Structural Studies of Mixed Nano-Spheres and Polymers

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Revista Cubana de Fisica (The Cuban Physics Journal)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A newly developed neutron scattering technique known as Spin Echo Small Angle Neutron Scattering (SESANS) allows real-space density correlations to be probed in bulk samples over distances ranging from ~20 nm to up to several microns. We have applied this technique to study correlations between polymer-stabilized poly(methyl methacrylate) (PMMA) spheres suspended in either dodecane or decalin. As expected, the data show that for colloid volume factions below about 40%, correlations between PMMA spheres are accurately described by the Percus-Yevick hard-sphere model. When a small amount of polymer is added to the colloidal suspension and when the carrier fluid is a good solvent for the polymer depletant, short-range correlations between PMMA spheres are unaffected by the presence of the polymer depletant and are in reasonably agreement with calculations using an integral equation model. When higher concentrations of polymers are added, we find that long-range, power-law correlations develop for the polymer, and these correlations are increased by the presence of the polymer depletant and are in reasonably agreement with calculations using an integral equation model. When higher concentrations of polymers are added, we find that long-range, power-law correlations develop for the polymer, and these correlations are increased by the presence of the polymer depletant and are in reasonably agreement with calculations using an integral equation model. When higher concentrations of polymers are added, we find that long-range, power-law correlations develop for the polymer, and these correlations are increased by the presence of the polymer depletant and are in reasonably agreement with calculations using an integral equation model. When higher concentrations of polymers are added, we find that long-range, power-law correlations develop for the polymer, and these correlations are increased by the presence of the polymer depletant and are in reasonably agreement with calculations using an integral equation model.
more sensitive to inter-particle correlations than traditional SANS because it exactly Fourier transforms the scattering signal—including the weak signal at large Q which contains information about correlations—before noise is added by the measurement. In addition to this advantage, SESANS measures the same pair correlation function even when a sample scatters strongly whereas SANS patterns obtained with concentrated, strongly scattering dispersions have to be corrected for multiple scattering of neutrons. Finally, the length scale probed by SESANS is larger than for SANS, which makes it a good tool for exploring correlation functions in colloidal fluids containing particles of a few hundred nanometers in diameter.

The correlation function, $G(z)$, measured by SESANS is a projection of the usual Debye density-autocorrelation function on to a particular direction, z. For isotropic fluids such as those studied here the choice of direction onto which the Debye function is projected is irrelevant. Mathematically, $G(z)$ is given by the Abel transform of the Debye correlation function [5].

SESANS works by encoding the scattering angle of each neutron into the Larmor precession phase accumulated as the neutron passes through suitably designed magnetic fields [6]. In a SESANS experiment, the cosine of the total Larmor phase is averaged over the scattered neutron beam and measured as a neutron polarization. Because of the cosine factor, the neutron polarization represents a Fourier transform of the scattered neutron intensity.

We have constructed a SESANS apparatus that can be installed on neutron scattering instruments that provide a polarized neutron beam and the measurements described here have been obtained with this equipment mounted on the Asterix reflectometer at the Los Alamos Neutron Science Center (LANSCE). An account of the SESANS technique, which includes a description of the apparatus used in the measurements described here, is given in reference [6].

RESULTS

The colloidal samples we have used in our experiments were prepared using a published method [3]. The resulting PMMA particles, which had diameters between 200 nm and 250 nm depending on the sample batch, were suspended in either dodecane or decalin at concentrations between 30% and 50% by volume. In order to adjust the neutron scattering contrast between the PMMA spheres and the carrier fluid, mixtures of deuterated and hydrogenated solvents were used. Decalin is both a reasonable solvent for the polymer depletant used in our experiments (polystyrene) and has an optical refractive index which is close to that of PMMA, ensuring that the van der Waals interactions between the PMMA spheres is minimized. Dodecane, on the other hand, is a relatively poor solvent for polystyrene. For PMMA concentrations up to at least 40% by volume, SESANS shows that the correlations between PMMA

particles in freshly sonicated samples are well described by the Percus-Yevick, hard-sphere theory for both dodecane and decalin solvents, as shown in Figures 1 (a) and 1 (b).

When small concentrations of polymer depletant are added, the short-range correlations between particles are increased when they are suspended in decalin. A calculation using integral-equation theory [4] shows that the data in Figure 1 (a) can be described using a short-range, attractive potential that is roughly $2kT$ deep. The magnitude of this potential appears to be approximately the same for polymer molecular weights of 110 kDa and 900 kDa when the same weight percentage of polymer depletant is used. When the particles are dispersed in dodecane, the addition of polystyrene does not change the inter-particle correlations, at least for polystyrene concentrations up to 1% by weight (cf. Figure 1 (b)). This is probably due to the fact that the PS molecules tend to collapse in the poor solvent, significantly reducing the depletion forces.

Figure 1: (a) The inter-particle correlation function $G(z)$ for 40% suspensions of 260-nm-diameter PMMA spheres in decalin measured by SESANS. Solid squares — PMMA spheres alone; open circles— PMMA with 0.2% 900 kDa polystyrene; open triangles— PMMA with 1% 900 kDa polystyrene; inverted triangles— PMMA with 0.5% 900 kDa polystyrene. Dark line is Percus-Yevick calculation and the lighter line is result of integral equation calculation with “sticky” spheres. (b) $G(z)$ for a 40% suspension of PMMA spheres in dodecane (solid squares) and with 1% 110 kDa polystyrene (open circles). The line is calculated from the Percus-Yevick theory.

For larger concentrations of depletant in the decalin system (greater than roughly 0.3% by weight for polymers with molecular weights of either 110 kDa or 900 kDa), SESANS indicates that correlations extend out to distances of many particle diameters and that the correlation function $G(z)$ is roughly a linear function over much of the range of inter-particle distances probed (cf. Figure 1 (a)). The correlations
eventually disappear at sufficiently large values of z, indicating the maximum size of the aggregates that have been formed. The linear behavior of $G(z)$ is consistent with a power-law behavior of the Debye correlation function. Although the maximum aggregate size often increases with time over periods of several hours, aggregates can be broken up easily by stirring and sonication. The short-range correlations in aggregates appear to be independent of aggregate size but are slightly different from those obtained with weak sticky potentials that do not result in aggregates. This presumably results from jamming of particles once aggregates are formed.

ACKNOWLEDGEMENTS

This work was funded by the U.S. Department of Energy through its Office of Basic Energy Sciences, Division of Material Science and Engineering (Grant No. DE-FG02-09ER46279). The Los Alamos Neutron Science Center is funded by the U.S. Department of Energy’s Office of Basic Energy Sciences under contract DE-AC52-06NA25396 with Los Alamos National Security LLC. Some of the sample preparation was done at the Center for Nanophase Materials Science at Oak Ridge National Laboratory, which is sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy.