Ordered magnetism in the intrinsically decorated $\text{je} = 1 \, 2 \, -\, \text{CoV}_3\text{O}_8$

Citation for published version:

Digital Object Identifier (DOI):
10.1103/PhysRevB.98.224410

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Physical Review B: Condensed Matter and Materials Physics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Ordered magnetism in the intrinsically decorated $j_{\text{eff}} = \frac{1}{2} \alpha$-CoV$_3O_8$

P. M. Sarte,1,2 A. M. Arévalo-López,1,2,3 M. Songvilay,2,4 D. Le,5 T. Guidi,5 V. García-Sakai,5 S. Mukhopadhyay,5 S. C. Capelli,5 W. D. Ratcliff,6 K. H. Hong,1,2 G. M. McNally,1,2,7 E. Pachoud,1,2 J. P. Attfield,1,2 and C. Stock2,4

1School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
2Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
3Université Lille 1 Sciences et Technologies, UMR 8181 CNRS, Unité de Catalyse et Chimie du Solide ‘UCCS’, 59655 Villeneuve d’Ascq, France
4School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
5ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, United Kingdom
6NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
7Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany

(Dated: November 1, 2018)

The antiferromagnetic mixed valence ternary oxide α-CoV$_3$O$_8$ displays disorder on the Co$^{2+}$ site that is inherent to the $I\bar{b}am$ space group resulting in a local selection rule requiring one Co$^{2+}$ and one V$^{4+}$ reside next to each other, thus giving rise to an intrinsically disordered magnet without the need for any external influences such as chemical dopants or porous media. The zero field structural and dynamic properties of α-CoV$_3$O$_8$ have been investigated using a combination of neutron and x-ray diffraction, DC susceptibility, and neutron spectroscopy. The low temperature magnetic and structural properties are consistent with a random macroscopic distribution of Co$^{2+}$ over the 16k metal sites. However, by applying the sum rules of neutron scattering we observe the collective magnetic excitations are parameterized with an ordered Co$^{2+}$ arrangement and critical scattering consistent with a three dimensional Ising universality class. The low energy spectrum is well-described by Co$^{2+}$ cations coupled via a three dimensional network composed of competing ferromagnetic and stronger antiferromagnetic superexchange within the ab plane and along c, respectively. While the extrapolated Weiss temperature is near zero, the 3D dimensionality results in long range antiferromagnetic order at $T_N \sim 19$ K. A crystal field analysis finds two bands of excitations separated in energy at $\hbar \omega \sim 5$ meV and 25 meV, consistent with a $j_{\text{eff}} = \frac{1}{2}$ ground state with little mixing between spin-orbit split Kramers doublets. A comparison of our results to the random 3D Ising magnets and other compounds where spin-orbit coupling is present indicate that the presence of an orbital degree of freedom, in combination with strong crystal field effects and well-separated j_{eff} manifolds may play a key role in making the dynamics largely insensitive to disorder.

I. INTRODUCTION

Introducing disorder into condensed matter systems often suppresses common mean-field phases and transitions in favor of states that exhibit unusual critical properties.11,12 Examples of such exotic behavior in insulating systems include the study of quenched disorder through doping in both model magnets13,14 and liquid crystal systems.15,16 While the presence of strong disorder disrupts translational symmetry, often resulting in a glassy phase15 with long range order destroyed for all length scales, the presence of weak disorder can give rise to phases displaying distinct responses for differing length scales. For example, in model random field systems near a phase transition, critical thermal fluctuations dominate until the length scale of the order parameter be-

comes large enough where static terms originating from long range order are suppressed. For example, in model random field systems near a phase transition, critical thermal fluctuations dominate until the length scale of the order parameter becomes large enough where static terms originating from long range order are suppressed. For example, in model random field systems near a phase transition, critical thermal fluctuations dominate until the length scale of the order parameter becomes large enough where static terms originating from long range order are suppressed. For example, in model random field systems near a phase transition, critical thermal fluctuations dominate until the length scale of the order parameter becomes large enough where static terms originating from long range order are suppressed.

This work is licensed under a Creative Commons Attribution 4.0 International License. For more information, see https://creativecommons.org/licenses/by/4.0.

One example of theoretical efforts to understand the effects of quenched disorder on the order parameter near a phase transition is random field theory which relates disorder to the lowering of the dimensionality of the underlying universality class.13,14 Model random magnets and liquids15 have played a significant role in the development and validation of such theories with an important example being the dilute Ising antiferromagnets such as Fe$_2$Zn$_{1-x}$F$_x$ ($L = 2$ and $S = 2$) and Mn$_2$Zn$_{1-x}$F$_x$ (Mn^{2+}, $L = 0$ and $S = \frac{3}{2}$). In these magnets, the random occupancy introduced through doping combined with a magnetic field results in a tunable random field. While these systems show a competition between static and thermal fluctuations driving magnetic order, the dynamics are largely unaltered by the introduction of weak disorder.15,16 and therefore the magnets with weak quenched disorder have collective dynamics very similar to the parent compounds. Despite significant interest in the community.15 the amount of systems that have been shown to host such exotic phases as described above have been limited, in particular, there are few examples of definitive Bragg glass and Griffiths phases. In this paper, we discuss a system where disorder is not introduced through doping, but rather is inherent to the crystallographic symmetry and therefore is a situation where magnetic disorder is present despite the absence of structural order.

In contrast to the disordered systems described above, where the disorder is a consequence of an addition external to the original system (e.g. doping11,12, porous media17,18, etc.), and thus can be finely tuned19 the disorder in α-CoV$_3$O$_8$ is simply inherent to its $I\bar{b}am$ crystal structure. As illustrated in Figs. (a) and (b), the pro-
FIG. 1. Proposed crystal structure of \(\alpha\)-CoV\(_3\)O\(_8\) \((\text{Ibam, #72})\) along the (a) \(bc\) and (b) \(ac\) planes, consisting of zigzag chains of edge-sharing MO\(_6\) (M = Co\(^{2+}\), V\(^{4+}\)) octahedra running parallel to \(c\) that are interspaced with non-magnetic V\(^{5+}\) in tetrahedral (V\(^{5+}\)(2)) and trigonal bipyramidal (V\(^{5+}\)(3)) coordination. (c) Local constraint of the Ibam structure. Metal sites opposite of the bridging O(5) must be occupied by one Co\(^{2+}\) and one V\(^{4+}\), with the O(5) situated closer to the V\(^{4+}\) site. (d) Crystal structure of \(\alpha\)-ZnV\(_3\)O\(_8\) \((\text{Iba2, #45})\). In contrast to Ibam, the Iba2 structure consists of an ordered alternating distribution of Zn\(^{2+}\) and V\(^{4+}\) along the zigzag chains.

Proposed crystal structure of \(\alpha\)-CoV\(_3\)O\(_8\) consists of zigzag chains of edge-sharing MO\(_6\) octahedra (M = Co\(^{2+}\) and V\(^{4+}\)) running along \(c\). With the exception of a single crystallographic constraint corresponding to a local selection rule requiring that one Co\(^{3+}\) and one V\(^{4+}\) reside on opposite sides of the O(5) bridging oxygen (Fig. [c]), the Ibam structure of \(\alpha\)-CoV\(_3\)O\(_8\) consists of a random distribution of metal cations along the zigzag chains. A combination of the proposed random metal cation distribution with both evidence for dominant antiferromagnetic exchange coupling from DC susceptibility and Ising anisotropy due to local axial octahedral distortions and spin-orbit coupling, suggests that \(\alpha\)-CoV\(_3\)O\(_8\) may represent a potential alternative route for the investigation of disordered-induced physics. Indeed the study of disorder on electronic structures has found that by introducing correlations, localization can be suppressed.

In this paper, we characterize both the crystal-magnetic structure and fluctuations of \(\alpha\)-CoV\(_3\)O\(_8\). This paper consists of five sections discussing our results including this introduction and a subsequent section on experimental details. We first present the characterization of the static nuclear-magnetic structure. High resolution single crystal x-ray and neutron diffraction data confirmed both the disordered Ibam crystal structure and the presence of local octahedral distortions. A combination of single crystal magnetic neutron diffraction and single crystal DC susceptibility identified the presence of ferromagnetic correlations between Co\(^{2+}\) cations within the \(ab\) plane, in addition to a dominant antiferromagnetic coupling along \(c\). Low energy critical scattering is consistent with 3D Ising behavior attributable to the \(j_{\text{eff}} = \frac{1}{2}\) Co\(^{2+}\) ions. However, in contrast to the intrinsically disordered Ibam crystal structure, by applying the first moment sum rule of neutron scattering, we find the excitations are well described by an ordered Co\(^{2+}\) arrangement. We conclude the paper with a section discussing our results in the context of models for disordered magnets and discuss the role of spin-orbit coupling through a comparison of model magnets in a random field.
II. EXPERIMENTAL DETAILS

Sample Preparation: Single crystals of \(\alpha\text{-CoV}_3\text{O}_8\) were grown using a modified “self-flux” heating routine for \(\alpha\text{-CoV}_2\text{O}_6\). Precursor polycrystalline samples of \(\alpha\text{-CoV}_2\text{O}_6\) were first synthesized by a standard solid-state reaction consisting of heating a stoichiometric mixture of Co(CH\(_3\)CO\(_2\))\(_2\) \cdot 4 H\(_2\)O (Sigma-Aldrich, 98%) and V\(_2\)O\(_5\) (Alfa Aesar, 99.6%) in air for 12 h at 650°C, then for 48 h at 725°C, followed by quenching in liquid nitrogen. A mixture of the \(\alpha\text{-CoV}_2\text{O}_6\) polycrystalline precursor and V\(_2\)O\(_5\) in a 3:2 ratio in approximately 0.01% (w/w) of B\(_2\)O\(_3\) (Alfa Aesar, 98.5%) was heated in a vacuum sealed quartz tube at 780°C for 12 h at 650°C, then for 48 h and subsequently cooled to 700°C at a rate of 1°C hr\(^{-1}\). After 24 h of heating at 700°C, the sample was cooled to 600°C at a rate of 1°C hr\(^{-1}\) and subsequently quenched to room temperature.

Polycrystalline samples of \(\alpha\text{-CoV}_3\text{O}_8\) and \(\alpha\text{-ZnV}_3\text{O}_8\) were synthesized by a standard solid-state reaction consisting of heating a stoichiometric mixture of CoO (Alfa Aesar, 95%) or ZnO (Alfa Aesar, 99.99%), VO\(_2\) (Alfa Aesar, 99%) and V\(_2\)O\(_5\) for 96 h at 650°C under static vacuum in a sealed quartz tube with intermittent grindings until laboratory powder x-ray diffraction confirmed no discernable impurities. All stoichiometric mixtures of polycrystalline precursors were first mixed thoroughly together and finely ground to homogeneity with acetone using an agate mortar and pestle. The mixtures were pressed into \(8 \times 8 \times 1 \text{ mm}^3\) samples were furnace cooled back to room temperature.

Laboratory X-ray Diffraction: Single crystal x-ray diffraction was performed at 120 K on a 0.011 mg single crystal of \(\alpha\text{-CoV}_3\text{O}_8\) with dimensions of 0.40 \(\times\) 0.11 \(\times\) 0.09 mm\(^3\) using monochromated Mo K\(_\alpha\) radiation on an Oxford Diffraction SuperNova dual wavelength diffractometer equipped with an Atlas CCD detector and an Oxford Cryostream-Plus low-temperature device. Data collection, integration, scaling, multiscan absorption corrections and indexing were performed using the CrysAlisPro v1.171.37.35e software package. The structure solution was performed using a direct approach method with the SHELXS-97 program in Olex2.

Room temperature powder diffraction patterns of \(\alpha\text{-CoV}_2\text{O}_6\), \(\alpha\text{-CoV}_3\text{O}_8\) and \(\alpha\text{-ZnV}_3\text{O}_8\) were collected over 2\(\theta\) = [5, 70]° in 0.0365° steps on a Bruker D2 Phaser laboratory x-ray diffractometer using monochromated Cu K\(_\alpha\) radiation.

All structural refinements for single crystal and polycrystalline measurements were performed using the JANA2000 and GSAS I Rietveld refinement program packages, respectively, and are summarized in Appendix A. For the single-crystal refinement, the solved structure was refined by a full-matrix least squares against \(\mathbf{F}^2\) using only data \(I > 3\sigma (I)\).

DC Magnetic Susceptibility: A 7.7 mg single crystal of \(\alpha\text{-CoV}_3\text{O}_8\) with dimensions of 2 \(\times\) 1 \(\times\) 1 mm\(^3\) was aligned along the three principal axes. All crystal alignments were performed with polychromatic Laue backscatter diffraction employing adapted photostimulable plates using the Fujifilm FCR Capsula XL II system. The temperature dependence of ZFC magnetization for all three principal axes was measured on a Quantum Design MPMS in an external DC field \(\mu_0H_{\text{ext}} = 0.5 \text{T}\) applied parallel to the particular axis of interest. Measurements were performed in 2 K steps spaced linearly from 2 K to 300 K.

Neutron Single Crystal Diffraction: Neutron single crystal diffraction experiments were performed on the SXI [77,78] time-of-flight instrument at the ISIS spallation source. The SXD diffractometer employs the time-of-flight Laue technique. The combination of a polychromatic incident beam falling on a stationary sample surrounded by 11 ZnS scintillator PSDs covering \(\Omega \sim 2\pi\) sr enables quick access to a large amount of reciprocal space with minimal sample movement during data collection. A 0.4312 g single crystal of \(\alpha\text{-CoV}_3\text{O}_8\) with dimensions of 13.2 \(\times\) 4.1 \(\times\) 2.1 mm\(^3\) as illustrated in Fig. 2(d) was mounted on the end of a 6 mm aluminum pin with aluminum tape, vertically suspended from a liquid helium 50 mm bore Orange cryostat providing \(\omega\)-motion in an accessible temperature range of 1.5 to 300 K. Diffraction data was collected at both 5 K and 50 K for three different single crystal frames with an accumulated charge of 1300 \(\mu\text{A} \cdot \text{h} \sim \frac{8}{h}\). After each temperature change, the sample was allowed to thermalize for 15 minutes. Reflection intensities were extracted, reduced and integrated to structure factors using standard SXD procedures, as implemented in SXD200 [79,80].

Inelastic Neutron Time-of-Flight Scattering Spectroscopy: All inelastic neutron scattering experiments were performed on the direct geometry MARPOR [79,81] and indirect geometry IRIS [82] time-of-flight spectrometers located at ISIS. Neutron spectroscopic measurements were performed on powders as preliminary measurements found the signal from single crystals to be weak. High-energy measurements (> 2 meV) on 32.6 g of \(\alpha\text{-CoV}_3\text{O}_8\) and 31.9 g of \(\alpha\text{-ZnV}_3\text{O}_8\) were performed on the direct geometry MARI spectrometer. The \(t_o\) chopper was operated at 50 Hz in parallel with a Gd chopper spun at 350, 300 and 250 Hz with incident energies \(E_i = 150, 60\) and 15 meV, respectively, providing an elastic resolution of 5.87, 1.82 and 0.321 meV, respectively. A thick disk chopper spun at \(f = 50\) Hz reduced the background from high-energy neutrons. A top loading Displex CCR provided an accessible temperature range of 5 to 600 K.

For lower energies, measurements on 15.1 g of \(\alpha\text{-CoV}_3\text{O}_8\) were performed on the indirect geometry IRIS spectrometer. As an indirect geometry spectrometer, the final energy \(E_f\) was fixed at 1.84 meV by cooled PG002 analyzer crystals in near backscattering geometry. The graphite analyzers were cooled to reduce thermal diffuse scattering, providing an elastic resolution of 17.5 \(\mu\text{eV}\). A top loading Displex CCR provided an accessible temperature range of 5 to 580 K.
Neutron Powder Diffraction: Neutron diffraction measurements on 1.8 g of polycrystalline α-CoV₃O₈ were performed on the BT-4 thermal triple axis spectrometer at the NIST Center for Neutron Research (NCNR). Incident and scattering neutron energies were set to 14.7 meV (λ=2.3592 Å), selected by vertically focussing PG002 monochromator and analyzer crystals with PG filters located before and after the sample to reduce higher-order neutron contamination. The Soller horizontal collimator configuration downstream order was 60'-monochromator-80'-sample-80'-analyzer-60'-detector. A top loading liquid helium 50 mm bore Orange cryostat provided an accessible temperature range of 1.5 to 300 K.

In a procedure analogous to previous studies on hydrothermally grown single crystals, the crystallographic axis likely originating from the distortion of the local octahedra, a topic that will be later addressed with statistical analysis of the intensity data favoring the centrosymmetric Ibam. In a procedure analogous to previous studies on hydrothermally grown single crystals, the magnetic behavior. In fact, V⁴⁺ moments that can couple via ε₃ orbitals, coupling between the d⁷ Co³⁺ moments can couple via ε₁ orbitals, resulting in the magnetically observed small average. The differences in the constants measured along different directions is also indicative of an anisotropy in the system likely originating from the distortion of the local octahedra, a topic that will be later addressed with statistical analysis of the intensity data favoring the centrosymmetric Ibam. In a procedure analogous to previous studies on hydrothermally grown single crystals, the structure was solved using a direct method. The corresponding unit cell was found to consist of three metal sites with octahedral (16k), tetrahedral (8j) and trigonal bipyramidal (8i) coordination, with Co³⁺ and V⁴⁺ with half occupancies independently distributed over the 16k site and V⁸⁺ with full occupancies in the latter two 8j sites. Structural refinements utilizing 910 out of a total of 985 measured reflections confirmed two important conclusions from previous studies. Firstly, Co³⁺ and V⁴⁺ are both randomly and equally distributed over the 16k site with refined occupancies of 0.506(6) and 0.494(4), respectively. Second, the large refined anisotropic displacements resulting from placing the O(5) oxygen in the 8f position with full occupancy support the local selection rule consisting of Co³⁺ and V⁴⁺ occupying respective positions on opposite sides of the O(5) bridging oxygen ligand, as illustrated in Fig. 1(c).

III. RESULTS & ANALYSIS

A. Crystal Structure

As illustrated in Fig. 2(a) and summarized in Tabs. VII and VIII in Appendix A, single crystal x-ray diffraction at 120 K confirmed an orthorhombic unit cell (a = 14.29344(4) Å, b = 9.8740(3) Å, c = 8.34000(3) Å) with a volume of 1185.60(6) Å³, corresponding to Z = 8. Systematic extinctions provided Ibam (#72, Fig. 1(a,b)) and Iba2 (#45, Fig. 1(d)) as possible space groups, with statistical analysis of the intensity data favoring the centrosymmetric Ibam. In a procedure analogous to previous studies on hydrothermally grown single crystals, the structure was solved using a direct method. The corresponding unit cell was found to consist of three metal sites with octahedral (16k), tetrahedral (8j) and trigonal bipyramidal (8i) coordination, with Co³⁺ and V⁴⁺ with half occupancies independently distributed over the 16k site and V⁸⁺ with full occupancies in the latter two 8j sites. Structural refinements utilizing 910 out of a total of 985 measured reflections confirmed two important conclusions from previous studies. Firstly, Co³⁺ and V⁴⁺ are both randomly and equally distributed over the 16k site with refined occupancies of 0.506(6) and 0.494(4), respectively. Second, the large refined anisotropic displacements resulting from placing the O(5) oxygen in the 8f position with full occupancy support the local selection rule consisting of Co³⁺ and V⁴⁺ occupying respective positions on opposite sides of the O(5) bridging oxygen ligand, as illustrated in Fig. 1(c).

B. DC Magnetic Susceptibility

As summarized by Tab. and Fig. 2, DC susceptibility measurements along all three principal axes indicates that α-CoV₃O₈ behaves as a Curie-Weiss paramagnet at high temperatures and undergoes an antiferromagnetic transition at 19.5(5) K, corresponding to a T_N much greater than previously reported T_N of 8.2 K for crystals grown hydrothermally. A fit of the high temperature data (Fig. 2) to the Curie-Weiss law yielded Curie-Weiss temperatures θCW of 9.5(7), 2(1), −21.3(2) K for μO₅H_α applied along a, b and c, respectively. The small θCW with an average θCW = −3.2(4) K is suggestive of either weak exchange interactions or the presence of multiple and nearly canceling ferro/antiferromagnetic interactions resulting in the experimentally observed small average. The differences in the constants measured along different directions is also indicative of an anisotropy in the system likely originating from the distortion of the local octahedra.

As illustrated in Fig. 2(b), the magnetization does not approach zero in the low temperature limit after the antiferromagnetic transition. Instead, its value for all three principal axes plateaus at 2 K which indicates the possibility for the presence of paramagnetism at lower temperatures, although no measurements were conducted below 2 K. In contrast to the d⁷ Co³⁺ moments that can couple via ε₁ orbitals, coupling between the d⁷ V⁴⁺ moments are exclusively via t₂g orbitals which is predicted to be much weaker, and thus more likely to exhibit paramagnetic behavior. In fact, V⁴⁺ paramagnetism is supported by the observation that the saturated moment in the low temperature limit corresponds to 0.150(2) μ₅, a value consistent with a strongly reduced V⁴⁺ effective paramagnetic moment predicted to occur in the presence of strong spin-orbit coupling and octahedral distortions as has been previously observed experimentally in Na₂V₂O₅. Finally, the average effective paramagnetic moment of 5.213(7) μ₅ is smaller than the predicted moment of 5.6 μ₅ for Co³⁺ in an octahedral environment as studied in CoO₃ and assuming a 1:1 ratio of high spin Co³⁺ and V⁴⁺, confirming that both spin-orbit and distortion effects play a significant role in the magnetism of α-CoV₃O₈, a topic that will be later addressed with inelastic neutron scattering.

C. Magnetic Structure

As shown in Fig. 2(c) and summarized in Tabs. VII and VIII in Appendix A, single crystal neutron diffraction confirmed both an absence of any structural distortion away from the Ibam space group down to 5 K and the appearance of additional Bragg reflections confirming long range magnetic ordering as measured by previous DC susceptibility measurements. Since DC susceptibility measurements suggested that V⁴⁺ remained paramagnetic down to at least 2 K, the refinement of single crystal neutron diffraction data collected at 5 K assumed that the magnetic Bragg reflections were exclusively due to

<table>
<thead>
<tr>
<th>Crystallographic Axis</th>
<th>C (emu K/mol)</th>
<th>μO₅H_α (μ₅)</th>
<th>θCW (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.525(9)</td>
<td>5.410(7)</td>
<td>9.5(7)</td>
</tr>
<tr>
<td>b</td>
<td>3.31(2)</td>
<td>5.15(2)</td>
<td>2(1)</td>
</tr>
<tr>
<td>c</td>
<td>3.354(2)</td>
<td>5.180(2)</td>
<td>−21.3(2)</td>
</tr>
<tr>
<td>Average</td>
<td>3.396(7)</td>
<td>5.213(7)</td>
<td>−3.2(4)</td>
</tr>
</tbody>
</table>

* Calculated over a range of 150 ≤ T ≤ 300 K.
FIG. 2. (a) Refinement of single crystal x-ray diffraction data collected at 120 K yielding a refined Ibam unit cell (a=14.2944(4) Å, b=9.8740(3) Å, c= 8.34000(3) Å), in agreement with previous studies. (b) Temperature dependence of the DC magnetic susceptibility of α-CoV$_3$O$_8$ an external DC field μ_0H_{ext} = 0.5 T applied parallel to the three principal axes. Red lines indicate Curie-Weiss fits to high temperature data and are summarized by Tab. I. (c) Single crystal neutron diffraction intensity pattern collected at 5 K in the (H0L) scattering plane. Black ellipses indicate nuclear Bragg reflections. Arrows indicate strong magnetic Bragg reflections at (-212) and (212). (d) Refinement of single crystal neutron diffraction data on a (inset) 0.4312 g single crystal of α-CoV$_3$O$_8$ collected at 5 K. Schematic illustration of the refined magnetic structure of α-CoV$_3$O$_8$ along the (e) bc and (f) ab planes with the Co$^{2+}$ having 50 % occupancy. The orientation of the refined magnetic moments on Co$^{2+}$ are indicated by red arrows. (g) illustrates the ordered Ibam space group with each Co$^{2+}$ site fully occupied and the black octahedra representing V$^{4+}$ sites. Both panels (f) and (g) show a single layer of Co$^{2+}$ ions.
TABLE II. Comparison of the refined magnetic moment’s components assuming random (Ibam) and ordered (Iba2) distribution of Co$^{2+}$ and V$^{4+}$ on the metal sites of α-CoV$_3$O$_8$. The goodness-of-fit metric χ^2 and residuals from the magnetic refinement of neutron single crystal diffraction data collected at 5 K suggests that Co$^{2+}$ and V$^{4+}$ are randomly distributed. Numbers in parentheses indicate statistical errors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (Ibam)</th>
<th>Value (Iba2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_a</td>
<td>1.35(5) μ_B</td>
<td>1.30(6) μ_B</td>
</tr>
<tr>
<td>μ_b</td>
<td>1.16(5) μ_B</td>
<td>1.09(5) μ_B</td>
</tr>
<tr>
<td>μ_c</td>
<td>3.05(4) μ_B</td>
<td>2.32(5) μ_B</td>
</tr>
<tr>
<td>χ^2</td>
<td>3.18</td>
<td>3.05</td>
</tr>
<tr>
<td>R_p</td>
<td>8.38%</td>
<td>10.59%</td>
</tr>
<tr>
<td>R_{wp}</td>
<td>8.99%</td>
<td>14.57%</td>
</tr>
<tr>
<td>$R_{F_{200}}$</td>
<td>24.13%</td>
<td>32.28%</td>
</tr>
</tbody>
</table>

Co$^{2+}$ that were randomly distributed throughout the 16k metal sites. The random distribution of Co$^{2+}$ was accomplished by constraining the occupancy of each metal site to a value of $\frac{1}{2}$. The additional magnetic Bragg reflections were successfully indexed using a propagation vector $\mathbf{k} = (1, 1, 1)$ with the $P1\overline{1}cc$ (#56.376) Shubnikov space group$^{[2]}$. The propagation vector $\mathbf{k} = (1, 1, 1)$ was initially chosen as it corresponds to the first point of symmetry reduction by removing body-centering symmetry with the same structural unit $c2n$.[2] Subsequently, utilizing the aforementioned value of \mathbf{k}, a symmetry analysis was performed in JANA2006.[2] With a $\mathbf{k} = (1, 1, 1)$, the symmetry analysis considers which models were compatible — following the symmetry operations of the group, but excluding body-centering — with the restriction that moments at (x, y, z) are antiferromagnetically aligned with those moments at $(x + \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2})$. Four models were found to be compatible, with the $P1\overline{1}cc$ (#56.376) Shubnikov space group yielding the best match.

Tab. [I] summarizes the results of a joint nuclear and magnetic refinement utilizing 5086 out of a total of 5120 measured reflections at 5 K (Fig. [2](d)), confirming a strong preference for the $P1\overline{1}cc$ Shubnikov space group of $Ibam$ over $P1\overline{2}cc$ of $Iba2$. The refined magnetic moment for Co$^{2+}$ was found to be $\mu = 3.53(2) \mu_B$ with μ_a, μ_b and μ_c as 1.35(5) μ_B, 1.16(5) μ_B and 3.05(5) μ_B, respectively. α-CoV$_3$O$_8$ adopts a magnetic structure consisting of effective pairs of 2D layers in the ab plane, separated from one another by a non-magnetic layer consisting of tetrahedrally coordinated V$^{5+}$, as illustrated in Fig. [2](f). Within these 2D layers, Co$^{2+}$ spins are ferromagnetically coupled along both a and b, corresponding to inter-chain superexchange interactions. These 2D layers come in pairs with each offset from one another by 0.1858a, 0.1508a and 0.1194c with the pair being antiferromagnetically coupled to the adjacent pair along c, corresponding to intra-chain superexchange interactions.

D. Inelastic Neutron Scattering

Motivated by the random distribution of Co$^{2+}$ and V$^{4+}$, multiple ferro-/antiferromagnetic interactions and the presence of strong spin-orbit coupling, the spin dynamics of α-CoV$_3$O$_8$ was investigated with inelastic neutron scattering. All inelastic scattering intensities were normalized to absolute units using the paramagnetic approximation.[23] Normalization was performed using both Co and V as internal incoherent standards,[23] to calculate an absolute calibration constant A converting vanadium-corrected scattering intensities $I(Q, E)$ to the differential scattering cross section $d^2\sigma/dE\Omega$ which was then converted to the dynamic structure factor $S(Q, E)$ by

$$A(I(Q, E)) = \frac{d^2\sigma}{dE\Omega} = \frac{(\gamma^2\alpha^2)}{2} g_x^2 f(Q)^2 S(Q, E),$$

where γ is understood$^{[23]}$ that $S(Q, E)$ is $S^{zz}(Q, E) = \frac{1}{4} \left(S^{zz}(Q, E) \right)$, $\frac{1}{4}$ and g_x equals to 73 mb sr$^{-1}$ and the Landé g-factor, respectively, while the factor of 2 corresponds to the paramagnetic cross section$^{[23][5][7]}$. The value for the Landé g-factor is discussed in Appendix B.2. Hereafter, all neutron scattering quantities with a tilde (for example $\tilde{S}(Q, E)$), denote the inclusion of the magnetic form factor squared $|f(Q)|^2$.

1. Spin-Orbit Transitions

As discussed in Appendix B.1, α-CoV$_3$O$_8$ ($L = 3$ and $S = \frac{3}{2}$) in an octahedral crystal field environment can be projected onto a ground state with an effective orbital angular momentum of $\frac{5}{2}$ of $l = 1$ with a projection factor$^{[51]} a$ of $\frac{-1}{2}$.$\frac{1}{2}$. Diagonalizing the projected spin-orbit Hamiltonian $H_{SO} = \alpha |\lambda \cdot S|$ results in three spin-orbit manifolds$^{[51][63]}$ characterized by an effective angular momentum $j \equiv j_{eff}$ of $\frac{1}{2}$, $\frac{3}{2}$ and $\frac{5}{2}$. The j_{eff} of $\frac{1}{2}$ and $\frac{3}{2}$ manifolds are separated in energy from the $j_{eff} = \frac{5}{2}$ ground state doublet manifold by $\frac{1}{2} \alpha \lambda$ and $\frac{3}{2} \alpha \lambda$, respectively$^{[23]}$. For pure Co$^{2+}$ ($|\alpha \lambda| \approx 24$ meV, and therefore for an undistorted octahedra, one would expect a crystal field excitation at ~ 36 meV. In this section, we study the magnetic excitations in α-CoV$_3$O$_8$ in order to determine if its ground state can be considered as a $j_{eff} = \frac{1}{2}$.

Given that only small single crystals were available of α-CoV$_3$O$_8$, preliminary neutron inelastic scattering data failed to produce a measurable signal. To extract information on the low temperature magnetic dynamics, we therefore used powders and time-of-flight neutron spectroscopy techniques. Neutron inelastic scattering measurements (Figs. 3(a)-(c)) on polycrystalline α-CoV$_3$O$_8$ with an $E_i = 150$, 60 and 15 meV, respectively at 5 K revealed two clear low $|Q|$ excitations at ~ 5 meV and ~ 25 meV. To prevent any weak magnetic signal of interest from being masked by strong phonon bands, a scaled inelastic scattering spectrum $g\tilde{S}(Q, E)$ of an approximate isostructural compound α-ZnV$_3$O$_8$[23] collected with identical experimental conditions was subtracted as a background$^{[24]}$. Neutron inelastic scattering investigations of α-ZnV$_3$O$_8$ on MARI found no evidence of correlated V$^{4+}$ moments over the energy range reported here. The scaling factor g for the background was calculated from the ratio between energy-integrated cuts of $\tilde{S}(Q, E)$ of α-CoV$_3$O$_8$ and α-ZnV$_3$O$_8$ along $|Q|$ at high $|Q|$, thereby normalizing by the phonon scattering. The use of α-ZnV$_3$O$_8$ as a background not only removes the constant and $|Q|^2$-dependent background contributions but the presence of V$^{4+}$ in both compounds allows for the isolation of magnetic fluctuations solely attributable to Co$^{2+}$. As illustrated in Figs. 3(d)-(g), the use of α-ZnV$_3$O$_8$ as an effective background revealed that the ori-
FIG. 3. $\tilde{S}(Q, E)$ measured on MARI at $T = 5$ K with an E_i of (a) 150 meV, (b) 60 meV and (c) 15 meV. (d,e) Magnetic scattering $\tilde{S}_M(Q, E)$ and (f,g) corresponding $|Q|$-integrated cuts ($|Q|=0.3$ Å$^{-1}$). Vertical lines in (f,g) indicate instrumental resolution. $\tilde{S}_M(Q, E)$ was calculated by the subtraction of corresponding $\tilde{S}(Q, E)$ for α-ZnV$_3$O$_8$ measured at identical experimental conditions. All inelastic scattering intensities have been normalized to absolute units.

gin of the low-$|Q|$ excitations must be due to Co$^{2+}$ exclusively, excluding the possibility of any contribution from V$^{4+}$.

Following the analysis of inelastic scattering measurements on monoclinic and triclinic polymorphs of CoV$_2$O$_6^{60}$, the low-$|Q|$ excitations in α-CoV$_3$O$_8$ can be understood as transitions between different spin-orbit manifolds. A comparison between the inelastic spectra of CoV$_2$O$_6$ and α-CoV$_3$O$_8$ suggests that the excitations at ~ 5 meV and ~ 25 meV are due to transitions within the $j_{\text{eff}} = \frac{9}{2}$ manifold and between the $j_{\text{eff}} = \frac{1}{2}$ and $j_{\text{eff}} = \frac{3}{2}$ manifolds, respectively. In α-CoV$_3$O$_8$, these modes appear much broader than in CoV$_2$O$_6$; this will be discussed later. Such an assignment is supported by the observation that the transition at ~ 5 meV is gapped at 5 K in the magnetically ordered regime, as illustrated in Figs. 5(a) and (b). Such a gap would be a consequence of the Zeeman splitting of the $j_{\text{eff}} = \frac{9}{2}$ manifold due to the internal molecular field caused by long range ordering in the Néel phase60. Once the temperature is raised above T_N, the molecular field would be significantly reduced due to the loss of magnetic order, resulting in the disappearance of a gap, as is experimentally observed in Fig. 3(g).

In the context of this assignment in terms of j_{eff} spin-orbit split manifolds, a difference between α-CoV$_3$O$_8$ and monoclinic α-CoV$_2$O$_6$ is the absence of an observable ~ 110 meV magnetic excitation (Fig. 3(a)). As was previously calculated for CoV$_2$O$_6^{60}$ in addition to the strong excitations for the intra-$j_{\text{eff}} = \frac{9}{2}$ and the $j_{\text{eff}} = \frac{1}{2}$ to $j_{\text{eff}} = \frac{3}{2}$ transitions, the intensity of the $j_{\text{eff}} = \frac{1}{2}$ to $j_{\text{eff}} = \frac{3}{2}$ transition scales with the distortion of the local coordination octahedra95,96 with the transition being absent for a perfect octahedra like in rocksalt and cubic CoO91. The distortion of the local octahedra can quantified by the parameter δ defined by

$$\delta = \frac{1}{N} \sum \left\{ \left(\frac{d_i - \langle d \rangle}{\langle d \rangle} \right)^2 \times 10^4 \right\},$$

where $N = 6$ and $\langle d \rangle$ denotes the average distance95,96 α-CoV$_3$O$_8$ exhibits a much weaker octahedral distortion ($\delta = 11.106(8)$) than α-CoV$_2$O$_6$ ($\delta = 55$) and is thus expected to have a significantly weaker intensity. This is also in agreement with previous results on triclinic γ-CoV$_2$O$_6$ (with $\delta = 2.1$ and 4.8 for the two different Co$^{2+}$ sites) which failed to observe a $j_{\text{eff}} = \frac{3}{2}$ transition80. A distortion of the local octahedra around the Co$^{2+}$ site should result in an anisotropic term in the magnetic Hamiltonian95,96. Given the powder average na-
tecture of the dynamics (discussed below), we are not sensitive to this term. However, the consistency of the inelastic response with the \(j_{\text{eff}} \) description discussed above in terms of the energy response is also consistent with other Co\(^{2+}\)-based magnets where a local distortions of the octahedra exists.

We now discuss further evidence for our interpretation in terms of \(j_{\text{eff}} \) levels by applying the sum rules of neutron scattering to the integrated inelastic scattering intensity.

2. Total Moment Sum Rule

To confirm the assignment of the 5 meV signal as excitations within the ground state \(j_{\text{eff}} = \frac{1}{2} \) manifold, the total integrated spectral weight at 5 K of the lowest lying excitation was calculated. As summarized by the total moment sum rule of neutron scattering, the sum of all spectral weight is defined by

\[
\mathcal{L}(|\mathbf{Q}|, E) = \frac{3 \int d|\mathbf{Q}|^2 \int dE S(|\mathbf{Q}|, E)}{\int d|\mathbf{Q}|} = j(j+1),
\]

where \(S(|\mathbf{Q}|, E) \equiv S^{zz}(|\mathbf{Q}|, E) \) denotes the magnetic component of the dynamic structure factor \(\tilde{S}^{zz}_{\text{M}}(|\mathbf{Q}|, E) \) that has been further renormalized by \(|f(\mathbf{Q})|^2 \). The extra factor of 3 has been included to assure consistency with the definition of \(S(|\mathbf{Q}|, E) \equiv S^{zz}(|\mathbf{Q}|, E) \) given by Eq. 4 in the paramagnetic approximation. A measurement of the integrated intensity is therefore sensitive to the effective \(j \) of the manifold of levels being integrated over. Eq. 3 can be simplified by integrating out the angular dependence and canceling common terms resulting in an integral \(\mathcal{L} \) defined by

\[
\mathcal{L}(|\mathbf{Q}|) = 3 \int d|\mathbf{Q}| S^{zz}(|\mathbf{Q}|, E) dE,
\]

The total integral \(\mathcal{L} \) is uniquely a function of \(|\mathbf{Q}| \) and represents an integration of the magnetic density of states over all energies including both elastic and inelastic channels in the cross section. With \(j_{\text{eff}} = \frac{1}{2} \), the total moment sum rule (Eq. 3) would predict a value of 0.75 for the total integrated intensity.

Since the assignment discussed above based on spin-orbit transitions assumes that the ~5 meV excitation and the elastic cross section is exclusively due to excitations within the \(j_{\text{eff}} = \frac{1}{2} \) manifold, all quantities in Eq. 3 were projected onto the ground state doublet manifold by the projection theorem of angular momentum.

As discussed in Appendix B2, the projection onto the ground state doublet required defining the projected value of the Landé g-factor \(g_j \) as \(g_j^0 \equiv \frac{3}{2} \) and the effective angular momentum \(j_{\text{eff}} \) as \(J_{\text{eff}}^0 = \frac{1}{2} \). As illustrated in Fig. 4, the total integrated inelastic intensity of \(S(|\mathbf{Q}|, E) \equiv S^{zz}(|\mathbf{Q}|, E) \) given by \(\mathcal{L}(|\mathbf{Q}|) \) (Eq. 4) saturates at 0.15(1).

Combining the total integral of the inelastic contribution and an elastic contribution of \(\left(\frac{\mu_B}{g_j^0 \mu_N} \right)^2 = 0.66 \), yields a total integral of 0.81±0.14, in excellent agreement with the total moment prediction for \(j_{\text{eff}} = \frac{1}{2} \) of 0.75. The agreement further confirms our assignment of the low energy excitations to transitions within the ground state \(j_{\text{eff}} = \frac{1}{2} \) spin-orbit doublet manifold.

With the low energy excitations being successfully approximated by pure \(j_{\text{eff}} \) manifolds, we may now rationalize the effective paramagnetic moment \(p_{\text{eff}} \) of 5.213(7) \(\mu_B \) that was calculated from DC susceptibility. Given that the \(j_{\text{eff}} = \frac{1}{2} \) and \(j_{\text{eff}} = \frac{3}{2} \) manifolds are separated by ~24 meV (~278 K), both are significantly thermally populated at the high temperatures used for the Curie-Weiss fit. In such a high temperature regime, we would expect a \(p_{\text{eff}} \) of \(g_s \sqrt{S(S+1)} = 3.9 \mu_B \), which is significantly less than the measured value as has been commonly observed for other magnets based on Co\(^{2+}\) in octahedral coordination.

The extra component measured with susceptibility may be accounted for by noting that \(V^{4+} \) contributes \(g_s \sqrt{S(S+1)} = 1.7 \mu_B \). Therefore the addition of the contributions to \(p_{\text{eff}} \) from both Co\(^{2+}\) and \(V^{4+} \) corresponds to a total predicted \(p_{\text{eff}} = 5.6 \mu_B \), in close agreement with the experimental data, with the small discrepancy potentially attributable to the fact that the \(j_{\text{eff}} = \frac{3}{2} \) manifold is still not significantly populated at \(T \sim 300 \) K. Although it is worth noting that an additional and distinct possibility for a much larger measured effective paramagnetic moment may be a strong orbital contribution as has been observed for the case of Co\(^{3+}\), where the orbital contribution is significant, corresponding to approximately \(\frac{1}{2} \) of the total ordered moment.

E. Critical Exponents

Despite the similarities between the inelastic spectra of \(\alpha \)-CoV\(_3\)O\(_8\) and CoV\(_2\)O\(_4\), one difference is the bandwidth of the low energy excitation that we have assigned to the \(j_{\text{eff}} = \frac{1}{2} \) manifold. As illustrated in Fig. 3(g), in contrast...
to both polymorphs of CoV$_2$O$_6$, α-CoV$_3$O$_8$ exhibits a broad peak in energy whose bandwidth is approximately 20 times that of instrumental resolution. Such a large bandwidth could be accounted for by magnetic exchange coupling between spins. However, an alternative explanation may lie in the intrinsic cationic disorder inherent to the disordered Ibam structure of α-CoV$_3$O$_8$. Such large cationic disorder would result in a distribution of cationic sites and correspondingly a spread of spin-orbit transitions as has been shown for multiple doped systems. In this case, the value of χ in the sum to satisfy detailed balance, requiring $\lim_{T=0}$ and all even powers are excluded in the sum to satisfy detailed balance, requiring χ to be an odd function of energy. For paramagnetic fluctuations, critical scattering theory assumes a single energy scale, the relaxation rate Γ, is dominant. If Γ is driven by temperature, then it can be shown that the energy-temperature dependence of the uniform dynamic susceptibility $\chi''(E,T)$, follows $\frac{E}{T}$ scaling

$$\frac{\chi''(T,E)}{\chi''(T=0,K,E)} = \arctan \left(\sum_{i=0}^{n} \frac{E}{T} \right)^{2i+1} \right),$$

where $\chi''(T=0,K,E)$ denotes the value of χ'' in the limit of $T=0$ K and all even powers are excluded in the sum to satisfy detailed balance, requiring χ'' to be an odd function of energy. For this particular analysis, the value of $\chi''(T,E)$ was calculated by first subtracting a temperature independent background from the measured $S(T,|Q|,E)$. The contribution of the background was determined by an algorithm previously employed for Fe$_{1-x}$Te$_x$Se$_2$ and polymer quantum magnets. The algorithm is based on the requirement that all inelastic scattering must obey detailed balance accounting for both sample environment and other temperature-independent scattering contributions, and thus isolating the fluctuations exclusively due to Co$^{2+}$. The background-subtracted dynamic structure factor was then converted to $\chi''(T,|Q|,E)$ via the fluctuation-dissipation theorem

$$\chi''(T,|Q|,E) = g^2\mu_B^2\pi \left(\frac{1}{n(E,T)+1} \right) S(T,|Q|,E),$$

where $n(E,T)$ is the Bose factor. Finally, $\chi''(T,|Q|,E)$ was integrated over $|Q|=|0,3|$ and $|0,2|$ Å$^{-1}$ for measurements on MARI and IRIS, respectively. As illustrated in Fig. 5(c), $\frac{E}{T}$ scaling adequately accounts for the experimental data with the need for only two refined constants of 3.2(1) and 0.8(2) for a_n and a_3, respectively, since the inclusion of higher order terms in Eq. 6 did not improve the fit. The success of $\frac{E}{T}$ scaling suggests that $\Gamma \propto T^n$ and the larger value of a_n over all other terms suggests $n \leq 1$.

The value of n was refined using a modified scaling algorithm previously employed to detect anomalous scaling in the vicinity of a quantum critical point for CeCu$_2$Si$_2$ and CeCu$_{6-x}$Au$_x$. Utilizing the single relational energy mode approximation and the Kramers-Kronig relations, the uniform dynamic susceptibility can be approximated as a Lorentzian-like response, given by

$$\chi'' = \chi' \left(\frac{ET}{E^2 + \Gamma^2} \right),$$

where χ' denotes the static susceptibility and $\Gamma \propto \xi^{-1}$, where ξ is the correlation length. If one assumes both

![FIG. 5. |Q|-integrated cuts of $\tilde{S}(|Q|,E)$ measured on (a) MARI and (b) IRIS at various temperatures. Horizontal lines indicate instrumental resolution. (c) Energy and temperature dependence of the normalized χ'' calculated from |Q|-integrated cuts of $\tilde{S}_{MARI}(|Q|,E)$ measured on both IRIS at MARI. (d) Compilation of the energy-temperature dependence of the |Q|-integrated χ'' calculated as in (c). As discussed in the main text, the data is described by a Lorentzian relaxation form (Eq. 5), revealing scaling behavior consistent with $\Gamma \propto (T-T_N)^{\nu}$. The line of best fit yields $\nu = 0.636(10)$, corresponding to a global minimum of χ'' as illustrated in the inset. All panels share the same temperature scale (top horizontal intensity bar). All |Q|-integrated cuts on MARI and IRIS are from $|Q|=|0,3|$ Å$^{-1}$ for $E_i=15$ meV and from $|Q|=|0,2|$ Å$^{-1}$ for $E_i=1.84$ meV, respectively.](image-url)
that was reflected in Fig. 5(c) by defining \(\chi \) the experimental data over 4 orders of magnitude in \(E \), Curie-Weiss form at high temperatures, suggesting the value at 24 K. The second assumption is based on the first assumption leading to Eq. 8 stems from the diluted three dimensional Ising universality class and with the critical fluctuations are both consistent with an ordered 3D Ising behavior where \(\nu = 0.683(2) \), but instead \(\nu = 0.6312(3) \), \(3 \) K confirms long range magnetic order. The horizontal line scattering intensity on the (212) magnetic Bragg reflection at 3 K corresponds to the maximum of the (212) magnetic Bragg reflection as indicated by the arrow in (a). A fit to \((T_N - T)^\gamma \) yields \(T_N = 18.8(6) \) K and \(\beta = 0.28(7) \).

The scaling analysis in the previous section found that the excitations are separated into distinct \(J_{eff} \) manifolds, the scaling analysis indicates that the distortion does introduce an anisotropy term in the magnetic Hamiltonian influencing the critical dynamics outlined in the previous section. In an attempt to further deduce the universality class of CoV_3O_8, neutron diffraction measurements were performed on polycrystalline \(\alpha \)-CoV_3O_8 to extract further critical exponents. As illustrated in Fig. 6(a), polycrystalline \(\alpha \)-CoV_3O_8 exhibits long range magnetic ordering at 3 K, in agreement with both single crystal DC susceptibility (Fig. 2(b)) and single crystal neutron diffraction (Fig. 2(c)) measurements. The temperature dependence of the scattering intensity of the (212) magnetic Bragg reflection is displayed in Fig. 6(b), corresponding to the square of the magnetic order parameter, given by the power-law dependence

\[
I(T) \equiv \phi^2(T) \propto (T_N - T)^{23},
\]

yields a refined \(T_N \) of 18.8(6) K in agreement with DC susceptibility measurements and a refined \(\beta \) of 0.28(7). Although the value of \(\beta \) is in agreement with the predicted value of 0.326 for the ordered 3D Ising universality class, the large statistical error also implies agreement with the predicted value for the random dilute 3D Ising model of 0.33(25). Therefore, the critical magnetic fluctuations are in agreement with expectations from both ordered and disordered 3D Ising behavior.

F. First Moment Sum Rule, Local Cation Ordering
& Single Mode Approximation

In order to deduce further information concerning both the dimensionality \(d \) and the microscopic exchange constants \(J \), a combination of the first moment sum rule of neutron scattering and the single mode approximation was employed. The determination of the values for \(J \) and \(d \) begin with the Hohenberg-Brinkman first moment sum rule given by

\[
\langle E(Q) \rangle = \int dE E S(Q,E) = -\frac{2}{3} \sum_{i,j} n_{ij} J_{ij} \langle \hat{S}_i \cdot \hat{S}_j \rangle (1 - \cos(Q \cdot d_{ij}))
\]

and its powder-average

\[
\langle E(Q) \rangle = -\frac{2}{3} \sum_{i,j} n_{ij} J_{ij} \langle \hat{S}_i \cdot \hat{S}_j \rangle \left\{ 1 - \frac{\sin(|Q|d_{ij})}{|Q|d_{ij}} \right\},
\]

as derived in Appendix C, where \(n_{ij}, J_{ij}, \langle \hat{S}_i \cdot \hat{S}_j \rangle \) and \(d_{ij} \) denote the number of individual exchange interactions, the exchange constant, the spin-spin correlator and the displacement vector between spins at sites \(i \) and \(j \), respectively.

Since all of the inelastic intensity measured at 5 K on MARI with an \(E_i = 15 \) meV shown in Fig. 3(g) corresponds to excitations within the ground state \(j_{eff} = \frac{3}{2} \), proven by the total moment sum rule, then the single mode approximation (SMA) can be applied.
FIG. 7. (a) $|Q|$-dependence of the background subtracted first moment $\langle E \rangle$ as measured on MARI at $T=5$ K with an $E_i=15$ meV integrated over $E=[2,8]$ meV. A fit to the first moment sum rule (Eq. 11) reveals that only six distances $|d_{ij}|$ out to 7.5 Å possess non-negligible nJ_{ij} values as illustrated in (b), and summarized in Tab. III. For the purposes of comparison, distances present only in the ordered and disordered atomic arrangements are distinguished by purple and dark pink outline colors, respectively. Distances with non-negligible nJ_{ij} contributions have a face color corresponding to the illustration of the corresponding six interactions along the (c) bc and (d) ac planes of the α-CoV$_3$O$_8$ unit cell. Both non-bridging oxygen atoms have been excluded and V$^{4+}$ ions have been reduced in size for the purposes of clarity. Two particular distances: 3.209 Å and 3.540 Å are absent as noted in (a), corresponding to nearest neighbor and bridging metal site distances, respectively.

The single mode approximation, applicable to a situation where the excitation spectrum is dominated a single coherent mode, allows for the dynamic structure factor to be written as $S(Q, E) = S(Q)\delta[\epsilon(Q) - E]$, where $\delta[\epsilon(Q) - E]$ assures energy conservation$^{[20,81,100,124,148]}$. Applying the single mode approximation to the first moment sum rule yields

$$
S(Q, E) = -\frac{2}{3\epsilon(Q)} \sum_{i,j} n_{ij} J_{ij} \langle \hat{S}_i \cdot \hat{S}_j \rangle \cdot \left(1 - \cos(Q \cdot d_{ij}) \right) \delta[\epsilon(Q) - E],
$$

providing a quantitative relationship between $S(Q, E)$ and the dispersion $\epsilon(Q)$ and by extension, a measure of the dimensionality$^{[20,81,100,124,148]}$. For numerical purposes, the delta function was approximated as a Lorentzian with
a FWHM equal to that of the calculated experimental resolution width of 0.24 meV at 5 meV transfer on MARI. Eqs. 10–12 assume the presence of Heisenberg exchange and thus excludes exchange anisotropy. It is important to note that the exclusion of any anisotropy terms is simply a first approximation based on the success of the isotropic exchange model to account for experimental data in a variety of other Co$^{2+}$-based systems such as CoV$_2$Os$_6$, KMn$_{1-x}$Co$_x$F$_3$ and Mn$_{1-x}$Co$_x$F$_3$. In fact, there is evidence that anisotropic exchange is not negligible in CoV$_2$Os$_6$. Such experimental evidence includes equal intensities for transitions within the ground state manifold and between the ground state and first excited state manifold, as illustrated in Fig. 3(f). Another piece of evidence is the presence of a weak signal at ~1 meV at low energy transfer measurements, as illustrated in Fig. 3(g) that may be indicative of anisotropic breakdown of magnetic excitations. The non-negligible value of anisotropic exchange in CoV$_2$Os$_6$ is indeed expected due to the distorted octahedra around Co$^{2+}$ (δ ~11) and has been observed in α-γ-CoV$_2$Os$_6$ with similar distortion parameters but will be excluded in the context of the current discussion.

1. First Moment Sum Rule & Cation Order

This section utilizes the first moment sum rule of neutron scattering to provide an estimate of the exchange constants in α-CoV$_2$Os$_6$. Fig. 7(a) shows the background subtracted first moment $\langle E \rangle / |Q|$ at 5 K was successfully described by the powder averaged first moment sum rule (Eq. 11) incorporating all possible 15 Co$^{2+}$-Co$^{2+}$ distances in the α-CoV$_2$Os$_6$ unit cell from $|d_{ij}| = [3.209, 7.669]$ Å. As summarized by Table III, a least squares optimization revealed that only six unique distances possess non-negligible $-n_{ij}J_{ij}(\hat{j}_i \cdot \hat{j}_j)$ values, where the use of \hat{j} in the correlator instead of \hat{S} is due to the use of g^s_j in the normalization process. Two particular distances with negligible $-n_{ij}J_{ij}(\hat{j}_i \cdot \hat{j}_j)$ contributions are 3.209 Å and 3.540 Å, corresponding to the nearest neighbor and metal site distances across the O(5) bridging ligand, respectively. The absence of the latter is expected due to the local selection rule as illustrated in Fig. 1(c), but the absence of the nearest neighbor distance is inconsistent with a random distribution of Co$^{2+}$ inherent to the disordered $Ibam$ structure previously deduced by diffraction measurements that are summarized in Fig. 2. Upon closer inspection of the α-CoV$_2$Os$_6$ unit cell, these six distances were shown to correspond to the unique distances found exclusively in the ordered $Ibam$ structure as illustrated in Figs. 7(c) and (d), confirming an ordered arrangement of Co$^{2+}$.

While this analysis indicates the distances are consistent with the ordered $Ibam$ structure, there are two potential caveats. Because we measure the product $-n_{ij}J_{ij}(\hat{j}_i \cdot \hat{j}_j)$, (i) the value of n_{ij} may not be negligible but instead it may be the correlator $\langle \hat{j}_i \cdot \hat{j}_j \rangle$ whose value is negligible; (ii) and/or the exchange constants J_{ij} may themselves be negligible. To address issue (i), we have calculated the correlator $\langle \hat{j}_i \cdot \hat{j}_j \rangle$ based on energy-integrated magnetic diffraction data (Tab. III) and found it to be substantial for all distances. We address argument (ii) by pointing out that some distances with negligible $-n_{ij}J_{ij}(\hat{j}_i \cdot \hat{j}_j)$ have a Co$^{2+}$-O$^{2-}$-Co$^{2+}$ angle close to 180°, predicted by the Goodenough-Kanamori-Anderson rules to yield strong antiferromagnetic exchange.

We now extract the exchange constants J_{ij} by dividing out the correlator from the $-n_{ij}J_{ij}(\hat{j}_i \cdot \hat{j}_j)$. By inserting the 6 values of n_{ij} in the mean field expression for the Curie-Weiss temperature, one obtains $-0.24(15)$ K, a value that is both small and negative, in agreement with the experimentally determined value of $-3.2(4)$ K. The close similarity between the calculated and experimentally determined values of θ_{CW} suggests that all relevant exchange interactions have been accounted for by the $Ibam$ structure. It is important to emphasize that this analysis assumes isotropic exchange and thus assumes the isotropic part of the magnetic Hamiltonian is dominant. While susceptibility data indicates some anisotropy, the similarity between the extracted exchange constants and the θ_{CW} lends support for the isotropic approximation, while the slightly larger negative measured value may possibly be indicative of some anisotropic contributions. Future advances in both single crystal growth of this material and also higher flux neutron instrumentation will allow single crystal data to be obtained and the parameters refined.

2. Single Mode Approximation & Dimensionality

Since the first moment sum rule indicates the presence of multiple unique interactions spanning all three crystallographic directions in the $Ibam$ structure, it was suspected that a more intricate dispersion relation should be chosen for Eq. 12 such as the expression given by

| $|d_{ij}|$ (Å) | $-n_{ij}J_{ij}(\hat{j}_i \cdot \hat{j}_j)$ (meV f.u.$^{-1}$) | $\langle \hat{j}_i \cdot \hat{j}_j \rangle$ (meV f.u.$^{-1}$) | $n_{ij}J_{ij}$ (meV f.u.$^{-1}$) |
|----------------|-----------------|-----------------|-----------------|
| 5.200(2) | 0.023(1) | −0.420(2) | 0.055(1) |
| 5.395(3) | 0.173(1) | −0.594(3) | 0.30(1) |
| 5.6083(14) | 0.016(2) | 0.484(2) | −0.033(1) |
| 5.649(4) | 0.099(2) | 0.417(3) | −0.24(1) |
| 6.168(3) | 0.08(1) | −0.483(3) | 0.17(1) |
| 7.3221(9) | 0.13(1) | 0.595(4) | −0.22(1) |

$\theta_{CW,exp} = -\frac{S(S+1)\sum_{i,j}n_{ij}J_{ij}}{3\xi}$, (13)
TABLE IV. Refined parameters of the heuristic dispersion relation in the single mode approximation of $\tilde{S}(\mathbf{Q}, E)$ utilizing the refined values of $-nJ_3 \mathbf{S}_i \cdot \mathbf{S}_j$ at 5 K summarized in Tab. III. As a first approximation, the intra-plane dispersion parameters were fixed to zero. Numbers in parentheses indicate statistical errors.

<table>
<thead>
<tr>
<th>Dispersion Parameter</th>
<th>Refined Value (meV2$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_a</td>
<td>28.2(3)</td>
</tr>
<tr>
<td>B_h</td>
<td>1.13(2)</td>
</tr>
<tr>
<td>B_k</td>
<td>2.63(4)</td>
</tr>
<tr>
<td>B_l</td>
<td>6.8(7)</td>
</tr>
<tr>
<td>B_{hk}</td>
<td>0</td>
</tr>
<tr>
<td>B_{hl}</td>
<td>0</td>
</tr>
<tr>
<td>B_{kl}</td>
<td>0</td>
</tr>
<tr>
<td>B_{2k}</td>
<td>1.13(2)</td>
</tr>
<tr>
<td>B_{2l}</td>
<td>2.63(4)</td>
</tr>
<tr>
<td>B_{2l}</td>
<td>6.8(7)</td>
</tr>
</tbody>
</table>

$\epsilon(\mathbf{Q}) = (B_a + B_h \cos(2\pi h) + B_k \cos(2\pi k) + B_l \cos(2\pi l)) + B_{hk}\{\cos(2\pi(h+k)) + \cos(2\pi(h-k))\} + B_{hl}\{\cos(2\pi(h+l)) + \cos(2\pi(h-l))\} + B_{kl}\{\cos(2\pi(k+l)) + \cos(2\pi(k-l))\} + B_{2k} \cos(4\pi h) + B_{2l} \cos(4\pi l))$,

where B_i are the dispersion parameters. The dispersion relation $\epsilon(\mathbf{Q})$ in Eq. 14 satisfies Bloch’s theorem, and has been previously used to parametrize the dispersion for more complex systems involving multiple exchange interaction pathways such as PHC[129] whose large dispersions could not be adequately described with the heuristic model $\epsilon(\mathbf{Q}) = \beta_0 + \sum_i \beta_i \cos(\mathbf{Q} \cdot \mathbf{d}_i)$.

As a first approximation, the parameters in Eq. 14 involving interactions between the principal axes were set to zero and each parameter along a particular principal axis was set to be equal (e.g. $B_h = B_{2h}$). This simple model effectively reduces Eq. 14 to the aforementioned simple heuristic model of PHC[129] and treats every exchange interaction as a combination of interactions along the three principal axes. As illustrated in Fig. 8, all major features of $\tilde{S}_M(\mathbf{Q}, E)$ collected at 5 K, including the large bandwidth, was successfully accounted for by a least squares optimization of the dispersion parameters. As summarized in Tab. IV, the refined dispersion parameters indicate the presence of three dimensional magnetism, consistent with the lack of significant asymmetry in the $\tilde{S}_M(\mathbf{Q}, E)$ collected at 5 K. As summarized by Tab. IV, the dispersion parameters along h and l are both negative while the dispersion parameters along k are positive with a larger magnitude. Both the signs and relative magnitudes of the dispersion parameters can be reconciled using the spin-flip hopping model of ZnVO$_3$, where B_i for a particular direction i is interpreted as a hopping term whose value is proportional to the energy cost of a spin-flip $t \sim SJ$ along that particular direction. The negative h and k dispersion parameters correspond to ferromagnetic coupling along a and b, respectively, while the larger positive l dispersion parameters correspond to stronger antiferromagnetic coupling along c, all consistent with both DC susceptibility and the refined magnetic structure presented in Fig. 2.

IV. DISCUSSION

A. Experimental limitations

There are several limitations to the analysis presented in this paper. The first is the use of α-ZnV$_2$O$_4$ as a background for the analysis of the low temperature inelastic spectrum of α-CoV$_2$O$_8$. As shown in Fig. 4(d), α-ZnV$_2$O$_4$ crystallizes in the cation ordered Iba_2 space group and is thus not completely isostuctural to α-CoV$_2$O$_8$. It can be argued that the local cation ordering deduced is an artefact of the Iba_2 structure of the α-ZnV$_3$O$_8$ background. To counter such a claim, we point...
out that the scaling analysis utilizing the same inelastic neutron scattering data, but after the subtraction of an independently calculated temperature-independent background derived from detailed balanced indicates that although the ordered-Co$_{2}^{2+}$ moment. The presence of a second magnetic disordered “counter”-cation is in contrast to the model dilute 3D Ising antiferromagnets where the “counter”-cations are non-magnetic and thus interactions between magnetic ions of one type (e.g. Fe$_{3}^{2+}$) are exclusively considered. Such a situation was assumed to apply to α-CoV$_{3}$O$_{8}$ in the analysis presented so far as a first approximation since there is evidence that Vi$^{4+}$ behaves paramagnetically, but it is highly unlikely that coupling between Vi$^{4+}$ and other V$^{4+}$ or Co$^{2+}$ plays no role in the low temperature magnetism and thus the analogy to the dilute antiferromagnets such as Fe$_{3}$Zn$_{1-x}$F$_{2}$ should be approached with caution. It is important to note that the apparent lack of influence of Vi$^{4+}$ coupling, relative to coupling between Co$^{2+}$ cations, may be due to the exclusive use of t_{2g} orbitals by V$^{4+}$, in contrast to the e$_{g}$ orbitals utilized by Co$^{2+}$ which is predicted to give much stronger coupling.

A further limitation concerns the nature of the competing ferromagnetic and antiferromagnetic interactions in α-CoV$_{3}$O$_{8}$. In contrast to the Fe$_{3}$Zn$_{1-x}$F$_{2}$ series, α-CoV$_{3}$O$_{8}$ exhibits both distinct ferromagnetic inter-chain and antiferromagnetic intra-chain coupling along the ab plane and along c, respectively. Both ferromagnetic and antiferromagnetic coupling possess similar magnitudes as proven by their near cancellation corresponding to a Weiss temperature near zero. With a Weiss temperature near zero, combined with a $T_{N} \sim 19$ K, the frustration index $f = \frac{\theta_{CW}}{T_{N}} \lesssim 1$ implies the absence of frustration, a key contributor to the rich phase diagram of the dilute 3D Ising antiferromagnet. To address the concurrent presence of both ferromagnetic and antiferromagnetic couplings, it is worth noting that such a situation is reminiscent of another random dilute 3D Ising magnet system Fe$_{3}$Mg$_{1-x}$Cl$_{2}$ where $x > 0.55$, a series of compounds whose magnetic properties have been shown consistently to be qualitatively similar to that of Fe$_{3}$Zn$_{1-x}$F$_{2}$ and Co$_{2}^{2+}$O$_{8}$. To address the absence of frustration, it is worth noting that in contrast to the current study, previous work on smaller hydrothermally grown crystals of α-CoV$_{3}$O$_{8}$ reported a $T_{N} = 8.2$ K and a Weiss temperature of -32.1 K, corresponding to a frustration index $f \sim 4$, indicating evidence for significant frustration. Such contrasting behavior provides strong evidence that sample dependence may play a significant role in determining the magnetic properties of α-CoV$_{3}$O$_{8}$, as has been consistently observed for the dilute antiferromagnets, whose response functions are significantly influenced by both sample quality and non-equilibrium physics. The particular dependence on sample quality can be partially rationalized using recent work by Volkov on α-ZnV$_{3}$O$_{8}$. Numerical simulations indicated that although the ordered-Iba2 arrangement was predicted to exhibit minimal frustration, if one instead assumed a disordered-Iba2 arrangement, significant magnetic frustration was predicted to manifest itself as competing inter-chain couplings of similar magnitudes in the presence of a dominant antiferromagnetic intra-chain coupling. The contrasting behavior between Iba2 and Iba2 cationic arrangement may provide an explanation for the aforementioned difference in the experimentally determined frustration indices with samples possessing more disorder exhibiting a larger value of f.

B. Disordered Iba2 versus ordered Iba2

A contradiction arises from a combined analysis of x-ray and neutron diffraction, DC susceptibility and inelastic neutron spectroscopy measurements in that the disordered-Iba2 structure is derived from diffraction measurements, however the dynamics are more consistent with an ordered-Iba2 arrangement of Co$^{2+}$ ions. Diffraction indicates that statically the arrangement of Co$^{2+}$ ions is disordered, however the collective long wavelength fluctuations seem to average out this disorder. α-CoV$_{3}$O$_{8}$ therefore appears to be magnetically ordered for longer length scales. The disorder in α-CoV$_{3}$O$_{8}$ differs from a Griffiths phase where local order is present and maybe more analogous to the situation in water ice where local selection rules are present. However, the lack of strong diffuse scattering in our single crystal experiments makes a comparison to these correlated disordered systems difficult. However, the presence of the local selection structural selection for Co$^{2+}$ and V$^{4+}$ distinguishes CoV$_{3}$O$_{8}$ from a doped random magnet where no such local order is required. The apparent robustness of α-CoV$_{3}$O$_{8}$ to disorder is discussed below in the context of spin-orbit coupling and comparison to other model magnets in a random field.

C. Universality class of α-CoV$_{3}$O$_{8}$

Ising anisotropy is experimentally supported by several observations discussed above: the presence of a significant octahedral distortion ($\delta \sim 11$) as deduced from a combination of single crystal x-ray and neutron diffraction data, the presence of 3D Ising fluctuations as deduced from both critical exponents ν and β, and the presence of strong spin-orbit coupling supported by neutron spectroscopy. 3D dimensionality ($d = 3$) is suggested based on the following: the values of the critical exponents ν and β, the non-zero refined values of all h, k and l dispersion parameters in $\epsilon(Q)$ reflecting both strong coupling in both the ab plane and along c, in combination with the relatively weak anisotropy of the DC susceptibility. The random magnetic cation distribution is supported by the refined Iba2 structure from both single crystal x-ray and neutron diffraction and the value of β. An additional observation is the intrinsic width of the AFM transition as measured with DC susceptibility, reflected by the large experimental error of β caused by the rounding of the order parameter measurement, as has been experimentally observed in other dilute 3D Ising antiferromagnets such as Co$_{2}$Zn$_{1-x}$F$_{2}$. The dilution of 3D Ising magnetism can be rationalized by the key observation that V$^{4+}$ appears to remain purely paramagnetic
down to 2 K and thus has no significant influence on the low temperature cooperative magnetic properties of α-CoV₃O₈₃, as proven by a combination of inelastic neutron scattering and DC susceptibility measurements.

D. Comparison between α-CoV₃O₈₃ and Random Field Ising magnets

If one disregards the magnetic influence of V⁴⁺, effectively treating the cation as a “counter”-ion such as Zn²⁺ in FeₓZn₁₋ₓF₂ or MnₓZn₁₋ₓF₂, then the magnetism due to Co²⁺ in α-CoV₃O₈₃ may be regarded as being magnetically diluted by 50%. Additionally, it is important to note that the failure to observe strong structural diffuse scattering with x-ray and neutron diffraction measurements is suggestive of a lack of local cation ordering or gradients. These concentration gradients were noted in dilute model antiferromagnets. Such a combination of significant dilution and disorder would be expected to have a significant effect on the dynamics. In this sense, it is surprising that there seems to be little effect on the magnetic dynamics in α-CoV₃O₈₃, where the magnetic excitations are consistent with a fully ordered cation arrangement. Such behavior is suggestive that hydrodynamic and long wavelength fluctuations are not strongly sensitive to the disorder in α-CoV₃O₈₃, in contrast with expectations based on theory. The robust nature of the dynamics to dilution, and in particular disorder is analogous to several observations in dilute random field magnets and in particular the FeₓZn₁₋ₓF₂ series, where sharp excitations are still observable for large amount of doping. Unlike members of the FeₓZn₁₋ₓF₂ series closer to the percolation threshold (x_p ~ 0.24) that exhibit spin glass behavior, Fe₀.₅Zn₀.₅F₂ assumes long range antiferromagnetic order in zero field with a T_N corresponding to half of that of FeF₂. The appearance of long range antiferromagnetic order as measured by DC susceptibility with a µ_BH_eff = 0.5 T supports the claim that α-CoV₃O₈₃ is not close to the percolation threshold, where even the smallest external field destroys long range order, as is the case for MnₓZn₁₋ₓF₂, where M = Co²⁺ and Fe²⁺. However, the random field Ising magnet MnₓZn₁₋ₓF₂ does show strong effects of the disorder on the dynamics. Such behavior is consistent with cases of random fields introduced through confinement where when the critical fluctuations have a similar length scale to the underlying disorder, the phase transition is strongly altered.

A key difference between MnF₂ and both α-CoV₃O₈₃ and FeF₂ is the presence of strong crystal field effects and spin-orbit coupling in the latter two compounds. It is also worth noting that unlike the case of pure CoF₄, where the large and far reaching exchange constants result in a significant and ultimately problematic entanglement of spin-orbit levels in the case of α-CoV₃O₈₃, the exchange constants are weak and the Weiss temperature is near 0 K. Both observations suggest that the presence of both strong crystal field effects and spin-orbit coupling with well-separated j_eff manifolds, as is the case for α-CoV₃O₈₃, may be central to making the dynamics robust against strong disorder.

V. CONCLUDING REMARKS

In summary, a combination of zero field diffraction, DC susceptibility and neutron spectroscopy measurements have indicated that the low temperature cooperative magnetism of α-CoV₃O₈₃ is dominated by j_eff = ⅓ Co²⁺ cations randomly distributed over the 16k metal site of the Ibam structure, thus corresponding to an intrinsically disordered magnet without the need for any external influences such as chemical dopants or porous media. Despite the intrinsic disorder, by employing the sum rules of neutron scattering, the collective excitations have been shown to not be significantly affected by the disorder, displaying behavior consistent with an ordered-Iba2 arrangement of j_eff = ⅓ Co²⁺ moments over a macroscopic scale. These Co²⁺ moments are coupled via a 3D network of competing ferromagnetic and stronger antiferromagnetic superexchange interactions within the ab plane and along c, respectively, resulting in long range antiferromagnetic order of the Co²⁺ moments at T_N ~19 K, despite a Weiss temperature near 0 K. A comparison of our results to the random 3D Ising magnets and other compounds where spin-orbit coupling is present indicate that both the presence of an orbital degree of freedom, in combination with strong crystal field effects and well-separated j_eff manifolds may be key in making the dynamics robust against disorder.

VI. ACKNOWLEDGEMENTS

We acknowledge discussions with J.A.M. Paddison, C.R. Wiebe, A.J. Browne, G. Perversi, S.E. Maytham (HBS) and D.R. Jarvis. We are grateful to the Royal Society, the STFC, the ERC and the EPSRC for financial support. P.M.S. acknowledges financial support from the CCSF, the RSC and the University of Edinburgh through the GRS and PCDS. We acknowledge the support of the National Institute of Standards and Technology, US Department of Commerce, in providing a portion of the neutron research facilities used in this work. Finally, the authors would like to thank the Carnegie Trust for the Universities of Scotland for providing facilities and equipment for chemical synthesis.
Appendix A: Crystallographic data

TABLE V. Crystal data, experimental and structural refinement parameters for single crystal x-ray diffraction measurements on α-CoV₃O₈. Numbers in parentheses indicate statistical errors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>CoV₃O₈</td>
</tr>
<tr>
<td>Formula weight</td>
<td>339.7529 g mol⁻¹</td>
</tr>
<tr>
<td>Temperature</td>
<td>120.0(1) K</td>
</tr>
<tr>
<td>Crystal Dimensions</td>
<td>0.40 x 0.11 x 0.09 mm³</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å (Mo Kα)</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space Group</td>
<td>Ibam (#72)</td>
</tr>
<tr>
<td>a</td>
<td>14.29344(4) Å</td>
</tr>
<tr>
<td>b</td>
<td>9.8740(3) Å</td>
</tr>
<tr>
<td>c</td>
<td>8.34000(3) Å</td>
</tr>
<tr>
<td>V</td>
<td>1185.60(6) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
</tr>
<tr>
<td>ρ</td>
<td>3.8069(3) g cm⁻³</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>4.13° ≤ θ ≤ 30.18°</td>
</tr>
<tr>
<td>Limiting Indices</td>
<td>-19 ≤ h ≤ 20, -13 ≤ k ≤ 14 and -11 ≤ l ≤ 11</td>
</tr>
<tr>
<td>Number of Reflections I > 0</td>
<td>985</td>
</tr>
<tr>
<td>Number of Reflections I > 3σ(I)</td>
<td>910</td>
</tr>
<tr>
<td>Absorption Correction Method</td>
<td>Gaussian</td>
</tr>
<tr>
<td>Extinction Method</td>
<td>B-C Type 1 Gaussian Isotropic</td>
</tr>
<tr>
<td>Extinction Coefficient</td>
<td>2300(100)</td>
</tr>
<tr>
<td>Refinement Method</td>
<td>Full matrix least squares on F²</td>
</tr>
<tr>
<td>Number of Parameters(Constraints)</td>
<td>67(9)</td>
</tr>
<tr>
<td>R_{F2} (I > 3σ(I), all)</td>
<td>1.65%, 1.90%</td>
</tr>
<tr>
<td>R_{wp2} (I > 3σ(I), all)</td>
<td>2.38%, 2.46%</td>
</tr>
<tr>
<td>Goodness-of-Fit χ² (I > 3σ(I), all)</td>
<td>1.47%, 1.48%</td>
</tr>
</tbody>
</table>

TABLE VI. Structural parameters of α-CoV₃O₈ obtained from the refinement of single crystal x-ray diffraction data collected at 120 K. Numbers in parentheses indicate statistical errors.

<table>
<thead>
<tr>
<th>Atom (Label)</th>
<th>Wyckoff Position</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Biso (Å²)</th>
<th>Fractional Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>16k</td>
<td>0.654760(16)</td>
<td>0.33285(2)</td>
<td>0.81060(3)</td>
<td>0.39(2)</td>
<td>0.506(6)</td>
</tr>
<tr>
<td>V(1)</td>
<td>16k</td>
<td>0.654760(16)</td>
<td>0.33285(2)</td>
<td>0.81060(3)</td>
<td>0.39(2)</td>
<td>0.494(6)</td>
</tr>
<tr>
<td>V(2)</td>
<td>8j</td>
<td>0.52271(2)</td>
<td>0.16672(4)</td>
<td>0.5</td>
<td>0.321(5)</td>
<td>1</td>
</tr>
<tr>
<td>V(3)</td>
<td>8j</td>
<td>0.70168(2)</td>
<td>0.94348(4)</td>
<td>0.5</td>
<td>0.252(6)</td>
<td>1</td>
</tr>
<tr>
<td>O(1)</td>
<td>8j</td>
<td>0.73349(11)</td>
<td>0.41325(16)</td>
<td>0</td>
<td>0.52(2)</td>
<td>1</td>
</tr>
<tr>
<td>O(2)</td>
<td>8j</td>
<td>0.58248(10)</td>
<td>0.27509(16)</td>
<td>0</td>
<td>0.50(2)</td>
<td>1</td>
</tr>
<tr>
<td>O(3)</td>
<td>16k</td>
<td>0.76758(8)</td>
<td>0.35288(11)</td>
<td>0.66386(15)</td>
<td>0.53(2)</td>
<td>1</td>
</tr>
<tr>
<td>O(4)</td>
<td>8j</td>
<td>0.61080(11)</td>
<td>0.5</td>
<td>0.75</td>
<td>1.2(1)</td>
<td>1</td>
</tr>
<tr>
<td>O(5)</td>
<td>16k</td>
<td>0.57900(8)</td>
<td>0.22301(12)</td>
<td>0.65802(16)</td>
<td>0.79(3)</td>
<td>1</td>
</tr>
<tr>
<td>O(6)</td>
<td>8j</td>
<td>0.57973(10)</td>
<td>0.98272(16)</td>
<td>0.5</td>
<td>0.48(2)</td>
<td>1</td>
</tr>
</tbody>
</table>

* The assignment of full occupancy in the 8f position corresponding to the bridging oxygen is in agreement with the initial refinement by Oka et al.52
Table VII. Crystal data, experimental and structural refinement parameters for single crystal neutron diffraction measurements on \(\alpha\)-CoV\(_{3}\)O\(_8\). Numbers in parentheses indicate statistical errors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Formula</td>
<td>CoV(_3)O(_8)</td>
</tr>
<tr>
<td>Formula weight</td>
<td>339.7529 g mol(^{-1})</td>
</tr>
<tr>
<td>Temperature</td>
<td>5.00(3) K</td>
</tr>
<tr>
<td>Crystal Dimensions</td>
<td>13.2 (\times) 4.1 (\times) 2.1 mm(^3)</td>
</tr>
<tr>
<td>Wavelength</td>
<td>Polychromatic (time-of-flight)</td>
</tr>
<tr>
<td>Crystal System</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Nuclear Space Group</td>
<td>(\text{Ibam} (# 72))</td>
</tr>
<tr>
<td>Magnetic Space Group (BNS Setting)</td>
<td>(P_{\text{Iccn}} (# 56.376)) or ((P_{\text{bam}}^\prime \text{OG 72.10.639}))</td>
</tr>
<tr>
<td>(k)</td>
<td>(111)</td>
</tr>
<tr>
<td>(a)</td>
<td>14.3280(4) Å</td>
</tr>
<tr>
<td>(b)</td>
<td>9.9213(3) Å</td>
</tr>
<tr>
<td>(c)</td>
<td>8.4160(3) Å</td>
</tr>
<tr>
<td>(V)</td>
<td>1196.35(7) Å(^3)</td>
</tr>
<tr>
<td>(Z)</td>
<td>8</td>
</tr>
<tr>
<td>(\rho)</td>
<td>3.773(3) g cm(^{-3})</td>
</tr>
<tr>
<td>(\theta) range for data collection</td>
<td>(2.94^\circ \leq \theta \leq 76.22^\circ)</td>
</tr>
<tr>
<td>Limiting Indices</td>
<td>(-35 \leq h \leq 33, -25 \leq k \leq 19) and (-16 \leq l \leq 22)</td>
</tr>
<tr>
<td>Number of Reflections (I > 0)</td>
<td>5120</td>
</tr>
<tr>
<td>Number of Reflections (I > 3\sigma(I))</td>
<td>5086</td>
</tr>
<tr>
<td>Refinement Method</td>
<td>Full matrix least squares on (F^2)</td>
</tr>
<tr>
<td>Absorption Correction</td>
<td>None</td>
</tr>
<tr>
<td>Extinction Method</td>
<td>B-C Type 1 Gaussian Isotropic</td>
</tr>
<tr>
<td>Extinction Coefficient</td>
<td>348(8)</td>
</tr>
<tr>
<td>Number of Parameters(Constraints)</td>
<td>34(10)</td>
</tr>
<tr>
<td>(\mu_a)</td>
<td>1.35(4) (\mu_B)</td>
</tr>
<tr>
<td>(\mu_b)</td>
<td>1.16(5) (\mu_B)</td>
</tr>
<tr>
<td>(\mu_c)</td>
<td>3.05(4) (\mu_B)</td>
</tr>
<tr>
<td>(R_F) ((I > 3\sigma(I), \text{all}))</td>
<td>8.34%, 8.38%</td>
</tr>
<tr>
<td>(R_{wp}) ((I > 3\sigma(I), \text{all}))</td>
<td>8.98%, 8.99%</td>
</tr>
<tr>
<td>(R_{F2mag}) ((I > 3\sigma(I), \text{all}))</td>
<td>23.44%, 24.13%</td>
</tr>
<tr>
<td>Goodness-of-Fit (\chi^2) ((I > 3\sigma(I), \text{all}))</td>
<td>3.18, 3.19</td>
</tr>
</tbody>
</table>

Table VIII. Structural parameters for the nuclear structure of \(\alpha\)-CoV\(_{3}\)O\(_8\) obtained from the refinement of single crystal neutron diffraction data collected at 5 K. Numbers in parentheses indicate statistical errors.

<table>
<thead>
<tr>
<th>Atom (Label)</th>
<th>Wyckoff Position</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(U_{iso}) (Å(^2))</th>
<th>Fractional Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>16(e)</td>
<td>0.9068(3)</td>
<td>0.5765(3)</td>
<td>1.0616(5)</td>
<td>0.0005(5)</td>
<td>0.504(4)</td>
</tr>
<tr>
<td>V(1)</td>
<td>16(k)</td>
<td>0.9068(3)</td>
<td>0.5765(3)</td>
<td>1.0616(5)</td>
<td>0.0005(5)</td>
<td>0.496(4)</td>
</tr>
<tr>
<td>V(2)</td>
<td>8(j)</td>
<td>0.771</td>
<td>0.416</td>
<td>0.75</td>
<td>0.0042</td>
<td>1</td>
</tr>
<tr>
<td>V(3)</td>
<td>8(j)</td>
<td>0.907</td>
<td>1.198</td>
<td>0.75</td>
<td>0.0042</td>
<td>1</td>
</tr>
<tr>
<td>O(1)</td>
<td>8(j)</td>
<td>0.98357(9)</td>
<td>0.66292(11)</td>
<td>0.25</td>
<td>0.00359(16)</td>
<td>1</td>
</tr>
<tr>
<td>O(2)</td>
<td>8(j)</td>
<td>0.83242(8)</td>
<td>0.52523(11)</td>
<td>0.25</td>
<td>0.00388(16)</td>
<td>1</td>
</tr>
<tr>
<td>O(3)</td>
<td>16(k)</td>
<td>1.01787(6)</td>
<td>0.60246(8)</td>
<td>0.91384(10)</td>
<td>0.00392(11)</td>
<td>1</td>
</tr>
<tr>
<td>O(4)</td>
<td>8(j)</td>
<td>0.86076(9)</td>
<td>0.75</td>
<td>1</td>
<td>0.0126(4)</td>
<td>1</td>
</tr>
<tr>
<td>O(5)</td>
<td>16(k)</td>
<td>0.82899(6)</td>
<td>0.47373(8)</td>
<td>0.90801(10)</td>
<td>0.00556(12)</td>
<td>1</td>
</tr>
<tr>
<td>O(6)</td>
<td>8(j)</td>
<td>0.82973(8)</td>
<td>1.23252(10)</td>
<td>0.75</td>
<td>0.00209(15)</td>
<td>1</td>
</tr>
</tbody>
</table>

* The value of the fractional occupancies were fixed to the refined values obtained from a refinement of single crystal neutron diffraction data collected at 50 K.

Table IX. Cell parameters, fit residuals and agreement factors for \(\alpha\)-CoV\(_{3}\)O\(_8\) obtained from the Rietveld refinement of laboratory powder x-ray diffraction data collected at 300 K. Numbers in parentheses indicate statistical errors.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>14.292(1) Å</td>
</tr>
<tr>
<td>(b)</td>
<td>9.8844(9) Å</td>
</tr>
<tr>
<td>(c)</td>
<td>8.3969(8) Å</td>
</tr>
<tr>
<td>(V)</td>
<td>1186.21(3) Å(^3)</td>
</tr>
<tr>
<td>(\chi^2)</td>
<td>1.487</td>
</tr>
<tr>
<td>(R_F)</td>
<td>10.26%</td>
</tr>
<tr>
<td>(R_{wp})</td>
<td>14.05%</td>
</tr>
</tbody>
</table>
TABLE X. Cobalt-oxygen distances and corresponding octahedral distortion parameter δ for α-CoV$_3$O$_8$ at 5 K deduced from the Rietveld refinement of single crystal neutron diffraction data. Numbers in parentheses indicate statistical errors.

<table>
<thead>
<tr>
<th>Oxygen Label</th>
<th>d (Å)</th>
<th>$\left(\frac{d_{-\langle d\rangle}}{\langle d\rangle}\right)^2 \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>2.12527(5)</td>
<td>27.79(3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>1.98916(5)</td>
<td>2.162(8)</td>
</tr>
<tr>
<td>O(3)</td>
<td>2.07872(5)</td>
<td>8.79(2)</td>
</tr>
<tr>
<td>O(3)'</td>
<td>2.02358(5)</td>
<td>0.0549(13)</td>
</tr>
<tr>
<td>O(4)</td>
<td>1.92213(5)</td>
<td>22.95(3)</td>
</tr>
<tr>
<td>O(5)</td>
<td>1.97422(4)</td>
<td>4.89(1)</td>
</tr>
<tr>
<td>$\frac{1}{N} \sum \left(\frac{d_{-\langle d\rangle}}{\langle d\rangle}\right)^2 \times 10^4$</td>
<td>11.106(8)</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 9. Room temperature diffraction profile of polycrystalline α-CoV$_3$O$_8$ collected on a Bruker D2 Phaser x-ray diffractometer utilizing a monochromated Cu K$_{\alpha}$ source, confirming the absence of any discernible impurities. A Rietveld refinement ($\chi^2 = 1.487$, $R_p = 10.26\%$, $R_{wp} = 14.05\%$) indicates α-CoV$_3$O$_8$ crystallizes in the orthorhombic $Ibam$ (S.G. #72) structure ($a = 14.292(1)$ Å, $b = 9.8844(9)$ Å, $c = 8.3069(8)$ Å).
Appendix B: Projection Factors

As outlined in the main text, a comparison between the current study and previous studies on other Co$^{2+}$-based magnets suggests that the low temperature magnetism of α-CoV$_2$O$_8$ may be solely attributed to the ground state doublet spin-orbit manifold, and thus can be simplified to a $J = \frac{3}{2}$ model. To utilize such a model in the current study, the Landé g-factor g_β was required to be projected onto individual $J \equiv j_{\text{eff}}$ manifolds.

1. Calculation of the Orbital Angular Momentum Operator Projection Factor α

Before proceeding with the projection of the Landé g-factor onto the $j_{\text{eff}} = \frac{3}{2}$ ground state spin-orbit manifold, it is important to note that such a doublet manifold is a consequence of an approach commonly used to address the orbital triplet ground state in Co$^{2+}$. Such an approach first defines an effective total angular momentum operator, with eigenvalue $l = 1$ to reflect a triplet orbital degeneracy. Thus, a projection of g_β and any angular momentum operators onto the $j_{\text{eff}} = \frac{3}{2}$ manifold requires a concurrent projection of \mathbf{L} onto \mathbf{I}, via a projection factor α.

The determination of the projection factor α begins by first defining the crystal field Hamiltonian H_{CEF} describing the effects of the crystalline electric field on the free ion states of the d^7 Co$^{2+}$ resulting from the symmetry imposed by the crystal lattice. Assuming both negligible distortions away from purely octahedral coordination and negligible admixture between the $4F$ ground and first excited $4P$ free ion states, a weak crystal field approach can be employed whereby H_{CEF} can be written in terms of the Stevens operators \hat{O}_l^0, \hat{O}_l^1 and the numerical coefficient B_4 as

$$H_{\text{CEF}} = B_4 \left(\hat{O}_4^0 + 5 \hat{O}_4^1 \right). \quad (B1)$$

The numerical coefficient B_4 is defined as $\beta(t^4)$ where β is the Stevens multiplicative factor, while the Stevens operators are defined in terms of the \hat{L}_z, \hat{L}_x and \hat{L}_y orbital angular momentum operators as

$$\hat{O}_l^0 = 35 \hat{L}_z^4 - 30 \hat{L}_x^2 \hat{L}_z^2 + 25 \hat{L}_y^2 \hat{L}_z^2 - 6 \hat{L}_z^2 + 3 \hat{L}_x^4, \quad (B2)$$

and

$$\hat{O}_l^1 = \frac{1}{2} \left[\hat{L}_x \hat{L}_y^3 + \hat{L}_y \hat{L}_x^3 \right]. \quad (B3)$$

By combining Eqs. (B1) and (B2) and setting B_4 as -1, the crystal field Hamiltonian is given by

$$\begin{bmatrix}
-180 & 0 & 0 & 0 & -232.4 & 0 & 0 \\
0 & 420 & 0 & 0 & 0 & -300 & 0 \\
0 & 0 & -60 & 0 & 0 & 0 & -232.4 \\
0 & 0 & 0 & -360 & 0 & 0 & 0 \\
-232.4 & 0 & 0 & 0 & -60 & 0 & 0 \\
0 & -300 & 0 & 0 & 0 & 40 & 0 \\
0 & 0 & -232.4 & 0 & 0 & 0 & -180
\end{bmatrix} \quad (B4)$$

in the $\{L = 3, m_L\}$ basis where each operator has been normalized by \hbar. Before proceeding, it is worth noting that by setting $|B_4|$ as 1, all energy eigenstates will be in terms of B_4 while the negative sign is due to the d^7 electron configuration of Co$^{2+}$, producing a triplet and not a singlet ground state like Ni$^{2+}$.

Diagonalizing the crystal field Hamiltonian yields

$$\begin{bmatrix}
-360 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -360 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -360 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 120 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 120 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 720 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 720
\end{bmatrix} \quad (B5)$$

corresponding to a triply degenerate ground state (Γ_4), a triply degenerate first excited state (Γ_5) and a singlet second excited state (Γ_2), where $\Delta(\Gamma_4 \rightarrow \Gamma_5) = 480B_4$ and $\Delta(\Gamma_5 \rightarrow \Gamma_2) = 600B_4$.

Utilizing the diagonalized crystal field Hamiltonian above, a transformation matrix C can be defined as

$$C = \begin{bmatrix}
0 & 0 & -0.79 & 0.61 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -0.71 & 0 & -0.71 \\
0.61 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1.00 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -0.61 & -0.79 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0.71 \\
0.79 & 0 & 0 & 0 & 0 & 0 & 0.61
\end{bmatrix} \quad (B6)$$

where the columns of C are the eigenvectors corresponding to the eigenvalues in Eq. (B5). The eigenvectors are arranged in the order of increasing eigenvalues from left to right. In the case of degenerate eigenvalues, the eigenvectors are arranged in the order of increasing eigenvalues from left to right after the application of a small perturbative magnetic field $H_{\text{MF}} = H_{\text{MF}}S_z$. The transformation matrix C rotates operators from the $\{L = 3, m_L\}$ basis to a $\{|\phi_{\text{CEF}}\rangle\}$ basis defined by the crystal field eigenvectors by

$$\hat{O}_{\phi_{\text{CEF}}} = C^{-1} \hat{O}_{\{L,m_L\}} C. \quad (B7)$$

Since the ground state multiplet of the crystal field Hamiltonian corresponds to the triply orbitally degenerate manifold, then the top 3×3 block matrix of the z-component of the orbital angular momentum operator projected onto the crystal field basis must have (1) have its matrix entries arranged in a format equivalent to its corresponding angular momentum operator with $l = 1$, while (2) the entries in both matrices must be equal up to the projection constant α. Projecting the \hat{L}_z operator from the $\{L = 3, m_L\}$ basis to the $\{|\phi_{\text{CEF}}\rangle\}$ basis via Eq. (B7) one obtains

$$C^{-1} \hat{L}_z C = \begin{bmatrix}
1.50 & 0 & 0 & 0 & -1.94 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1.50 & -1.94 & 0 & 0 \\
0 & 0 & 0 & -0.50 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-1.94 & 0 & 0 & 0 & 0.50 & 2.00 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} \quad (B8)$$
A comparison of the top and middle 3×3 block matrices in Eq. [B8] to the L_z operator (normalized by \hbar) in the $|l = 1, m_l\rangle$ basis given by

$$
\hat{L}_z = \begin{bmatrix}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

(B9)

confirms that both block matrices have equivalent arrangements of matrix elements to \hat{L}_z operator in the $|l = 1, m_l\rangle$ basis, with projection factors $\alpha = -\frac{3}{2}$ and $\frac{1}{2}$ for the ground and first excited manifolds, respectively, in agreement with previous derivations utilizing group theory.

As a final confirmation of the validity of the projection described by Eq. [B7], both \hat{L}_+ and \hat{L}_- were projected onto the $|\phi_{CEF}\rangle$ basis. Both \hat{L}_x and \hat{L}_y were then calculated using the following identities:

$$
\hat{L}_x = \frac{\hat{L}_+ + \hat{L}_-}{2}
$$

(B10)

and

$$
\hat{L}_y = \frac{\hat{L}_+ - \hat{L}_-}{2i}.
$$

(B11)

yielding:

$$
\hat{L}_x = \begin{bmatrix}
0 & 1.1 & 0 & 0 & -1.4 & 0 & 0 \\
1.1 & 0 & -1.1 & -1.4 & 0 & -1.4 & 0 \\
0 & -1.4 & 0 & 0 & 0 & 1.4 & 0 \\
-1.4 & 0 & 1.4 & 0 & 0 & 0 & 0 \\
0 & -1.4 & 0 & 0 & 0 & 1.4 & 0 \\
0 & 0 & 0 & -1.4 & 0 & 1.4 & 0
\end{bmatrix}
$$

(B12)

$$
\hat{L}_y = i\begin{bmatrix}
0 & 1.1 & 0 & 0 & 0 & 0 & 0 \\
1.1 & 0 & -1.1 & -1.4 & 0 & 1.4 & 0 \\
0 & -1.4 & 0 & 0 & 0 & 0 & 0 \\
-1.4 & 0 & 1.4 & 0 & 0 & 0 & 0 \\
0 & -1.4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1.4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1.4 & 0 & 0
\end{bmatrix}
$$

(B13)

Finally, by extracting the top 3×3 block matrices, denoted by a prime, from the definitions of L_z (Eq. [B8]), L_x (Eq. [B12]) and L_y (Eq. [B13]) and evaluating the commutator $[\hat{L}_x', \hat{L}_y']$, one obtains

$$
[L_x', L_y'] = i\begin{bmatrix}
1.5 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1.5
\end{bmatrix} = i\hat{L}_z'.
$$

(B14)

By performing the commutator of all possible permutations of the projected components of the orbital angular momentum operator, it can be shown that the canonical commutation relations of angular momentum [132] normalized by \hbar,

$$
[L_x', L_y'] = i\hbar \epsilon_{xyz} \hat{L}_z
$$

(B15)

are satisfied for the new $|\phi_{CEF}\rangle$ basis.

2. Calculation of Projected Landé g-Factor g_j'

Recall from first-order perturbation theory [23], the field splitting of the Co$^{2+}$ spin-orbit multiplets is described by the perturbative Hamiltonian \hat{H}_m given by

$$
\hat{\mathcal{H}}_m = \mu_B (g_L \hat{L} + g_S \hat{S}) \cdot \mathbf{H},
$$

(B16)

where g_L and g_S denote orbital and spin g-factors, respectively. For the particular case of the d-block metal Co$^{2+}$, both orbital and spin g-factors are taken to be the electron’s g-factors, equal to approximately 1 and 2, respectively, simplifying Eq. [B16] to

$$
\hat{\mathcal{H}}_m = \mu_B (\hat{L} + 2\hat{S}) \cdot \mathbf{H}.
$$

(B17)

Since an effective total angular momentum \hat{j}_{eff} was defined with the projected orbital angular momentum operator \hat{L} with $l = 1$, then the perturbative Hamiltonian in Eq. [B17] becomes

$$
\hat{\mathcal{H}}_m = \mu_B (\hat{a}_1 + 2\hat{S}) \cdot \mathbf{H} = g'_j \mu_B \hat{\mathcal{B}} \cdot \mathbf{H},
$$

(B18)

for a particular effective spin-orbit j_{eff} manifold. Eq. [B18] incorporates an orbital angular momentum operator \hat{L} that has been projected onto \hat{a}_1 via a projection factor α, and a projected Landé g-factor g'_j. A comparison between Eqs. [B17] and [B18] suggests that the Landé g-factor — a fundamental proportionality constant that can be derived directly from the Wigner-Eckart theorem [24] — defined as

$$
g_j = 1 \left\{ \frac{J(J+1) - S(S+1) + L(L+1)}{2J(J+1)} \right\} + 2 \left\{ \frac{J(J+1) + S(S+1) - L(L+1)}{2J(J+1)} \right\}
$$

(B19)

for the original non-projected perturbative Hamiltonian in Eq. [B17] assumes the form

$$
g'_j = \frac{2(2+\alpha)J(j+1) - (2-\alpha)l(l+1) + (2-\alpha)S(S+1)}{2j(j+1)}.
$$

(B20)

As required, Eq. [B20] reduces to Eq. [B19] if $\alpha = 1$. By inserting the values of $S = \frac{3}{2}$ to reflect the high spin d^7 electron configuration in ideal octahedral coordination, $l = 1$ to reflect the ground state crystal field manifold and the associated projection factor $\alpha = -\frac{3}{2}$, the projected Landé g-factor of $\frac{10}{3}$ is obtained for the $j_{\text{eff}} = \frac{3}{2}$ ground state spin-orbit manifold [24].

3. Calculation of Spin Angular Momentum Operator Projection Factor α'

As discussed in previous work [25, 26, 27], on other systems whose magnetism is based on Co$^{2+}$ in octahedral coordination, multiple projections of different angular momentum operators are necessary to consolidate
the measured low temperature magnetic excitations and the theoretical framework for a \(j_{\text{eff}} = \frac{1}{2} \) ground state. One method\cite{simplified} for such projections was presented in Appendix B1 and involved the use of linear transformations in the matrix representation of operators. Although powerful, this method relies on access to computation software and quickly becomes tedious as the dimension of the Hilbert space of interest increases. For the purposes of completion, we present an alternative method to project angular momentum operators onto a particular \(j_{\text{eff}} \) manifold. This method consists of a special case of the Wigner-Eckart theorem\cite{93101}, called the projection theorem, given by

\[\hat{O} = \alpha' \hat{j}_{\text{eff}} = \frac{\langle \hat{O} \cdot \hat{j}_{\text{eff}} \rangle}{\hat{j}(\hat{j} + 1)} \hat{j}_{\text{eff}}, \]

(B21)

describing the projection of an angular momentum operator \(\hat{O} \) onto an effective total angular momentum operator \(\hat{j}_{\text{eff}} \) via a projection factor \(\alpha' \). As introduced in Appendix B1, the operator \(\hat{j}_{\text{eff}} = \hat{l} + \hat{S} \) denotes an effective total angular momentum operator that utilizes a projection of an orbital angular momentum operator \(\hat{L} \) with \(L = 3 \) onto a fictitious orbital angular momentum operator \(\hat{l} \) with \(l = 1 \) via \(\alpha \).

For illustrative purposes, let \(\hat{O} \) be the spin angular momentum operator \(\hat{S} \). The numerator of the projection factor \(\alpha' \) in Eq. (B21) can be simplified by first using the distributive property of the inner product

\[\hat{S} \cdot \hat{j}_{\text{eff}} = \hat{S} \cdot (\hat{l} + \hat{S}) = \hat{S}^2 + \hat{l} \cdot \hat{S}. \]

(B22)

The inner product \(\hat{l} \cdot \hat{S} \) on the RHS of Eq. (B22) can be simplified to

\[\hat{l} \cdot \hat{S} = \frac{1}{2} [\langle \hat{j}_{\text{eff}} \rangle^2 - \hat{l}^2 - \hat{S}^2], \]

(B23)

since the inner product of \(\hat{j}_{\text{eff}} \) with itself is equal to

\[\langle \hat{j}_{\text{eff}} \rangle^2 = (\hat{l} + \hat{S}) \cdot (\hat{l} + \hat{S}) = \hat{l}^2 + \hat{S}^2 + 2 \hat{l} \cdot \hat{S}. \]

(B24)

Combining Eqs. (B22) and (B23), the numerator of \(\alpha' \) in Eq. (B21) becomes

\[\langle \hat{S} \cdot \hat{j}_{\text{eff}} \rangle = S(S+1) + \frac{1}{2} [j(j+1) - l(l+1) - S(S+1)], \]

(B25)

where \(j_{\text{eff}} \) was relabeled as \(j \). Inserting Eq. (B25) into Eq. (B21) one obtains

\[\hat{S} = \frac{S(S+1) + \frac{1}{2} [j(j+1) - l(l+1) - S(S+1)]}{j(j+1)} \hat{j}_{\text{eff}}, \]

(B26)

which can be simplified algebraically to

\[\hat{S} = \left\{ \frac{1}{2} + \frac{S(S+1) - l(l+1)}{2j(j+1)} \right\} \hat{j}_{\text{eff}}. \]

(B27)

Finally, by inserting the aforementioned values of \(S = \frac{1}{2}, l = 1 \) and \(j \equiv j_{\text{eff}} = \frac{1}{2} \) for high spin Cu\(^{2+} \), Eq. (B27) simplifies to

\[\hat{S} = \frac{5}{3} j_{\text{eff}}. \]

(B28)

A comparison between Eqs. (B21) and (B28) indicates that the projection factor \(\alpha' \) of the spin orbital angular momentum operator is \(\frac{5}{3} \) for the \(j = \frac{1}{2} \) ground state spin-orbit manifold\cite{94}. It can be shown\cite{91} that one obtains the same value of \(\alpha' \) employing the method outlined in Appendix B1 with the transformation matrix \(\mathcal{C} \) defined as the eigenvectors of the spin-orbit Hamiltonian \(H_{SO} = \alpha \lambda \hat{S} \), where \(\alpha = -\frac{3}{2} \) as derived in Appendix B1. Furthermore, in Appendix C, it is shown that one obtains an eigenvalue \(l = 1 \) as discussed above and in the main text.

Appendix C: Derivation of the Powder-Averaged First Moment Sum Rule of Neutron Scattering

The first moment sum rule of neutron scattering\cite{simplified} states that

\[\langle E(Q) \rangle = -\frac{2}{3} \sum_{ij} n_{ij} J_{ij}(S_i \cdot S_j)(1 - \cos(Q \cdot d_{ij})), \]

(C1)

where \(J_{ij}, \ n_{ij}(\hat{S}_i \cdot \hat{S}_j), \ d_{ij} \) denote the exchange constant, spin-spin correlator and displacement vector between spins \(i \) and \(j \), respectively. Applying the definition of the powder averaged\cite{simplified} Eq. (C1) becomes

\[S(Q, E) = \int dQ Q \cdot \langle S(Q, E) \rangle \]

(C2)

and utilizing the property of linearity of the integral, one obtains

\[-\frac{B_{ij}}{12\pi} \int_0^\pi \int_0^{2\pi} (1 - \cos(|Q|d_{ij}|\cos \theta)))d\phi \sin \theta d\theta, \]

(C3)

where \(B_{ij} \), \(d_{ij} \) denotes \(2n_{ij} J_{ij}(\hat{S}_i \cdot \hat{S}_j) \) for a particular \(ij \) pair type. Using the substitution of \(x = |Q||d_{ij}|\cos \theta \) in Eq. (C3) one obtains

\[\frac{B_{ij}}{3} \left(\frac{1}{4\pi} \right) \int_{|Q||d_{ij}|} \int_0^{2\pi} (1 - \cos(x))d\phi \frac{dx}{|Q||d_{ij}|}. \]

(C4)

Employing the linearity property of the integral, the first term in Eq. (C4) is reduced to

\[\frac{B_{ij}}{3} \left(\frac{1}{4\pi} \right) \int_{|Q||d_{ij}|} \int_0^{2\pi} d\phi \frac{dx}{|Q||d_{ij}|} = -\frac{B_{ij}}{3}. \]

(C5)

The second term in Eq. (C4) becomes

\[-\frac{B_{ij}}{3} \left(\frac{1}{4\pi} \right) \int_{|Q||d_{ij}|} \int_0^{2\pi} \cos(x) \frac{dx}{|Q||d_{ij}|}. \]

(C6)
which can be simplified by first integrating out $d\phi$,

$$
-\frac{B_{ij}}{3} \left(\frac{2\pi}{4\pi} \right) \int_{\mathbb{R}^2} \frac{d^2x}{|Q||d_{ij}|} \cos(x) \frac{dx}{|Q||d_{ij}|},
$$

(C7)

which is equal to

$$
-\frac{B_{ij}}{3} \left(\frac{2\pi}{4\pi} \right) (\sin(|Q||d_{ij}|) - \sin(|Q||d_{ij}|)).
$$

(C8)

Since sine is an odd function, Eq. (C8) reduces to

$$
\frac{B_{ij}}{3} \left(\frac{2\pi}{4\pi} \right) \sin(|Q||d_{ij}|).
$$

(C9)

Combining both terms, one obtains the final expression for the $|Q|$-dependence of the powder-averaged first moment as

$$
\langle E|Q \rangle = -\frac{B_{ij}}{3} \left(1 - \frac{\sin(|Q||d_{ij}|)}{|Q||d_{ij}|} \right).
$$

(C10)

The expression in Eq. (C10) pertains to one particular ij pair-type. Utilizing the linearity property of the integral and replacing B_{ij} by its definition, one can recover the sum from Eq. (C1)

$$
\langle E|Q \rangle = -\sum_{i,j} n_{ij} J_{ij} \langle \hat{S}_i \cdot \hat{S}_j \rangle \left(1 - \frac{\sin(|Q||d_{ij}|)}{|Q||d_{ij}|} \right),
$$

(C11)

corresponding to Eq. (1) in the main text.

186 F. Seitz and D. Turnbull, Solid State Physics, Solid State Physics No. v. 9 (Elsevier Science, 1959)