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The plant-specific protein GIGANTEA (GI) controls many developmental and

physiological processes, mediating rhythmic post-translational regulation. GI

physically binds several proteins implicated in the circadian clock, photoperi-

odic flowering, and abiotic stress responses. To understand GI’s multifaceted

function, we aimed to comprehensively and quantitatively identify potential

interactors of GI in a time-specific manner, using proteomics on Arabidopsis

plants expressing epitope-tagged GI. We detected previously identified (in)di-

rect interactors of GI, as well as proteins implicated in protein folding, or

degradation, and a previously uncharacterized transcription factor, CYCLING

DOF FACTOR6 (CDF6 ). We verified CDF6’s direct interaction with GI, and

ZEITLUPE/FLAVIN-BINDING, KELCH REPEAT, F-BOX 1/LIGHT

KELCH PROTEIN 2 proteins, and demonstrated its involvement in photoperi-

odic flowering. Extending interaction proteomics to time series provides a data

resource of candidate protein targets for GI’s post-translational control.

Keywords: affinity purification; Arabidopsis thaliana; circadian rhythms;

flowering time; quantitative mass spectrometry

Arabidopsis thaliana plants have well-documented 24-h

rhythms in many physiological processes, from hypo-

cotyl elongation to photosynthetic functions as well as

defense responses against pathogen and herbivore

attack [1,2]. The overt circadian rhythms are driven by

intricate transcriptional-translational feedback loops

[2]. Detailed dynamic models based mostly upon tran-

scriptional repression recapitulate the rhythmic expres-

sion profiles of these clock genes, including

manipulations of the system in mutant plants and

under changing photoperiods [3–6].

Gene expression switches can operate on a timescale

of minutes. However, it does not obviously explain the

slow 24-h timescale of circadian clocks. In addition to

chromatin modification [7], the slow degradation rate

of the transcriptional repressors extends the timescale

of transcriptional regulation, which mathematical anal-

ysis has long identified and experiments have con-

firmed [8,9]. In Arabidopsis, regulated protein

degradation is also crucial to circadian timing and pro-

vides one mechanism for environmental light signals to

control the pace of the clock [10].

Abbreviations

3F6H, 3xFLAG-6xHis; MS, mass spectrometry; PCA, principal component analysis; TAP, tandem affinity purification; ZT, Zeitgeber time.
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One of the central proteins that regulate the degra-

dation rate of circadian clock proteins in the Arabidop-

sis clock is the GIGANTEA (GI) protein. The gi

mutants were originally identified as delayed-flowering

mutants under long-day conditions where wild-type

plants flower early [11,12]. The gi mutants also alter

the pace of the circadian clock [13–17]. GI affects the

clock through interaction with the F-box proteins of

the ZEITLUPE (ZTL)/FLAVIN-BINDING, KELCH

REPEAT, F-BOX 1 (FKF1)/LIGHT KELCH PRO-

TEIN 2 (LKP2) family, and increases the degradation

of the evening-expressed circadian repressors, TIMING

OF CAB EXPRESSION 1 (TOC1), and PSEUDO

RESPONSE REGULATOR 5 (PRR5) [18–20]. The

degradation is directly mediated by the ZTL/FKF1/

LKP2 proteins, together with ARABIDOPSIS SKP1-

LIKE (ASK) and CULLIN (CUL) proteins, to form

an SKP-CUL-F-box (SCF) ubiquitin ligase complex

that targets these clock proteins to the proteasome

[19–22]. ZTL binds to GI in a light-dependent manner

[18]. This interaction stabilizes both ZTL and GI. ZTL

is thought to not only enhance GI stability but also to

sequester GI in the cytoplasm. GI is rhythmically

expressed due to circadian control of GI transcription,

and therefore GI confers rhythmicity upon ZTL pro-

tein levels [23–25]. GI mRNA levels peak 8–10 h after

dawn [14,26,27], before repression by the evening com-

plex, which are composed of EARLY FLOWERING 3

(ELF3), ELF4, and LUX ARRHYTHMO (LUX, also

termed PHYTOCLOCK1) [26,28]. GI protein interacts

with and is destabilized by ELF3 and COP1 [29].

Within the nucleus, the clock protein ELF4 interacts

with GI and sequesters it away from the promoter of

the floral induction gene CONSTANS (CO), contribut-

ing to rhythmic regulation of CO [24].

The rhythm of CO expression provides part of the

timing function required to distinguish long days from

short days. CO protein activates transcription of

FLOWERING LOCUS T (FT) [30]. GI physically

associates with the promoter regions of CO and FT

[31,32], and also binds to transcriptional regulators of

CO [33]. Morning-expressed CYCLING DOF FAC-

TOR 1 (CDF1), CDF2, CDF3, and CDF5 directly

repress CO and FT transcription, delaying flowering in

long days [34–36]. The F-box protein FKF1 is

co-expressed with GI, binds both to GI and to CDF1-

CDF5 under light conditions, and initiates the degra-

dation of CDFs by ubiquitination [34,35]. Thus, GI

facilitates expression of CO and FT at the end of long

days, by relieving CDF repression [31,35,36].

In addition to its roles in the clock and flowering,

GI has been linked to carbon metabolism, [37–39] and
various stress responses. GI confers tolerance to high

salinity through interaction with the protein kinase

SALT OVERLY SENSITIVE 2 (SOS2) [40] and is

involved in ELF under drought conditions [41]. More-

over, mutations in GI increase resistance to oxidative

stress [42] and freezing [43] due to increased CDF

expression levels [44]. GI’s biochemical mechanisms in

most of these responses are unknown.

GIGANTEA’s role in the clock is mediated at the

biochemical level by co-chaperone activity, which

involves binding to HEAT SHOCK PROTEIN 90

(HSP90) and appears to stabilize ZTL [45,46]. This

activity can affect other test substrates but its other

native targets, if any, are unknown. As outlined above,

GI’s known functions with the ZTL family and SOS2

are mediated by protein-protein interactions. There-

fore, GI has been suggested to serve as a scaffold or

hub protein that orchestrates other protein interactions

[47], for example to provide chaperone activity [46].

Although such protein interactions are thought to

mediate GI’s functions, these interactions have not been

comprehensively and quantitatively analyzed. We there-

fore conducted interaction proteomics assays using the

GI protein, and obtained time-resolved data on poten-

tial direct and indirect partners of GI, over the daily

time course. Here, we discuss the abundance profiles of

proteins co-immunoprecipitated with GI, and functions

of new candidate interactors and highlight a DOF pro-

tein, which we refer to as CDF6, validating its direct

interactions and functional importance.

Materials and methods

Generation of plant materials

To generate plants with epitope-tagged GI protein, gi-2

mutants were transformed with a construct expressing

C-terminal 3xFLAG-6His-tagged GI protein (GI-3F6H).

The full-length GI cDNA without the stop codon was

amplified and inserted into pENTR/D-TOPO vector (Invit-

rogen, Carlsbad, CA, USA). After sequence verification,

the GI cDNA was transferred into the pB7HFC vector,

designed for in-frame epitope fusion [48] by a Gateway

cloning reaction (Invitrogen). pB7HFC-GI-3F6H was intro-

duced to the gi-2 mutant by Agrobacterium-mediated trans-

formation. Transgenic plants that rescued the gi-2

phenotype were selected, and the expression of the GI-3F6H

protein was verified by western blotting (as in Fig. S1; Meth-

ods S1). Samples for the preliminary and qualitative GI tan-

dem affinity purification (TAP)-mass spectrometry (MS)

studies were prepared as described in [49].

To generate SUC2:HA-CDF6 plants, the CDF6 CDS

(AT1G26790) was PCR-amplified using cDNA derived

from 2-week-old long-day grown plants as a template, and

cloned into pENTR D-TOPO (Invitrogen), to form
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pENTR HA-CDF6. 2.3 kbp of the SUC2 50 upstream

promoter region was amplified and cloned into the pENTR

50-TOPO vector (Invitrogen), to form pENTR 50 SUC2.

Using a sequential LR clonase II reaction (Invitrogen), we

integrated the pENTR 5’ SUC2, pENTR HA-CDF6 into

the R4pGWB501 vector [50], to form SUC2:HA-CDF6.

After confirming the sequence, this vector was transformed

into Col-0 WT plants using by Agrobacterium-mediated

transformation. Transgenic plants were selected based on

the expression level of CDF6 transcript.

Plant growth conditions

For flowering time experiments, seeds were sown and strati-

fied at 4 °C for 3 days on soil (Sunshine Mix #4; Sun Gro

Horticulture, Agavam, MA, USA), containing Osmocote

Classic time-release fertilizer (Scotts, Marysville, OH, USA)

and Systemic Granules: Insect Control (Bionide, Oriskany,

NY, USA). Plants were grown at 22 °C under long-day con-

ditions (16 h light, full-spectrum white fluorescent light bulbs

(F017/950/24” Octron; Osram Sylvania, Wilmington, MA,

USA, 70–80 lmol�m�2�s�1). Flowering time was measured as

the mean number of rosette leaves, for at least 16 plants per

genotype, � the standard error of the mean (SEM).

For qPCR analysis, 10-day-old seedlings were grown on

19 Linsmaier and Skoog media (Caisson, Smithfield, UT,

USA), supplemented with 3% (w/v) sucrose and 0.8% (w/

v) agar, under long-day conditions at 22 °C in growth

chambers (CU-36L5; Percival Scientific, Perry, IA, USA;

lighting conditions as for flowering time) and harvested at

3-h intervals from 1 h after dawn [Zeitgeber time 1 (ZT1)].

For the preliminary TAP-MS study, growth conditions

were the same as for the time series study (see below),

and plants were harvested at ZT8. For the qualitative

study, plants were grown on soil in long-day conditions

(16 h light, 8 h dark) and harvested at ZT13 on day 14.

For the TAP-MS time series, GI-3F6H and Col-0 WT

seeds were surface-sterilized for 10 min with 30% bleach,

0.01% Triton X-100, followed by four washes with sterile

water. After cold-treatment at 4 °C for 5 days, seeds were

grown on agar plates [2.15 g�L�1 Murashige & Skoog

medium Basal Salt Mixture (Duchefa Biochemie, Haar-

lem, The Netherlands), pH 5.8] in Percival incubators

(CLF Climatics) for 17 days at 85 lmol�m�2�s�1 (full-

spectrum white fluorescent bulbs) and 21 °C in short-day

conditions (8 h light, 16 h dark). Seedlings were trans-

ferred to soil, for 20 days in the same conditions with a

light intensity of 110 lmol�m�2�s�1. Starting at 7 h after

dawn, 80 rosettes without roots were harvested for each

replicate, in quintuplicates at time points shown in

Fig. 2A and flash-frozen in liquid nitrogen. Dim green

safelight was used to harvest samples during darkness.

The same total number of WT control samples were har-

vested as GI-3F6H replicates at each time point, spread

out across the time series (leaving out ZT15 and ZT31).

Quantitative PCR (qPCR) analysis

Seedlings were ground into powder with a mortar and pes-

tle with liquid nitrogen, and total RNA was isolated by

using an illustra RNAspin Mini kit (GE Healthcare,

Chicago, IL, USA) according to the manufacturer’s instruc-

tions. Two microgram of total RNA was reverse-tran-

scribed using the iScript cDNA synthesis kit (Bio-Rad,

Hercules, CA, USA) according to the manufacturer’s

instructions. cDNA was diluted five times with water, and

2 lL was used as a template for quantitative PCR (qPCR)

analysis using primers as shown in Table S1. ISOPENTE-

NYL PYROPHOSPHATE/DIMETHYLALLYL PYROPH-

OSPHATE ISOMERASE 2 (IPP2) was used as an internal

control for normalization. The average value fromWT was set

to 1.0 to calculate the relative expression of other lines. To

amplify CO and CDF6, three-step PCR cycling program was

used: 1 min at 95 °C, followed by 40–50 cycles of 10 s at

95 °C, melting temperatures for 15 or 20 s, and 72 °C exten-

sion for 15 s. To amplify GI, FT, and IPP2, a two-step PCR

cycling program was used: 1 min at 95 °C, followed by 40–50
cycles of 10 s at 95 °C and 20 s at 60 °C. Data show the aver-

age of three biological replicates with SEM; each measurement

had two technical replicates.

Protein Extraction and tandem affinity

purification (TAP) procedure

All steps in the protein extraction, TAP, and preparation

for MS were carried out in random sample order to avoid

bias due to order of processing. Frozen plant tissue was

ground to a fine powder in a liquid nitrogen and dry ice-

cooled mortar and processed essentially as described [49].

Detailed procedures are described in Supporting Experi-

mental Procedures (Methods S2).

Protein digestion and mass spectrometric

analysis

Preparation of samples for MS for the qualitative and time

series studies analysis used an on-bead digest, prior to mass

spectrometric analysis. Detailed procedures are described in

Supporting Experimental Procedures (Methods S3).

Proteomics data analysis and bioinformatics

For the qualitative study, database searches were per-

formed using Comet [51], searching against the Uniprot

Arabidopsis protein sequence database, and using Percola-

tor (Matrix Science, Boston, MA, USA) with a q-value cut-

off of 0.01. Cysteine residue masses were considered

statically modified by iodoacetamide, and methionine

dynamically modified by a single oxidation. Precursor mass

tolerance was 10 p.p.m., and product ion tolerance was

0.5 Da. The principle of parsimony was used for protein
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inference, and at least two unique peptides were required

for each identified protein.

The time series data were analyzed using the commercial

Progenesis LC-MS software (version 4.1.4924.40586; Nonlin-

ear Dynamics, Newcastle, UK) for label-free quantitation.

Raw files were imported into a label-free analysis experiment,

chromatograms were subjected to automatic alignment and

peak picking. Only charges 2+, 3+, and 4+ and data from 25 to

75 min of the runs were chosen for analysis. The exported file

of MS/MS spectra was uploaded on the Mascot website (ver-

sion 2.4) and a search was carried out with the following

parameters: database Arabidopsis_1rep (version 20110103),

trypsin as enzyme, allowing up to two missed cleavages, car-

bamidomethyl (C) as a fixed modification, Oxidation (M),

Phospho (ST) and Phospho (Y), as variable modifications, a

peptide tolerance of 10 p.p.m., and MS/MS tolerance of

0.05 Da, peptide charges 2+, 3+, and 4+, on a QExactive

instrument (Thermo, Waltham, MA, USA), and with decoy

search to determine false discovery rate (FDR). For export, an

ion-cutoff of 20 was chosen (exported peptide measurements:

Data S9). The MS proteomics data have been deposited to the

ProteomeXchange Consortium (http://proteomecentral.prote

omexchange.org) via the PRIDE partner repository [52] with

the dataset identifier PXD006859. Technical outliers were

identified using correlation analysis and principal compo-

nent analysis (PCA) of protein abundance data implemented

by an R script (Data S5). The average Pearson correlation

coefficient of each GI-TAP replicate with the other replicates

of the same time point was above 95% for all GI-3F6H sam-

ples apart from sample 19E (Fig. S2), which was also clearly

separated from all other samples by PCA and was therefore

discarded.

A custom R script performed further statistical analysis

and plotting (Data S7). We used a t-test to determine for

each protein, whether the maximum GI-TAP time point

(omitting the 31-h time point) is significantly different from

the WT control average using q-values [Benjamini-Hochberg

(BH) corrected P-values]. ‘Fold enrichment’ is the ratio of

the highest GI-TAP time point to the WT control average

gives. To assess temporal changes, ANOVA was performed

on arcsinh-transformed GI-TAP data, including the ZT 31

time point. To assess rhythmicity, we used the JTK_CYCLE

tool [53] to analyze periods of 22–26 h (Data S8). The sum-

mary heatmap (Fig. 2D) used the heatmap.2 function of the

pvclust v2.0 R package [54]. Gene ontology (GO) analysis

was performed using TOPGO (http://bioconductor.org/biocLite.

R, version: 2.16.0, [55,56], using a node size of 3, as described

by [57] (Data S6). Biological context was provided by subcel-

lular locations annotated in the SUBA resource [58] and

interaction data in the BioGrid [59].

Yeast two-hybrid assay

Full-length CDF6 coding sequence was PCR-amplified

using cDNA as template with primers shown in Table S1,

cloned into pENTR/D-TOPO (Invitrogen) and sequence-

verified. The plasmid cassette was transferred to pAS-GW,

a gateway compatible bait vector [60] using LR clonase II

(Invitrogen). The GI-FL, GI-N, GI-M + C, FKF1, LKP2,

and ZTL clones used in this analysis were described previ-

ously; GI-FL, GI-N and GI-C [31], and FKF1, LKP2, and

ZTL [34]. Yeast strains Y187 and AH109 were transformed

with prey and bait vectors, respectively using the standard

yeast transformation protocol (Clontech, Mountain View,

CA, USA). After colonies formed on –W or –L containing

media, three independent colonies were grown together,

and then mated against their corresponding pairs for

3 days on YPDA media. After mating, yeast colonies were

transferred onto –WL media. After checking for mating

confirmation, yeast sectors were retransferred at the same

time onto –WL and –WLH media. The experiments were

repeated several times with the same results.

Modeling methods

Simulations of the P2011 clock model [5] for GI and GI-

3F6H were performed in COPASI v4.16 [61]. Simulations

of the Framework Model FMv2 [62] for CO, FT, and

flowering time were performed in MATLAB (Mathworks,

Cambridge, UK). Both models are available online: P2011

(http://www.plasmo.ed.ac.uk/plasmo/models/download.sht

ml?accession=PLM_71&version=1) and FMv2 (https://fa

irdomhub.org/models/248?version=2). The higher arrhyth-

mic GI RNA levels in GI-3F6H plants were simulated by

reducing the affinity of GI for its rhythmic transcriptional

inhibitors (parameters g14, g15) by 100-fold each, com-

pared to the default, wild-type values. Transcriptional acti-

vation (parameter n12) was then reduced by 36% to match

the observed GI-3F6H mRNA level. The effects on other

model readouts (Figs 1 and 3) were caused by this simu-

lated transcriptional mis-regulation of GI. Simulations of

the flowering pathway were conducted using the photope-

riod and temperature conditions of the corresponding

experiments.

Results

Characterization of the GI-3F6H transgenic plant

line

We transformed the strong gi-2 mutant (a deletion

allele predicted to truncate ~ 90% of GI protein) [14]

with a construct to express 3xFlag- and 6xHis-tagged

GI protein under the control of the CaMV 35S

promoter (GI-3F6H). We aimed to express GI-3F6H

protein constitutively at a similar level throughout the

day to be able to immunoprecipitate a similar amount

of GI at each time point [31]. This will enable us to

detect the changes in interaction of certain proteins

4 FEBS Letters (2018) ª 2018 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

Arabidopsis 24 h interaction proteomics J. Krahmer et al.

http://proteomecentral.proteomexchange.org
http://proteomecentral.proteomexchange.org
http://bioconductor.org/biocLite.R
http://bioconductor.org/biocLite.R
http://www.plasmo.ed.ac.uk/plasmo/models/download.shtml?accession=PLM_71&version=1
http://www.plasmo.ed.ac.uk/plasmo/models/download.shtml?accession=PLM_71&version=1
https://fairdomhub.org/models/248?version=2
https://fairdomhub.org/models/248?version=2


with GI rather than the changes in the amount of co-

immunoprecipitated proteins caused by the different

amount of GI expressed. After isolating several posi-

tive transformants, we chose the line in which the

expression levels of GI-3F6H transcripts were similar

to the peak expression levels of the endogenous GI

(Fig. 1A). As a first experiment, we performed a pre-

liminary study where we used TAP of GI-3F6H fol-

lowed by silver-staining of a protein gel separation

and LC-MS of excised gel bands (Fig. 1F, Fig. S1,

Data S1). Our GI-3F6H line expressed sufficient GI

protein for effective TAP and analysis of gel bands by

MS identified GI and known interactors (Fig. S1, Data

S1). In addition, this GI-3F6H construct completely

rescued the late flowering phenotype of gi-2, indicating

that GI-3F6H is functional (Fig. 1B). In the GI-3F6H

line, CO and FT mRNAs were higher than in the WT

in the morning (Fig. 1C,D), consistent with activation

of these flowering-promoting genes by GI in the light

[31,32]. This was also reflected by slightly ELF of the

GI-3F6H plants relative to the WT (Fig. 1B).

GIGANTEA has multiple, known effects on the clock

and flowering genes and proteins; several of these effects

have been incorporated into mathematical models

[5,62]. In order to test whether the effects of the mis-

regulated GI-3F6H transgene were replicated by these

known mechanisms, we simulated the rescued mutant

line in the Arabidopsis Framework Model version 2 [62],

a mechanistic, mathematical model that includes pho-

toperiodic flowering (Fig. 1B,E). The WT and gi-2 simu-

lations closely matched the mRNA data. This data set

favored morning (1–4 h after dawn) expression of CO

and FT compared to evening (13–16 h) expression

slightly more than the model, possibly reflecting a

reduced GI mRNA level at 13 h in this data set com-

pared to previous training data. The model correctly

predicted an elevated CO mRNA level at 1 h in GI-

3F6H plants, though the observed level was ~ 5-fold

rather than ~ 2-fold higher (Fig. 1C). This CO peak

induced more FT at 4 h in the model (Fig. 1E) than in

the plant (Fig. 1C), and therefore earlier flowering

(Fig. 1D). Morning regulation of FT, in the presence of

unusually high GI levels, differed most between the

model and the plant, highlighting this as an area for

future model refinement.

Next, GI-3F6H and WT plants (control) were

grown in long days for 2 weeks and harvested at ZT

13 when GI protein peaks [31] and potential GI-inter-

acting proteins were identified in a qualitative pro-

teomics study (Fig. 1F). TAP of GI-3F6H was carried

out, followed by on-bead digestion and qualitative MS

analysis (Fig. 2B), reporting peptide counts (Fig. 1F).

Fifty Arabidopsis proteins were identified by at least

one peptide in each of the GI-3F6H samples and none

in the controls. In order to exclude known nonspecific

interactors, we eliminated all proteins from our list that

were previously reported to be purified by GFP-3F6H

with the same sample preparation protocol [48] (Data

S3). In addition, during the extraction, GI-3F6H can

come in contact with proteins from compartments that

are inaccessible to it in an intact cell. Therefore, we

also excluded proteins from further analyses that are

located in the chloroplast or mitochondria but not in

the cytoplasm or nucleus according to their GO anno-

tation [63] (Table 1; full results in Data S2). Eighteen

proteins remained after this background removal strat-

egy, indicating the potential to identify previously

undiscovered interactions, as discussed below. Detec-

tion of known direct interactors, such as ZTL, FKF1,

and LKP2, as well as indirect interactors, ASK1 and

ASK2 (direct interactors of ZTL and FKF1) validated

the methodology [16,21,31,64].

Candidate GI-interacting proteins from time

series data

Although GI plays an important role in photoperiodic

flowering in long days, the function of GI under short-

day conditions remains elusive. Therefore, we grew

plants in short days to identify uncharacterized interac-

tors of GI potentially involved in other responses. In

order to obtain time-resolved interaction data, we

applied the same GI-TAP method as in the qualitative

study to plants grown in short-day conditions, at six

time points in biological quintuplicate, with additional

duplicate samples at time point 31 h (replicating the 7-h

time point; Fig. 1F ‘time series’, Fig. 2A). Short-day

conditions ensure plants to be at a vegetative stage at

the time of sampling, while being large enough to obtain

sufficient amounts of tissue from a manageable number

of plants for our time-resolved TAP-MS procedures.

Extraction, TAP, and sample preparation for MS were

carried out as for the qualitative analysis (Fig. 2B).

Using the Mascot search engine to identify peptides, our

choice of peptide score cutoff of 20 resulted in an FDR

of 0.023. After identification and quantification of pro-

teins (Fig. 2C), one outlier (GI-3F6H sample at ZT19,

replicate E) was excluded from subsequent analysis (see

Experimental Procedures; Fig. S2). PCA of the remain-

ing GI samples maximally separated the mid/late-night

time points 19 h and 23 h from mid-day time points 7 h

and its replicate 31 h (Fig. 2E).

Two thousand three hundred thirty-six peptides

were detected in the time series study, from which 500

proteins were quantified (Table 2). In order to exclude

known unspecific interactors, we used the same
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strategy as for the qualitative study, eliminating 80

proteins previously purified by GFP-3F6H [48] and

169 chloroplast and mitochondrial proteins [63] (Data

S3, S4 and S6). The analytical methods also quantified

the identified peptide peaks in WT control samples

(one replicate for each time point except ZT 15 and

ZT 31) that had been subjected to the same TAP pro-

cedure (Figs 1F and 2A). Subsequent analysis used

raw abundance data exported from Progenesis as

opposed to the abundance which is normalized by the

sum of all intensities of ions with the chosen inclusion

criteria (see Materials and methods) in each mass spec-

trometric analysis; however, analysis of normalized

data gave very similar results (data not shown and

Data S3). The fold enrichment of each protein in the

GI-3F6H was calculated as the peak GI-3F6H abun-

dance relative to the average abundance in the WT

control samples. Potential interacting proteins were

identified as significantly enriched by t-test compared

to the WT control, with a significance threshold

adjusted for multiple testing (BH-adjusted q-value

< 0.05). Fold-enrichment threshold values were

informed by the results for known interactors. The

direct interactors ZTL, FKF1, and LKP2 were more

than 10-fold enriched over the WT control in the GI-

3F6H time series. Indirect interactors CUL1/CUL2

and GLUTAMINE SYNTHETASE 2 (GLN2) [21,49]

were two- to three-fold more abundant at their peaks

than the time series control and were not identified in

the preliminary or qualitative studies. Hereafter, we

refer to significantly enriched proteins with at least

four-fold enrichment as highly enriched (55 proteins)

and to proteins with two- to four-fold enrichment as

weakly enriched (a further 88 proteins).

Among these 88 proteins, 13 changed significantly in

abundance within the time series (assessed for any

change by ANOVA, q-value < 0.05) or 10 as assessed

for rhythmic profiles (by JTK_CYCLE q-value < 0.05;

Table 2 and Data S3; Data S8). Peak abundance for

most of the 16 proteins with changing or rhythmic pre-

cipitated protein abundance, as well as nonrhythmic/

changing precipitated proteins occurred at 7 h, with

lowest average abundance at 23 h among the signifi-

cantly enriched proteins, and no rhythmic or changing

proteins peaking at 15 h (Fig. 2D,E). The immunopre-

cipitated abundance of GI changed about two-fold

over time (Fig. 3A). The observed abundance changes

for immunoprecipitated GI and ZTL closely matched

the predicted protein profiles (Fig. 3C) from simula-

tion of GI-3F6H (as in Fig. 1E). This result indicated

Table 1. Candidate interacting proteins identified in the qualitative study. Control (WT samples) and GI-3F6H samples were extracted in

RIPA or SII buffer. Eighteen Arabidopsis proteins were identified by at least one peptide in each GI-TAP sample and none in the WT

background controls, excluding proteins that are likely contaminants as they bind to GFP-3F6H [48] or localized to other compartments than

GI (chloroplast, mitochondria). The right–hand columns cross-reference the time series study (Table 3), with fold enrichment and

significance (q-value) of the maximum GI-3F6H time point relative to the WT control. Bold: known direct or indirect interactors and

homologs. n.d.: not detected.

Accession Name

Number of peptides identified in qualitative TAP experiment GI-3F6H time series enrichment (max. GI/WT)

GI TAP RIPA GI TAP SII t-test q-value Fold enrichment

AT1G22770 GIGANTEA 309 299 0.00030 76

AT5G57360 ZTL 47 61 0.00020 32

AT5G06600 UBP12 15 20 0.00022 19

AT3G13920 EIF4A1 5 10 n.d. n.d.

AT1G68050 FKF1 6 9 0.00038 12

AT2G18915 LKP2 6 9 0.00074 13

AT1G75950 ASK1 7 8 0.0011 8.6

AT3G08530 CHC2 1 5 0.43a 2.44

AT5G60390 EFTu/EF1-A 4 2 n.d. n.d.

AT2G44060 At2G44060 3 2 n.d. n.d.

AT5G42190 ASK2 2 2 n.d. n.d.

AT3G56340 RPS26E 1 3 n.d. n.d.

AT4G03550 CALS12 1 1 n.d. n.d.

AT1G70490 ARF2-B 1 1 n.d. n.d.

AT1G80870 AT1G80870 1 1 n.d. n.d.

AT2G29420 GSTU7 1 1 n.d. n.d.

AT3G58350 RTM3 1 1 n.d. n.d.

AT5G23540 AT5G23540 1 1 0.17a 1.88a

aBelow threshold in time series study.
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that the multiple mechanisms of GI and ZTL protein

regulation in the model were sufficient to replicate the

abnormal accumulation of GI-3F6H protein, and its

effects on ZTL. The change in precipitated GI abun-

dance was not significant by ANOVA or JTK_

CYCLE.

Functional categorization of GI-TAP enriched

proteins

Gene ontology analysis was done, using the candidates

in Table 3 as foreground. GO terms related to protein

degradation were overrepresented among the candidates,

as well as light response related terms, some metabolic

processes, and flower development (Data S4 and S6).

Rhythmic profiles of known interactors

In contrast to the weakly rhythmic trend in abundance

of the immunoprecipitated GI protein, known interac-

tors showed contrasting profiles (Fig. 3A). The direct

interactors FKF1, ZTL, and LKP2 showed temporal

profiles consistent with their mRNA expression pat-

terns [65–68] (Fig. S3). The ZTL profile paralleled

GI, consistent with their mutual stabilization [23] and

closely matched by the prediction from the model sim-

ulation (Fig. 3C). Co-immunoprecipitated LKP2 abun-

dance had a similar trend, consistent with arrhythmic

mRNA expression of ZTL and LKP2. Only FKF1 and

CDF3 were strongly rhythmic, with FKF1 peaking at

7–11 h, resembling previous data [35,69] and CDF3

peaking at 27 h. Therefore, CDF3 level is in antiphase

with FKF1, in line with the degradation of CDFs by

FKF1 [34,35]. These results demonstrate the consis-

tency of our data with published results. CDF3 was

quantified using a single, individually inspected peptide,

indicating that such data should not be excluded from

analysis.

Several established indirect interactors of GI were

quantified (Fig. 3A). CDF3 and GLN2 are client pro-

teins of FKF1 [49], with CDF3 also being a direct GI

interactor (see above) [31], whereas ZTL and LKP2

also interact with the core components of the SCF

ubiquitin E3 ligase detected here, ASK1 and CUL1

and/or CUL2 (closely related proteins that were not

distinguished by the peptides detected).

The predicted functions of candidate interactors

include protein degradation and stabilization

In addition to verifying the known indirect interactor

CUL1, our analysis enriched other proteins involved

in protein stability (Fig. 3B). The ubiquitin-specific

proteases (UBP) 12 and UBP13 (AT5G06600 and

AT3G11910) were enriched in the time series and qual-

itative studies. Both UBP12 and UBP13 regulate the

period length of the circadian clock as well as pho-

toperiodic flowering [70], therefore the function of

UBP12 and UBP13 in the clock and flowering regula-

tion might be through the GI complex (see note added

in proof). AAA-type ATPase family proteins related to

components of the 26S proteasome (AT1G45000 and/

or AT4G27680) and a protease inhibitor, CYSTATIN

1 (AT5G12140) were also enriched. Several proteins

annotated as being involved in protein stabilization

were also significantly enriched by GI-3F6H, such as

Cpn60 chaperonin family proteins (AT1G24510,

AT3G18190, AT3G02530 and AT3G03960), the puta-

tive co-chaperone TPR4 (AT1G04530; Table 3,

Fig. 3B) and at least one HSP90 (AT5G56030,

AT5G52640 and/or AT5G56000, Fig. 3B). HSP70

family proteins were just below the enrichment cutoff

(Table 3).

In contrast, neither additional F-box proteins nor

other proteins involved in circadian timekeeping were

identified as strong candidate interactors (enrichment

Table 2. Numbers of quantified and significant proteins in the GI-3F6H-MS time series. The raw data of the Progenesis output file and the

raw data after removing likely unspecific proteins (GFP interacting proteins [48]) and plastid or mitochondrial proteins, (see Data S3) was

used for statistics.

1 or more unique

peptides

Of these, JTK_CYCLE

q-value < 0.05

2 or more

unique peptides

Of these, JTK_CYCLE

q-value < 0.05

Total quantifiable identifications 500 43 231 17

Without GPF interactors 420

Without plastid/mitochondrial proteins 251 32 88 9

Of these 251 (1 or more unique peptides) or 88 (2 or more unique peptides):

Significantly enriched (BH q-value < 0.05)a 91 10 36 3

And fold enrichment > 2 88 10 33 3

And fold enrichment > 4 55 8 18 2

aThese numbers exclude proteins where t-test was impossible due to missing quantifications.
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of PRR3 in the time series was below the significance

threshold). Multiple, metabolic enzymes and transla-

tion elongation or initiation factors were enriched in

the GI-3F6H time series. Among those (Table 3), were

GTP-binding translation factors (AT1G72730 and

AT1G54270 and/or AT3G19760), TREHALOSE-6-

PHOSPHATASE SYNTHASE 8 (TPS8; Fig. 3B), a

phosphofructokinase family protein (AT1G20950) and

a GMP synthase homolog (AT1G63660, Table 3) and

a pyruvate kinase family protein (AT2G36580). In

addition, a protein that binds to di-or trimethylated

histone H3, ALFIN-LIKE 7 (Table 3) was enriched by

GI-3F6H. The candidate interactors suggest new cli-

ents and mechanisms of GI action related to those in

other species (see Discussion), though their physiologi-

cal significance awaits confirmation.

CDF6 is a GI interactor that contributes to

photoperiodic flowering

AT1G26790 encodes a predicted DOF transcription

factor that was up to 15-fold enriched around dawn in

our GI-3F6H time series results (23 h and 27 h;

Fig. 4A). This protein was the most significantly

rhythmic of the candidate interactors after FKF1 and

CDF3 (BH-adjusted P-value from JTK_CYCLE =
8 9 10�6). Its immunoprecipitated protein levels were

the most anticorrelated with FKF1 levels among the
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complementation line. (A,C,D) mRNA
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open squares), gi-2 mutant (blue crosses)

and gi-2 plants constitutively expressing

the GI-3F6H fusion protein (red filled
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highly enriched proteins (Fig. 4A), followed by CDF3

(r = �0.65 and �0.40, respectively). The DOF protein

AT1G26790 is a close homolog of CDF5 [35,71] and

its mRNA expression showed a robust circadian oscil-

lation in constant light (Fig. 4C). Therefore, we

named this gene CYCLING DOF FACTOR 6

(CDF6). We then validated the interaction of CDF6

with GI and ZTL/FKF1/LKP2 proteins as well as its

function. Yeast-2-hybrid (Y2H) assay experiments

confirmed the interaction of full-length, N-terminal,

and C-terminal regions of GI with CDF6, as well as

interaction of CDF6 with FKF1, ZTL, and LKP2

(Fig. 4B). CDF6 transcript abundance was tested in

plants transferred to constant light, revealing

circadian regulation with a sharp peak around subjec-

tive dawn (Fig. 4C), similar to CDF1 transcript abun-

dance [34,67] and the profile of CDF6 in the GI-

3F6H time series (Fig. 4A).

Since GI interacts with FKF1 and most likely CDF3

[31,35] (Fig. 3A), and because the CDF6 amino acid

sequence shows high similarity to other CDFs, we pre-

dicted that CDF6 also has a similar function to other

CDFs. To assess our hypothesis, transgenic plant lines

were generated, in which CDF6 was expressed from the

SUCROSE-PROTON-SYMPORTER (SUC2) pro-

moter that is active in phloem companion cells [36]. We

chose the SUC2 promoter to drive CDF6, because other

CDFs as well as likely target genes of CDF6 – CO and
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FT – are specifically expressed in phloem companion

cells [72,73]. Two lines, SUC2:HA-CDF6 #8 and #11,

accumulated higher levels of the CDF6 transcript at

ZT4 and in later time points of a qPCR time series

(Fig. 4E), fluctuating around 20–60% of the WT peak

level, whereas CDF6 levels in WT were very low except
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Fig. 3. Diel profiles of immunoprecipitated GI and interacting proteins. Immunoprecipitated protein abundance of (A) GI and direct and

indirect interactors detected in the time series study, along with (B) HSP90 and candidate direct or indirect interactors. Multiple gene

identifiers indicate related proteins were not distinguished by the three CUL or five HSP90 peptides detected. GI-3F6H samples, markers;

error bar, SEM. Average of WT control, horizontal line, � SEM, dashed line. Time (T); Significance of enrichment and temporal change are

shown, as q-values of t-test comparing GI-TAP peak to WT (Enrich q) and of JTK_CYCLE within the GI TAP-MS time series (Ch q). Biological

replicates in (A and B):: 5, except for ZT 19 (four replicates) and ZT 31 (two replicates). (C) Simulation of the GI and ZTL protein time series,
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Table 3. Known and candidate interactors of GI from GI-3F6H TAP-MS time course experiment. Quantified proteins with two or more

peptides that were significantly enriched (in t-test of maximum GI-TAP time point with WT control q-value < 0.05) by at least two-fold (max.

GI-TAP/WT > 2), ranked by fold enrichment. Only FKF1, CDF3 and CDF6 were rhythmic (JTK_CYCLE q-value < 0.05). Where peptides

matched very similar proteins, multiple accession numbers are shown. Bold type, known direct or indirect interactors. Detection in the

preliminary study (Prelim., Fig. 1F) is shown, and the sum of peptide numbers detected in the qualitative study (Qual., Fig. 1F) in GI-3F6H

and WT (control). Selected proteins detected by single peptides are shown below, along with proteins suggested by other hypotheses (see

Discussion) that were below thresholds in the time series (*) but were detected in the qualitative study. Likely unspecific interactors [48]

and inaccessible proteins are left out in this table.

Accession Name

Quantitative enrichment (max GI TAP/control)

Time series,

number of

peptides

t-test

(P-value)

t-test BH

adjusted

(q-value)

Max

GI/control

Prelim. study

Detected?

(Y/n)

Qual. study

Total peptides,

GI-TAP/control

≥ 2 peptides per protein

AT1G22770 GIGANTEA 59 6.2E-06 3.0E-04 76 Y 608/0

AT5G57360 ZTL 29 2.5E-06 2.0E-04 32 Y 102/0

AT5G06600 UBP12 9 3.60E-06 2.17E-04 19 Y 35/0

AT1G04530 TPR4 2 2.70E-05 6.80E-04 15 Y n.d.

AT2G18915 LKP2 18 3.4E-05 7.4E-04 13 Y 15/0

AT4G36250 ALDH3F1 2 4.13E-05 8.30E-04 12 n n.d.

AT1G68050 FKF1 9 1.3E-05 3.8E-04 12 Y 15/0

AT5G54770 THI1 2 0.00051 0.0044 11 n n.d.

AT5G22800 EMB86 3 6.33E-05 0.0011 11 n n.d.

AT1G74730 DUF1118 2 0.00031 0.0030 7.6 n n.d.

AT3G11910 UBP13 7 2.76E-04 0.0028 6.9 Y n.d.

AT5G38660 APE1 3 5.27E-04 0.0044 6.5 n 2/0

AT3G60750; AT2G45290 Transketolase 9 0.0060 0.023 6.5 n n.d.

AT5G56030; AT5G52640;

AT5G56000

HSP90.2; HSP90.1;

HSP90.4

5 2.8E-05 6.8E-04 6.4 n n.d.

AT3G02530 TCP-1/cpn60

chaperonin

2 1.08E-04 0.0015 5.6 n n.d.

AT3G03780 MS2 2 5.44E-04 0.0044 5.6 n n.d.

AT1G18080 RACK1A 2 4.06E-04 0.0038 5.1 n n.d.

AT3G03960 TCP-1/cpn60

chaperonin

2 0.0022 0.011 5.1 n n.d.

AT1G07410; AT1G01200 RAB-A2B 2 0.010 0.032 3.8 n n.d.

AT1G54270; AT3G19760 EIF4A-2 2 0.0027 0.013 3.7 Y n.d.

AT5G46290 KASI 3 0.0014 0.0082 3.6 Y 1/0

AT5G35630 GS2 5 7.13E-04 0.0054 3.6 n 2/0

AT5G60790; AT3G54540 GCN1 3 0.0088 0.031 3.4 n n.d.

AT2G28000 CPN60A 2 0.0022 0.011 2.9 n n.d.

AT1G78570 RHM1 2 0.0014 0.0082 2.8 n n.d.

AT2G36880; AT1G02500 MAT3 2 0.0013 0.0081 2.8 n n.d.

AT2G21330; AT2G01140 FBA1 2 0.0022 0.011 2.7 n n.d.

ATCG00820 RPS19 2 0.0021 0.011 2.6 n n.d.

AT1G20620 CAT3 11 0.0040 0.018 2.5 Y n.d.

AT4G02570; AT1G02980 CUL1 3 0.010 0.031 2.5 n n.d.

AT3G42050 Vacuolar ATP

synthase

subunit H

2 0.0014 0.0082 2.4 n 3/18

AT2G37270 RPS5B 2 0.013 0.037 2.3 n n.d.

AT2G09990; AT3G04230 Ribosomal

protein S5

4 0.018 0.048 2.1 n n.d.

≥ 1 peptides per protein (selection)

AT5G10450 GRF6 1 1.3E-05 3.8E-04 90 n n.d.

AT1G60780 HAP13 1 0.011 0.034 58 n n.d.

AT3G47500 CDF3 1 2.4E-04 0.0026 33 n n.d.

AT1G14510 AL7 1 4.7E-05 8.7E-04 18 n n.d.
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at the ZT1 peak. Both transgenic lines flowered signifi-

cantly later than WT under long photoperiods, with less

effect under short photoperiods (Fig. 4D). If CDF6 acts

in a similar way to CDF1 [36,71], we would expect it to

inhibit transcription of both CO and FT. Indeed, CO

mRNA levels were reduced at 10, 13 h and at night in

the transgenic plants compared to WT, and FT expres-

sion was reduced more than 10-fold at 4 h and at later

time points (Fig. 4E). These results are consistent with

CDF6 participating in the photoperiodic regulation of

Table 3. (Continued).

Accession Name

Quantitative enrichment (max GI TAP/control)

Time series,

number of

peptides

t-test

(P-value)

t-test BH

adjusted

(q-value)

Max

GI/control

Prelim. study

Detected?

(Y/n)

Qual. study

Total peptides,

GI-TAP/control

AT3G14420.1; AT4G18360 Aldolase-type

TIM barrel

1 0.0089 0.031 17 n n.d.

AT1G26790 CDF6 1 0.0010 0.0068 15 n n.d.

AT3G13470 TCP-1/cpn60

chaperonin

1 0.018 0.048 15 n 4/0

AT1G70290 TPS8 1 5.4E-04 0.0044 13 n n.d.

AT5G12140 CYS1 1 2.6E-04 0.0027 10 n 1/0

AT1G20330 SMT2 1 1.5E-04 0.0017 9.1 n n.d.

AT4G11150 TUF 1 0.0013 0.0081 8.8 n 5/10

AT1G75950 ASK1 1 7.2E-05 0.0011 8.6 n 13/0

AT2G16570 ASE1 1 0.0082 0.030 8.1 n n.d.

AT2G33040 ATP3 1 0.0094 0.031 7.8 n n.d.

AT1G24510 TCP-1/cpn60

chaperonin

1 7.9E-04 0.0057 7.3 n n.d.

AT3G18190 TCP-1/cpn60

chaperonin

1 1.4E-04 1.7E-03 7.0 n n.d.

AT1G72730 DEA(D/H)-box RNA

helicase

1 6.7E-05 0.0011 7.0 n n.d.

AT1G53750 RPT1A 1 0.0096 0.031 6.6 n n.d.

AT4G31420 REIL 1 0.0020 0.011 6.6 n n.d.

AT5G28050 Cytidine/deoxycytidylate

deaminase

1 1.3E-04 0.0017 5.1 n n.d.

AT1G29880 glycyl-tRNA synthetase 1 0.0010 0.0068 4.9 n n.d.

AT5G51110 Transcriptional

coactivator

1 6.8E-04 0.0053 4.8 n n.d.

AT5G01410 PDX1 1 0.0096 0.031 4.7 n n.d.

AT3G60300 RWD domain-

containing

1 0.012 0.037 4.4 n n.d.

AT5G58140 PHOT2 1 0.0087 0.031 3.5 n n.d.

AT4G38630 RPN10 1 0.014 0.041 3.3 n n.d.

AT4G25630 FIB2 1 0.0052 0.022 3.0 n n.d.

AT1G48630 RACK1B_AT 1 0.0059 0.023 2.9 n n.d.

AT1G56110 NOP56 1 0.014 0.041 2.7 n n.d.

AT1G20200 EMB2719 1 0.0050 0.022 2.4 n 2/1

AT5G41210 GSTT1 1 0.018 0.048 2.3 n n.d.

AT3G20050 TCP-1 1 0.0098 0.031 2.2 n 2/0

AT1G63660 GMP synthase 1 0.0097 0.031 2.2 n n.d.

AT1G45000.1; AT4G27680 AAA-type ATPase 1 0.0097 0.031 2.2 n n.d.

GFP-TAP binding but found in time series and qualitative study and not background of qualitative study

AT3G17390 SAM4 2 0.0058 0.016 1.9* n 3/0

AT5G17920 MS1 4 0.056* 0.095* 1.8* n 7/0

AT5G02500; AT1G16030;

AT1G56410; AT3G09440;

AT3G12580; AT5G02490;

AT5G28540

Hsp70 family 0.053* 0.26 2.52 n 13/0
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flowering, where CDF6 protein levels in WT are regu-

lated through interaction with GI and its interacting F-

box proteins.

Discussion

Proteostasis, the set of protein-metabolic processes, is

expected to be critical for diel rhythms in general,

because the removal of transcriptional repressor pro-

teins controls the slow timing of circadian feedback

circuits [8,9]. GI indirectly mediates the degradation of

transcriptional repressors through interacting with

F-box proteins involved in protein ubiquitination:

ZTL mediates targeted degradation of TOC1 [20] and

PRR5 [19] with LKP2 and FKF1 contributing [22].

FKF1 targets CDF1 for degradation to regulate pho-

toperiodic flowering, and this FKF1-dependent degra-

dation requires functional GI [31]. GI also has protein

chaperone functions to stabilize ZTL and potentially

other proteins [45,46]. Our studies identified further
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Fig. 4. CDF6 interacts with GI and functions in photoperiodic flowering. (A) GI-interaction profile of CDF6 in the time series study is similar

to CDF3 (Fig. 3A). n = 5 (except ZT19: n = 4) (B) Yeast two-hybrid assays validate interaction of CDF6 with full-length GI, N- and C-terminal

domains of GI, as well as ZTL, FKF1 and LKP2. AD, activation domain; DBD, DNA binding domain. (C) Circadian expression profile of CDF6

mRNA, in WT plants 3 days after transfer to constant light, n = 3. (D) CDF6 over-expression delays flowering of transgenic SUC2:HA-CDF6

lines more under long days, compared to WT control, than under short days. Each transgenic line differed significantly from WT, t-test

P < 0.0001, except #8 in SD, not significant. n ≥ 16 (E) mRNA expression profiles of CDF6, CO and FT were tested by qPCR in WT and the

overexpressor lines, confirming that CDF6 suppresses evening CO and FT expression. n = 3.
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proteostatic proteins associated with GI, and suggested

links to metabolic sensing, providing candidates for

the unknown targets of GI’s proteostatic functions [46]

and recalling previous data linking GI, metabolic

inputs, and biological timing.

Overexpression of tagged GI (GI-3F6H) under the

35S promoter in the gi-2 mutant background rescued

the mRNA expression of CO and FT and flowering

time phenotypes of the mutant. GI protein tended to

greater abundance during the day than during the

night, in line with its light-dependent stabilization by

ZTL [23], with an evening peak time similar to native

GI protein [27]. The observed immunoprecipitated

protein profile closely matched the prediction of a

mechanistic clock model that was informed by diverse

literature data [5], indicating that the GI-3F6H protein

conformed to the dynamic, light-responsive behavior

expected from previous results (Fig. 3C).

Confirmation of known interactors and the new

direct interactor CDF6

The detection of known, indirect interactors of GI

such as CUL1/2 among the weakly enriched proteins

but not in the qualitative studies validated the time

series approach. Among the known, direct interactors

of GI that were not detected in our studies, SVP,

TEM1, and TEM2 [32], COP1 and ELF3 [29], ELF4

[24], CO [49], and TCP4 [33] are observed or expected

to be largely or exclusively nuclear, while SPY [74]

and SOS2 [40] are partly nuclear-localized. Analysis of

nuclear preparations may be necessary to enrich for

these and other, nuclear interactors. Rapid, whole-cell

extraction was employed here to facilitate handling the

larger sample numbers required to conduct the time

series study in quintuplicate [56]. Transcriptional regu-

lators were nevertheless detected, including the known

interactor CDF3 [34] and its homolog CDF6

(AT1G26790). Y2H assays validated the interaction of

CDF6 with GI N- and C-terminal fragments, as well

as with ZTL, FKF1, and LKP2 [35]. Functional over-

lap with other CDFs was confirmed, as CDF6 overex-

pression in leaf phloem companion cells inhibited CO

and FT transcription and delayed flowering in a pho-

toperiod-dependent manner (Fig. 4D, E).

CDF6 transcript expression in long days and con-

stant light peaks around dawn, similar to CDF1,

CDF2, CDF3, and CDF5 [34,35,67]. CDF6 interaction

with GI was in antiphase to FKF1 interaction, consis-

tent with CDF6 being largely or specifically degraded

via this F-box protein. Our qualitative study and

others conducted when GI normally accumulates [48]

coincide with peak FKF1 abundance, so would not

have detected CDF6 or perhaps CDF3 (Figs 3A and

4A), confirming the utility of the time series approach.

However, only 10 proteins (11%) were enriched with

a rhythmic profile, so the strong rhythms of FKF1

and the CDFs were uncommon. Rhythmic transcrip-

tion of GI might normally confer rhythmicity on

other partner proteins as it does for ZTL [18,23], in

which case we expect mis-expression of GI to alter

partner protein accumulation, as GI-3F6H does to

ZTL. Alternatively, many partner proteins might lack

strong rhythmicity.

The large size and proposed proteostasis functions

of GI (discussed below) risk false-positive results. GI

has not been found localized in or associated with the

chloroplast but rather in the nucleus or cytoplasm

[15,23,75]. The abundant, plastid-localized proteins

enriched as interactors (Data S3 and S4) likely reflect

unspecific binding, at least in the case of chloroplast-

encoded proteins, which was an expected cost of

detecting low-abundance and indirect interactors. Con-

servatively, we excluded mitochondrial and chloroplast

proteins (see Materials and methods; Data S3) from

the candidate interactors (Tables 1 and 3). GI might in

principle have a physiological role in the metabolism

of proteins translated on cytosolic ribosomes, prior to

compartmentalization, or of proteins translocated from

other compartments to the cytosol for degradation

[76].

Metabolic and nuclear functions of GI

Functionally at least, GI links carbon metabolism and

timing, via a long-term response of the circadian clock

to sucrose [39] and the photoperiodic adjustment of

the rate of starch biosynthesis [38]. The trehalose-6-

phosphate pathway mediates several such sugar

responses [77,78]. TPS8 is a paralogue without known

enzymatic activity but with diurnally regulated expres-

sion, repressed by sucrose [79]. GI interaction with

TPS8 was highly enriched and, unusually, peaked at

ZT19 (Fig. 3B), providing one of several possible

mechanisms for GI to mediate between metabolism

and biological timing.

Few candidate interactors were shared with a previ-

ous study using ELF3 and ELF4 bait proteins [48],

which each interact with GI [24,29]. For example,

RACK1A (AT1G18080) is a promiscuously interacting

protein with several reported physiological roles in

plants [80]. Its homolog RACK1B (AT1G48630) was

also weakly enriched (Table 3). Mammalian RACK1

affects the circadian clock through the interacting core

clock transcription factor BMAL1 [81], and con-

tributes to degradation of its paralogue hypoxia-
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induced factor HIF1a. HIF1a protein regulation is

mediated via HSP90 and UBP (reviewed in [82]): their

Arabidopsis homologs were highly enriched in our

GI-3F6H datasets.

Potential function of GI in cold response

Some of our candidate interactors may be used to

speculate on new mechanisms contributing to GI func-

tion. GI enhances cold tolerance independently of

CBF signaling [43]. Two of our candidate interactors,

REI1-LIKE and GENERAL CONTROL NON-

REPRESSIBLE (GCN1; Table 3), have been impli-

cated in cold tolerance through a role in ribosome

maturation and regulation of translation initiation,

respectively [83,84]. Knowledge of these potential

interactors may therefore be helpful to generate

hypotheses on how GI mediates cold tolerance.

GI candidate interactors involved in protein

metabolism

Protein degradation of clock-relevant, transcriptional

repressors was the first biochemical function supported

for GI, acting as a scaffold for F-box proteins, though

GI’s co-chaperone function is now also implicated

[18,46]. No further F-box proteins or other ubiquitin E3

ligases were identified here, suggesting that GI mediates

further physiological roles through different biochemical

mechanisms. Chaperone proteins are typical, nonspecific

contaminants of affinity purification studies but direct,

physiologically relevant binding of HSP90 with GI has

been demonstrated [46]. HSP90 isoform(s) were highly

enriched and weakly rhythmic in our time series

(Fig. 3B). TPR4, which encodes a tetratricopeptide

repeat (TPR) protein with potential to interact with

HSP90/HSP70 as a co-chaperone [85] was also strongly

enriched (Table 3, Fig. 3B). The HSP70 family proteins

that might function with GI and HSP90 [46] were below

the significance threshold in the time series study

(Table 3) but one (AT5G02500) was the fourth most

enriched protein in the qualitative study (Table 1).

In contrast, several other proteins involved in pro-

teostasis were highly and reproducibly enriched. For

example, in our time series, two proteasome regulatory

proteins were enriched, RPT1A (AT1G53750) and

RPN10 (AT4G38630) (Table 3). GI-TAP had identi-

fied a different proteasome regulatory protein in rice

[86]. TCP-1/cpn60 chaperonin family proteins (AT3G0

3960; AT3G20050) that can facilitate intercellular traf-

ficking of transcription factors [87] were detected in

both the time series and the qualitative studies

(Tables 1 and 3).

Interestingly, a GI TAP-MS study in rice identified

a potential GI interactor whose closest Arabidopsis

homologs, ADL3 and ADL6, are also involved in

post-Golgi vesicle trafficking [86,88]. Our purification

enriched several proteins involved in trans-Golgi or

early endosome vesicle trafficking: RAB-A2B and/or

RABA3 [89], TUF [90], and HAP13 [91,92]. While we

are not aware of any evidence for a Golgi/endosome

related function of GI, these candidates may help to

generate hypotheses on mechanisms of GI’s to date

unexplained functions. For example, Arabidopsis plants

deficient in the Golgi-localized transporter protein

PAR1 are more resistant to paraquat due to reduced

plastid accumulation of the herbicide [93], and a role

of GI in stabilizing such intracellular transport pro-

teins could be an explanation for the increased para-

quat resistance of gi mutants in addition to the

suggested increased resistance to oxidative stress [42].

UBP12 and UBP13 were highly enriched in the time

series and were also detected in the preliminary and/or

qualitative studies (see note added in proof). Their de-

ubiquitination activity potentially counteracts protein

degradation, for example of Arabidopsis MYC2 [94],

or monoubiquitination, for example of histone H2A

[95]. UBP12 and UBP13 are already known to affect

the Arabidopsis circadian clock, act upstream of GI

and CO in the same photoperiodic flowering time

pathway [68], and are recruited to chromatin in associ-

ation with the histone methylation complex PRC2 [95].

In a final connection, histone de-ubiquitination by

USP7, the Drosophila homolog of UBP12/UBP13, is

allosterically controlled by its interaction with a GMP

synthetase [96]. An Arabidopsis homolog (AT1G63660)

of this enzyme was also enriched in the time series

data (Table 3).

Our time series GI TAP-MS results not only identi-

fied a new member of CDF proteins functioning in the

photoperiodic flowering pathway but also highlighted

an extended set of proteostatic functions of GI, with

intriguing potential links to metabolic enzymes that

are now of interest in other organisms [97]. These pro-

vide a novel set of hypotheses on the biochemical

mechanisms of flowering regulation and of further

physiological effects of GI.
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