Reply to: New Meta- and Mega-analyses of Magnetic Resonance Imaging Findings in Schizophrenia: Do They Really Increase Our Knowledge About the Nature of the Disease Process?

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.biopsych.2018.10.003

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Biological Psychiatry

Publisher Rights Statement:
This is the author's peer-reviewed manuscript as accepted for publication.
Collaborative meta-analyses and mega-analyses of magnetic resonance imaging data increase our knowledge about brain disorders

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>BPS-D-18-01390</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Collaborative meta-analyses and mega-analyses of magnetic resonance imaging data increase our knowledge about brain disorders</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Correspondence</td>
</tr>
</tbody>
</table>
| Corresponding Author: | Theo G.M. van Erp, Ph.D.
University of California, Irvine
Irvine, CA UNITED STATES |
| Order of Authors: | Theo G.M. van Erp, Ph.D.
Esther Walton
Derrek P Hibar
Lianne Schmaal
Wenhao Jiang
David Glahn
Godfrey D Pearlson
Nailin Yao
Masaki Fukunaga
Ryota Hashimoto
Naohiro Okada
Hidenaga Yamamori
Vincent Clark
Bryon Mueller
Sonja MC de Zwarte
Roel A Ophoff
Neeltje van Haren
Ole A Andreassen
Tiril P Gurholt
Oliver Gruber
Bernd Kraemer
Anja Richter
Vince D Calhoun
Benedicto Crespo-Facorro
Roberto Roiz-Santiañez
Diana Tordesillas-Gutiérrez
Carmel Loughland
Stanley Catts
Janice M Fullerton
Melissa J Green |
<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frans Henskens</td>
</tr>
<tr>
<td>Assen Jablensky</td>
</tr>
<tr>
<td>Bryan J Mowry</td>
</tr>
<tr>
<td>Christos Pantelis</td>
</tr>
<tr>
<td>Yann Quidé</td>
</tr>
<tr>
<td>Ulrich Schall</td>
</tr>
<tr>
<td>Rodney J Scott</td>
</tr>
<tr>
<td>Murray J Caims</td>
</tr>
<tr>
<td>Marc Seal</td>
</tr>
<tr>
<td>Paul A Tooney</td>
</tr>
<tr>
<td>Paul E Rasser</td>
</tr>
<tr>
<td>Gavin Cooper</td>
</tr>
<tr>
<td>Cynthia Shannon Weickert</td>
</tr>
<tr>
<td>Thomas W Weickert</td>
</tr>
<tr>
<td>Elliot Hong</td>
</tr>
<tr>
<td>Peter Kochunov</td>
</tr>
<tr>
<td>Raquel E Gur</td>
</tr>
<tr>
<td>Ruben C Gur</td>
</tr>
<tr>
<td>Judith M Ford</td>
</tr>
<tr>
<td>Fabio Macciardi</td>
</tr>
<tr>
<td>Daniel H Mathalon</td>
</tr>
<tr>
<td>Steven G Potkin</td>
</tr>
<tr>
<td>Adrian Preda</td>
</tr>
<tr>
<td>Fengmei Fan</td>
</tr>
<tr>
<td>Stefan Ehrlich</td>
</tr>
<tr>
<td>Margaret D King</td>
</tr>
<tr>
<td>Lieuwe De Haan</td>
</tr>
<tr>
<td>Dick J Veltman</td>
</tr>
<tr>
<td>Francesca Assogna</td>
</tr>
<tr>
<td>Nerisa Banaj</td>
</tr>
<tr>
<td>Pietro de Rossi</td>
</tr>
<tr>
<td>Mariangela Iorio</td>
</tr>
<tr>
<td>Fabrizio Piras</td>
</tr>
<tr>
<td>Gianfranco Spalletta</td>
</tr>
<tr>
<td>Edith Pomarol-Clotet</td>
</tr>
<tr>
<td>Sinead Kelly</td>
</tr>
<tr>
<td>Simone Ciufolini</td>
</tr>
<tr>
<td>Joaquim Radua</td>
</tr>
<tr>
<td>Robin Murray</td>
</tr>
<tr>
<td>Tiago Reis Marques</td>
</tr>
<tr>
<td>Andrew Simmons</td>
</tr>
</tbody>
</table>
Collaborative meta-analyses and mega-analyses of magnetic resonance imaging data increase our knowledge about brain disorders

Reply to: New meta-analyses and mega-analyses of MRI findings in schizophrenia: do they really increase our knowledge about the nature of the disease process?

Theo GM van Erp1*, Esther Walton2, Derrek P Hibar3,4, Lianne Schmaal5,6,7, Wenhao Jiang8, David C Glahn9,10, Godfrey D Pearlson9,10, Nailin Yao9,10, Masaki Fukunaga11, Ryota Hashimoto12,13, Naohiro Okada14, Hidenaga Yamamori13, Vincent P Clark15,16, Bryon A Mueller20, Sonja MC de Zwarte21, Roel A Ophoff21,22, Neeltje EM van Haren21,116, Ole A Andreassen17,23, Tiril P Gurholt17,18, Oliver Gruber28,29, Bernd Kraemer28,29, Anja Richter28,29, Vince D Calhoun15,16, Benedicto Crespo-Facorro31,32, Roberto Roiz-Santiañez31,32, Diana Tordesillas-Gutiérrez31,32,68, Carmel Loughland47,49,115, Stanley Catts36, Janice M Fullerton38,39, Melissa J Green34,38, Frans Henskens40,123,47, Assen Jablensky41, Bryan J Mowry42,43, Christos Pantelis37,45, Yann Quidé34,38, Ulrich Schall46,47, Rodney J Scott33,47, Murray J Cairns33,47, Marc Seal48, Paul A Tooney33,47,49, Paul E Rasser49, Gavin Cooper49, Cynthia Shannon Weickert34,38, Thomas W Weickert34,38, Elliot Hong52, Peter Kochunov52, Raquel E Gur53, Ruben C Gur53, Judith M Ford57,58, Fabio Macciardi1, Daniel H Mathalon57,58, Steven G Potkin1, Adrian Preda1, Fengmei Fan61, Stefan Ehrlich66,67, Margaret D King16, Lieuwe De Haan70, Dick J Veltman72, Francesca Assogna73,74, Nerisa Banaj73, Pietro de Rossi73,75,76, Mariangela Iorio73, Fabrizio Piras73,74, Gianfranco Spalletta73,77, Edith Pomarol-Clotet78,79, Sinead Kelly80,81, Simone Ciufolini83, Joaquim Radua19,78,79,83,119, Robin Murray83, Tiago Reis Marques83, Andrew Simmons83, Stefan Borgwardt85, Fabienne Schönborn-Harrisberger85, Anita Riecher-Rössler85,

1Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
2Medical Research Council Integrative Epidemiology Unit and Bristol Medical School, Population Health Sciences, University of Bristol, United Kingdom
3Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
4Janssen Research & Development, San Diego, CA, USA
5Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
6Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
7Department of Psychiatry and Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
8Department of Psychology, Georgia State University, Atlanta, GA, USA
9 Department of Psychiatry, Yale University, New Haven, CT, USA

10 Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA

11 Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Aichi, Japan

12 Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan

13 Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan

14 Department of Neuropsychiatry, Graduate school of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

15 University of New Mexico, Albuquerque, NM, USA

16 Mind Research Network, Albuquerque, NM, USA

17 Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway

18 Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway

19 Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden

20 Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA

21 Department of Psychiatry and Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands

22 University of California Los Angeles Center for Neurobehavioral Genetics, Los Angeles, CA,
USA

23Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway

28Section for Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg, Germany

29Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry, Georg August University, Göttingen, Germany

31Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-Valdecilla Biomedical Research Institute, Marqués de Valdecilla Research Institute (IDIVAL), Santander, Spain

32Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain

33School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia

34School of Psychiatry, University of New South Wales, Sydney, NSW, Australia

36University of Queensland, Brisbane, QLD, Australia

37Melbourne Neuropsychiatry Centre, University of Melbourne & Melbourne Health, Melbourne, VIC, Australia

38Neuroscience Research Australia, Sydney, NSW, Australia

39School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia

40Priority Research Center for Health Behaviour, The University of Newcastle, Newcastle,
Biomedical Imaging, Psychiatric Neuroimaging Research Program

68 Neuroimaging Unit, Technological Facilities, Valdecilla Biomedical Research Institute
IDIVAL, Santander, Cantabria, Spain

Dresden, Dresden, Germany

70 Department of psychiatry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam, The Netherlands

72 Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, Istituto Di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy

74 Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi”, Rome, Italy

75 Dipartimento di Neuroscienze, Salute Mentale e Organi di Senso (NEMOS) Department, Faculty of Medicine and Psychology, University “Sapienza” of Rome, Rome, Italy

76 Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy

77 Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Tx USA.

78 Fundación para la Investigación y Docencia Maria Angustias Giménez (FIDMAG) Germanes Hospitalaries Research Foundation, Barcelona, Spain

79 Centro Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain

80 Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA

Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom

University of Basel Psychiatric Hospital, Basel, Switzerland

Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA

Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari "Aldo Moro", Bari, Italy

Istituto Di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy

Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom

Seoul National University Hospital, Seoul, Republic of Korea

Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea

Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, National Centre for Biomedical Engineering Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland.

Mental Health Research Center, Moscow, Russia

Children's Clinical and Research Institute of Emergency Surgery and Trauma, Moscow,
Russia

98 Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden

99 Members of the Karolinska Schizophrenia Project (KaSP) are listed at the end of the manuscript as collaborators

100 Laboratory of Psychiatric Neuroimaging (LIM 21), Department of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil

101 Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, São Paulo, Brazil

102 National Institute of Mental Health, Klecany, Czech Republic

103 MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic

104 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom

106 Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany

107 University of Cape Town Dept of Psychiatry, Groote Schuur Hospital (J2), Cape Town South Africa

108 Medical Research Council Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa

109 MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch
University, Cape Town, South Africa

110 Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia

111 Department of Psychology, City, University of London, London, United Kingdom

112 Department of Neuroimaging, IOPPN, King's College London, London, United Kingdom

115 Hunter New England Local Health District, Newcastle, NSW, Australia

116 Department of child and adolescent psychiatry/psychology, Erasmus Medical Centre, Rotterdam, The Netherlands

118 Imaging Genetics and Neuroinformatics Lab, Department of Psychology, Georgia State University, Atlanta, GA, USA

119 Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain

120 Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic

121 Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic

122 Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois

123 School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia

Manuscript: 999 words

Number of tables: 0

Number of figures: 0
To the Editor:

In their letter to the editor, Vita and De Peri question whether new meta-analyses and mega-analyses of magnetic resonance imaging (MRI) findings in schizophrenia increase our knowledge about the nature of the disease process. In general, meta-analyses and mega-analyses provide objective methods to critically summarize a body of evidence regarding a particular question. As there had been no coordinated meta-analysis of cortical thickness and surface area abnormalities in schizophrenia, it is our view that this new, collaboratively conducted meta-analysis (1) contributes to our knowledge on this question and offers information on the cross-
site consistency of observed disease effects. Regional effects on cortical thickness and surface area can be difficult to summarize based on the traditional, literature-based, meta-analysis method, given the heterogeneity of analysis methods used in individual studies.

The Enhancing Neuro Imaging Genetics through Meta Analysis (ENIGMA) approach of collaboratively conducting meta-analyses offers additional benefits. First, ENIGMA’s publicly available methods lend themselves well to independent replication of imaging findings (2, 3), which is crucial given the ‘crisis of replication’ in neuroscience (4–6). Second, use of the same quality assurance, image processing, and statistical analysis methods across samples within and across ENIGMA working groups, minimizes method-related heterogeneity and offers the potential for straightforward cross-disorder comparisons (7–11). Third, use of similar meta-analytic methods across worldwide samples has generated imaging and genetics findings with sample sizes beyond the scope of any individual laboratory or consortium studying a single disorder (12–15).

Vita and De Peri repeat one of the study weaknesses already listed in the discussion, namely that possible group differences in lateralization were not examined. This question is under investigation by the ENIGMA Laterality Working Group, which is currently examining healthy and disordered brain laterality (16, 17). ENIGMA coordinates publication efforts across working groups in order to avoid overlap. Moreover, numerous ENIGMA studies make important contributions showing between-disorder brain differences without addressing laterality.

Vita and De Peri also mention that the meta-analysis does not address possible differential longitudinal trajectories between individuals with schizophrenia and healthy volunteers, which is also correct as this cross-sectional meta-analysis did not aim to examine
longitudinal trajectories. There are ongoing efforts by the ENIGMA Plasticity Working Group to study genetic influences on individual differences in longitudinal brain changes (18). We agree that further investigation of questions regarding longitudinal trajectories of brain changes across the lifespan, especially prior to illness onset, e.g., in adolescents at clinical high risk for psychosis, as well as after a first psychotic episode, will provide valuable information with regard to schizophrenia pathogenesis and several such analyses are planned or already ongoing.

Vita and De Peri further state that the meta-analysis does not add relevant information about the effects of antipsychotic medication on brain morphology but qualify that the reported findings seem compatible with findings from longitudinal MRI studies that suggest different effects of first versus second-generation antipsychotic treatments on cortical gray matter changes. We point out that prior meta-analyses did not dissociate effects of antipsychotic treatments on cortical surface area versus cortical thickness, whose product constitutes gray matter volume, and that the consistency of findings is important in the light of reports on non-replication in neuroscience.

The comment that “the supposed huge statistical power of mega-analyses of MRI findings in schizophrenia may be undermined by the large variation of data obtained by different centers in disparate conditions” is incorrect. First, Van Erp et al. (2018) is a meta-analysis and not a mega-analysis, which like any other meta-analysis, summarizes within-sample effects. In fact, joint meta-analyses tend to reduce method-related variation when compared to literature-based meta-analyses because similar analysis methods are applied across samples. Second, multiple imaging genetics meta-analyses replicate common genetic variants associated with measures of brain structure and find a greater number of common variants associated with these measures when additional independent samples are added (19–21). These findings suggest
increased power as brain imaging data from independent samples are added. Finally, the suggestion that mega-analyses of MRI data are undermined by between site variation is not borne out by the facts. Research from a decade ago showed the feasibility and the additional power gained by pooling legacy structural imaging data (22). More recent studies show that meta-analyses and mega-analyses of structural imaging data, whether from prospective multi-scanner or independent samples, yield significant and very similar findings (23–25). Each analysis method has strengths, weaknesses, and pitfalls. Hence researchers must consider whether to conduct a meta-analysis, a mega-analysis, or both, to answer a particular question.

The suggestion that meta-analyses and mega-analyses are not hypothesis-driven approaches is also incorrect. All published ENIGMA Schizophrenia Working Group meta-analyses list their hypotheses at the end of their introductions (1, 2, 26–28). Of note, nowhere in the manuscript do we state that “meta-analyses provide better evidence than large, well designed, hypothesis-driven, high-quality individual trials”. On the contrary, all findings from meta-analyses depend on the quality of the studies on which they are based. Even so, meta-analyses can offer additional safeguards against false positive findings generated by individual studies with small or highly heterogeneous samples by taking into account each sample’s error terms. We do agree that missing data for known or supposed significant moderators can be an issue. However, this is a criticism of all analyses of scientific data, rather than of our study specifically.

Finally, we respectfully disagree with the statement by Vita and De Peri “that the time has come for applying really new approaches to the study of the nature of the disease process underlying schizophrenia, rather than promoting redundant research on mega-databases which may even dilute or confuse established knowledge”. We believe there is value both in the relatively new approach of large-scale collaborative research on costly, already collected data, as
well as applying other innovative approaches and experimentation in adequately powered samples. We believe that most scientists who contribute to ENIGMA or other consortia as well as the funding agencies who promote large-scale data sharing and analysis recognize that both approaches make valuable contributions to the field.

ACKNOWLEDGMENTS AND DISCLOSURES

The ENIGMA project is in part supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (Grant No. U54EB020403). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Author contributions are as follows: TGMvE wrote the first draft of the manuscript and all authors contributed edits and approved the contents of the manuscript. TGMvE has had a research contract with Otsuka Pharmaceutical. AP has served as a consultant for Boehringer Ingelheim. The remaining authors report no biomedical financial interests or potential conflicts of interest. Members of the Karolinska Schizophrenia Project (KaSP) include: Lars Farde\(^1\), Lena Flyckt\(^1\), Göran Engberg\(^2\), Sophie Erhardt\(^2\), Helena Fatouros-Bergman\(^1\), Simon Cervenka\(^1\), Lilly Schwieler\(^2\), Fredrik Piehl\(^3\), Ingrid Agartz\(^1,4,5\), Karin Collste\(^1\), Pauliina Victorsson\(^1\), Anna Malmqvist\(^2\), Mikael Hedberg\(^2\), Funda Orhan\(^2\). \(^1\)Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm County Council, Stockholm, Sweden; \(^2\)Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; \(^3\)Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; \(^4\)NORMENT, KG Jebsen Centre for Psychosis Research,
Division of Mental Health and Addiction, University of Oslo, Oslo, Norway; 5Department of Psychiatry Research, Diakonhjemmet Hospital, Oslo, Norway.

REFERENCES

Neuroinformatics. 5: 235–245.

