR30 and snR10 were made from vectors
pT3/T7-snR30 (Morrissey & Tollervey, 1993) and pT3/T7-
snR10 following appropriate linearization. To detect the NOP58
mRNA, a fragment spanning the whole ORF of NOP58 was
generated by PCR and labeled using the Prime-a-Gene La-
belen kit (Promega).

Western blotting analysis

For protein extraction, cells equivalent to 10 OD_{600} were
harvested and resuspended in 200 μL of SDS loading buffer with
50 μL of glass beads. Cells were vortexed for 1 min and
incubated for 1 min at 95°C three times successively. Ly-
sates were cleared by centrifugation for 10 min at 14,000 rpm
and supernatants equivalent to 0.375 OD_{600} units of cell were
loaded per lane. Samples were run on a 15% SDS-PAGE gel
and blotted according to standard procedures. The blot was
decorated with monoclonal mouse anti-Nop1p antibody (mAb66,
dilution 1/20, kindly provided by J. Aris) and developed using
the ECL detection kit (Amersham).

RNase A/T1 mapping

RNase A/T1 protection analysis was essentially performed
as described in Goodall et al. (1990). The 32P-labeled anti-
sense probe was transcribed with T7 polymerase from plas-
mid pTL66 linearized with Eco57I. The probe was treated
with RQ1-RNase-free DNase (Promega) and gel purified. Nine
micrometres of total RNA were mixed with ~40 cpm of probe in
30 μL of PIPES buffer (40 mM PIPES, pH 6.7, 400 mM
NaCl, 1 mM EDTA)/50% formamide. Annealing was per-
formed overnight at 48°C. Digestion in RNase buffer (10 mM
Tris HCl, pH 7.5, 300 mM NaCl, 1 mM EDTA) was with 7.5 U
of RNase T1/1.5 μg RNA A (both purchased from Boehr-
ringer) for 30 min at 25°C. Protected products were recov-
ered by phenol-chloroform extraction and separated on an
8% polyacrylamide gel. A sequencing reaction was used as a
ladder. With the antisense U24 transcript used (212 nt), the
protected fragment corresponding to the mature 3’ end of
U24 was detected at the expected length of 77 nt. Plasmid
pTL66 was constructed as follows: a U24 genomic fragment
encompassing the 3’ end of U24 was recovered by KpnI/
DraI digestion from plasmid pFH2 (a kind gift of Y. Henry) and
subcloned in pBluescript.

Analysis of methylation levels

The overall level of rRNA methylation was assessed by in
vivo pulse labeling of the RNAs with either [3H]-uracil or [3H]-
methionine followed by autoradiography and liquid scintilla-
tion counting. A GAL::nop58 strain (YDL522-20) and the
isogenic wild-type control (YDL401), transformed with a plasmid
expressing the URA3 gene (pFL44S) (Bonneaud et al.,
1991), were grown at 30°C in minimal medium lacking uracil,
methionine, and histidine and containing 2% galactose, 2% sucrose,
and 2% raffinose. Exponentially growing cells were washed and transferred to prewarmed minimal medium lack-
ing uracil, methionine, and histidine and containing 2% glu-
cose. At the identical OD_{600} of 0.35 (for the GAL::nop58 strain,
this corresponded to a transfer of 6 h in nonpermissive con-
ditions), wild-type and mutant cells were pulse-labeled for
5 min with 100 μCi/mL of either [3H]-uracil or [3H]-methionine.
One milliliter aliquots of cultures were snap-frozen in liquid
nitrogen. Total RNA was extracted and resolved on a 1.2%
agarose/formaldehyde gel. Gels were transferred to Gene-
screen plus membranes (NEF-976, Dupont De Nemours),
sprayed with tritium enhancer (NEF-970G, Dupont De Nemour-
s), and exposed for autoradiography. In duplicate exper-
iments, identical areas of membranes corresponding to the
mature 18S and 25S rRNA (as judged by Ethidium bromide
staining) were cut and submitted to liquid scintillation count-
ing using the Ultima-Gold F scintillant (Packard Bioscience).

ACKNOWLEDGMENTS

We would like to thank Ed Hurt (Universität Heidelberg) for
supplying the ProtA-Nop1p construct, Y. Henry (CNRS, Tou-
oulouse) for plasmid pFH2, and, particularly, Thierry Gautier
(Université I, Grenoble) and Ed Hurt for the ProtA-Nop58p
constructs. DLJL was the recipient of a fellowship from the
European Union TMR programme. This work was supported by
the Wellcome Trust.

Received October 14, 1998; returned for revision
November 13, 1998; revised manuscript received
December 9, 1998

REFERENCES

correct U23′ end formation and results in polyadenylated but
Amini KA. 1994. Fibrillarin-like proteins occur in the domain of Ar-
1995. Antisense snoRNAs: A family of nucleolar RNAs with long
Balakin AG, Smith L, Fournier MJ. 1996. The RNA world of the nu-
cleolus: Two major families of small RNAs defined by different
Baserga SJ, Yang XW, Steltz JA. 1991. An intact Box C in the U3
snoRNA is required for binding of fibrillarin, the protein common
to the major family of nuclear snRNPs. EMBO J 10:2645–2651.
essential binding site for the U3 snoRNA in the 5′ extran-
transcribed spacer of yeast pre-rRNA. Nucleic Acids Res 22:4057–
4065.
Beltraeme M, Tollervey D. 1992. Identification and functional analysis
of two U3 binding sites on yeast pre-ribosomal RNA. EMBO J
11:1531–1542.

Watkins NJ, Leverette RD, Xia L, Andrews MT, Maxwell ES. 1996. Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. *RNA* 2:118–133.

