Global burden of Clostridium difficile infections:

Citation for published version:

Digital Object Identifier (DOI):
10.7189/jogh.09.010407

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Journal of Global Health

Publisher Rights Statement:
This work is licensed under a Creative Commons Attribution 4.0 International License.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Global burden of *Clostridium difficile* infections: a systematic review and meta-analysis

Evelyn Balsells¹*, Ting Shi¹*, Callum Leese¹, Iona Lyell¹, John Burrows¹, Camilla Wiuff², Harry Campbell¹, Moe H Kyaw³**, Harish Nair¹**,

¹ Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
² Health Protection Scotland, Glasgow, UK
³ Sanofi Pasteur, Swiftwater, Pennsylvania, USA
*Joint first authorship
**Joint last authorship

Background *Clostridium difficile* is a leading cause of morbidity and mortality in several countries. However, there are limited evidence characterizing its role as a global public health problem. We conducted a systematic review to provide a comprehensive overview of *C. difficile* infections (CDI) rates.

Methods Seven databases were searched (January 2016) to identify studies and surveillance reports published between 2005 and 2015 reporting CDI incidence rates. CDI incidence rates for health care facility-associated (HCF), hospital onset-health care facility-associated, medical or general intensive care unit (ICU), internal medicine (IM), long-term care facility (LTCF), and community-associated (CA) were extracted and standardized. Meta-analysis was conducted using a random effects model.

Results 229 publications, with data from 41 countries, were included. The overall rate of HCF-CDI was 2.24 (95% confidence interval CI = 1.66-3.03) per 1000 admissions/y and 3.54 (95%CI = 3.19-3.92) per 10 000 patient-days/y. Estimated rates for CDI with onset in ICU or IM wards were 11.08 (95%CI = 7.19-17.08) and 10.80 (95%CI = 3.15-37.06) per 1000 admission/y, respectively. Rates for CA-CDI were lower: 0.55 (95%CI = 0.13-2.37) per 1000 admissions/y. CDI rates were generally higher in North America and among the elderly but similar rates were identified in other regions and age groups.

Conclusions Our review highlights the widespread burden of disease of *C. difficile*, evidence gaps, and the need for sustainable surveillance of CDI in the health care setting and the community.
Considering the evolving epidemiology of *C. difficile* morbidity and mortality, global challenges regarding antibiotic stewardship and limited alternative preventative options for CDI, it is important to assess its burden to inform public health action. The emergence of hyper virulent strain PCR ribotype 027/NAP1, significant increases in incidence of hospitalizations associated with *C. difficile* by the mid-2000s, and outbreaks of CDI in hospitals globally are examples of the major impact *C. difficile* can have on health care systems [1,9-12]. Through the implementation of standardized surveillance case definitions, a considerable proportion of cases of CDI occurring outside hospitals has also been identified [1,13-15]. Increased awareness of the role of *C. difficile* as a global health problem is required to reduce morbidity and control rates of CDI [16,17]. However, there are limited evidence characterizing its role as a global public health problem. We aimed to conduct a comprehensive examination of globally reported rates of CDI incidence, in order to develop baseline epidemiological estimates of incidence and identify characteristics and gaps in the available evidence base.

METHODS

Identification of eligible publications

We searched seven electronic databases (Medline, Embase, Global Health (through Ovid), CINAHL, LILACS, WHO Library, and Web of Science) in January 2016 to identify publications reporting incidence rates of CDI. Search strategies were developed with the assistance of a medical librarian and included a combination of MeSH and keywords relevant for CDI and incidence or burden of disease. An internet search to identify the most recent data from national surveillance reports was also conducted to supplement evidence from published literature (Table S1 in Online Supplementary Document). Details on eligibility criteria for the review are described in Table 1. Two reviewers (EB, TS) screened the records obtained through electronic medical databases and identified articles that met the inclusion criteria. We included studies and surveillance reports with a publication year between 2005 and 2015 inclusive and reporting CDI cases identified through positive laboratory assay or endoscopic findings using surveillance case definitions [18] or administratively coded CDI hospitalizations (eg, International Classification of Diseases (ICD) ICD-9-ICM = 00845.0 or ICD-10 = A04.7). Studies focusing on recurrence, asymptomatic colonization or mortality, or those published in languages other than English or Spanish were excluded. We also excluded data from periods of outbreaks or from intervention arms of infection control studies.

Data extraction

Data from the included studies were extracted by at least two reviewers (EB, CL, JB, IL) using an Excel form which was piloted before its final use. Uncertainties or discrepancies on data extraction were resolved by discussion between extractors. We extracted data on the study setting, duration, and design,

<table>
<thead>
<tr>
<th>Table 1. Eligibility criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion criteria</td>
</tr>
<tr>
<td>Observational (during non-outbreak periods) or interventional studies (pre-intervention period) and national surveillance reports published between 2005 and 2015.</td>
</tr>
<tr>
<td>English and Spanish language (for peer-reviewed publications).</td>
</tr>
<tr>
<td>Publication reports rates of CDI incidence for individuals of all ages in any of the following settings: hospitals, medical intensive care units, internal medicine wards, long term care facilities or nursing homes and in the community.</td>
</tr>
<tr>
<td>Case ascertainment methods and case definition compatible with current CDI surveillance (laboratory or histological-diagnosis) or administrative coded hospitalizations (ICD9-9-CM:008.45; ICD-10:A04.7) are clearly reported.</td>
</tr>
<tr>
<td>Data on incidence of CDI rate can be extracted as an independent outcome and at least two of the following are available: number of cases during study period, study population (denominator) or rate.</td>
</tr>
<tr>
<td>Exclusion criteria:</td>
</tr>
<tr>
<td>Articles published before 2005 or reporting data for a study population already considered in the review.</td>
</tr>
<tr>
<td>Methods for case ascertainment are not clearly reported.</td>
</tr>
<tr>
<td>Interventional before-and-after studies without clear background rate or studies reporting rates outbreak periods exclusively.</td>
</tr>
<tr>
<td>C. difficile assessed as a co-infection, composite outcome (eg, set of health care-associated infections), or defined as an adverse drug reaction or antibiotic associated diarrhoea without C. difficile laboratory/code confirmation.</td>
</tr>
<tr>
<td>Study population at risk from which cases were identified narrowed by a prior selection process (eg, only diarrheal patients, those on antibiotics, co-morbidity-specific groups).</td>
</tr>
<tr>
<td>Case-reports, systematic reviews, narrative reviews, letters to editors, brief communications, commentary pieces.</td>
</tr>
</tbody>
</table>
case ascertainment methods, and case definition details. Data were extracted in accordance to the following settings of CDI acquisition: health care facility-associated (HCF), hospital onset health care facility-associated (HO-HCF), community-associated (CA), any setting/unspecified CDI and for three selected high-risk settings: medical or general intensive care units (ICU), internal medicine wards (IM), and long-term care facilities (LTCF), including nursing homes. For ICD-coded hospitalizations, we included publications reporting the number of hospitalizations with CDI code as a primary and secondary diagnosis. or data extraction, incidence rates were collected based on number of CDI cases that adhered to recommended surveillance case definitions, but also included studies with modified case definitions if this was clearly reported. Authors of publications eligible for inclusion were contacted to obtain the number of cases if additional eligible categories were reported in order to enable inclusion in the meta-analysis. To minimize potential bias towards large studies in meta-analyses, data from multicentre publications were extracted per health care facility and counted as an individual data point. Studies with data from facilities also included in national surveillance or other multicentre publications were excluded to avoid potential duplication of the same study population. Depending on the case definition, incidence for the following metrics were extracted and standardized: number of CDI cases per admissions (per 1000 admissions per year), incidence density (per 10 000 patient-days), and cumulative incidence of CDI cases over the total population at risk (per 100 000 population per year).

Statistical analysis

The total number of CDI cases by admissions, total patient-days, or population for each category, rates and 95% confidence intervals (CI) were extracted from publications as reported by authors or calculated based on available data. The distribution of CDI incidence rates identified was summarized in terms of interquartile ranges and median values as follows: for HCF and HO-HCF (including high-risk settings: ICU, IM, and LTCF) in terms of incidence density and cases per admissions, and for CA, any or unspecified setting of acquisition, or ICD-coded hospitalization in terms of cases per admissions and cumulative incidence.

Rates of CDI incidence were pooled using the metan command in Stata version 14 (StataCorp, College Station, Texas, USA). When a publication reported different rates for the same study population using different case ascertainment methods (eg, based on review of patients or laboratory charts vs administrative records) we used the number of CDI cases where patient’s records had been reviewed. A small value (0.05) was used as continuity correction to include rates with zero CDI cases in the meta-analysis. Estimates were developed using a random effects model, acknowledging the heterogeneity in observational studies conducted in diverse settings.

Where possible, we performed and reported subgroup meta-analyses by location (WHO regions; the Americas region was divided into North America and Latin America) and age group (children [≤15 years or pediatric hospitals], adults [≥15 years], elderly [≥65 years], and all or unspecified age [≥0-2 years and studies without information on age or where children were not explicitly excluded]). Subgroup analyses were performed for categories with at least three different data points.

RESULTS

Overview of included studies

A total of 229 publications [2,11,12,19-24], including 14 national surveillance reports, were included from over 12 000 publications assessed for eligibility. The literature review process is summarized in the PRISMA flowchart in Figure 1. Data extracted from each of the included studies are available in (Tables S2-S8 in Online Supplementary Document).

We included data on rates of CDI incidence from 41 countries. The majority of reports (195/229) were from Europe and North America. Incidence data eligible for inclusion from other regions: Western Pacific, Latin America, Eastern Mediterranean, and Africa were identified less frequently, and no reports from the South-East Asia region was included. Sub-analyses on CDI rates by world region are reported for Europe, North America and the Western Pacific regions for categories with suitable number of data points to conduct a meta-analysis.

Of the 229 publications included, 89 publications reported rates of HCF-CDI (incidence density and/or cases per admissions) and 57 publications reported data for HO-HCF CDI (incidence density and/or
cases per admissions). Rates of CA-CDI were reported in 39 publications with almost all data from countries in North America, Europe, and the Western Pacific. CDI in high-risk settings (ICU, IM, and LTCF; 56 publications) were also for the most part identified from countries in North America, Europe, Latin America and the Western Pacific. CDI rates for children and the elderly were reported in 37 and 33 publications, respectively. The number of individual data on rates for each of the CDI categories and age groups are presented in Table 2.

Regardless of metric, there were large variations in rates of CDI incidence across categories and age groups. Figure 2 depicts the median and range of all rates of CDI incidence reported in included studies in the review.

Meta-analysis

Table 3 shows the results from the meta-analyses, by CDI categories, regions and age groups.

CDI cases per admission

Incidence of CDI reported in individual studies ranged from 0 to 35.15 cases per 1000 admissions per year (Figure 2, panel a). The highest median number of CDI cases per admissions were reported from ICU and IM wards; with the highest meta-estimate for incidence rate (IR) of 11.08 (95% CI = 7.19-17.08) per 1000 admissions per year for ICU-onset CDI. Among all ages, meta-estimates rates of HO-HCF and HCF-CDI were similar (IR = 2.09 (95% CI = 1.16-3.74) per 1000 admissions per year and 2.24 (95% CI = 1.66-3.03) per 1000 admissions per year, respectively), and rates for CA-CDI were lower (IR = 0.55 (95% CI = 0.13-2.37) per 1000 admissions per year) (Table 3).

Estimates in the elderly were similar to those than for adults or higher compared to the other age groups (with children having the lowest incidence rates). Although regional level estimates were not strictly comparable, North America generally reported higher rates across CDI categories and age groups (Table 3).

CDI incidence density

CDI incidence density reported in individual studies ranged from 0.11 to 50.3 per 10 000 patient-days (Figure 2, panel b). The highest estimated incidence density by meta-analysis was in the ICU and IM wards, the highest incidence rate 13.74 (95% CI = 9.46-19.93) per 10 000 patient-days was for ICU-onset CDI. The meta-analysis estimates for HO-HCF and HCF were similar (IR = 4.14 (95% CI = 3.10-5.53) per 10 000 patient-days and 3.54 (95% CI = 3.19-3.92) per 10 000 patient-days, respectively), as was the incidence density in LTCF (IR = 4.41 (95% CI = 2.36-8.23) per 10 000 patient-days) (Table 3).

Meta-estimates for the four age categories were calculated for HCF-CDI incidence density, where the highest density was observed among the elderly (IR = 10.95 (95% CI = 5.08-23.59) per 10 000 patient-days). Incidence density of HO-HCF CDI and HCF-CDI were also higher for adult populations compared to that in patients of all ages. Based on the limited data at regional level, we observed that North America had the highest CDI incidence density.
Cumulative incidence of CDI

Cumulative incidence of CDI reported in individual studies ranged from 1.12 to 631.80 per 100,000 population per year (Figure 2, panel c). The majority of data for cumulative incidence of CDI hospitalizations were available from large databases in the United States. Based on data from ICD-coded hospitalizations, the estimate of cumulative incidence rate for all ages is 49.36 (95% CI = 34.01-71.75) per 100,000 population per year. This estimate is similar to the rate based on CDI cases identified through positive laboratory assay and clinical criteria (IR = 41.94 (95% CI = 30.30-58.05) per 100,000 population per year) (Table 3). For the latter, estimates from individual studies ranged from 13.42 per 100,000 population per year in a study conducted in Spain in 2003 where national laboratories were surveyed to 147.20 per 100,000 population per year in a study with sentinel surveillance in the United States where rates were adjusted for use of molecular laboratory assays. At the national level, increases in CDI hospitalization rates per 100,000 population were reported, for instance, in Finland (from 16.0 in 1996 to 34.0 in 2004) [12], in Belgium (from 16.5 in 1999 to 44.3 in 2008), and in the United States (from 48.8 in 1999 to 114.6 in 2008) [11].

Where meta-analysis by age groups was possible, the results for the cumulative incidence for the elderly was higher compared with the other age groups; for any CDI (regardless of setting of acquisition), the overall estimate from meta-analysis was 323.32 (95% CI = 217.82-479.91) per 100,000 population per year. Europe had the highest estimates of cumulative incidence rate CA-CDI in all age groups, though confidence intervals overlap with the estimate for North America.

DISCUSSION

The aim of this study was to examine reports of CDI incidence rates in order to develop an overall estimate and to identify gaps in the current evidence base globally. We found variations of CDI occurrence in terms of rates, within categories as well as between world regions. From our meta-analyses, the estimated overall incidence rate of HCF-CDI for patients of all ages was 2.24 per 1000 admissions per year and 3.54 per 10,000 patient-days.

The implementation of robust surveillance systems is important to ascertain the burden of CDI across and to help identify any future changes in rates [2,14]. Through our review of the literature, we found that the highest rates of CDI for the majority of categories assessed were reported in North America.
Table 2. Number of data-points on CDI rates included in the review by category, age group, and world region

<table>
<thead>
<tr>
<th>Category</th>
<th>CDI - Hospital Onset</th>
<th>CDI - Healthcare Facility Associated</th>
<th>CDI - Community Associated</th>
<th>Any Setting</th>
<th>ICD-Coded Hospitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children</td>
<td>2</td>
<td>20</td>
<td>11</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>Adults</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Elderly</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>All Ages</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Any Ward*</td>
<td>2</td>
<td>20</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Children</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Adults</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Elderly</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>All Ages</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

CDI per 1000 admissions:

- Children: 24
- Adults: 2
- Elderly: 76
- All Ages: 9

CDI incidence density (per 10,000 patient-days):

- Children: 24
- Adults: 2
- Elderly: 76
- All Ages: 9

CDI cumulative incidence (per 100,000 population per year):

- Children: 24
- Adults: 2
- Elderly: 76
- All Ages: 9

* Ward-onset.
† Percentage of data available by age group within category.
Table 3. CDI incidence rates meta-estimates by category, age group, and region

<table>
<thead>
<tr>
<th>Table 3: CDI incidence rates meta-estimates by category, age group, and region</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDI Category</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>HO-HC</td>
</tr>
<tr>
<td>Children</td>
</tr>
<tr>
<td>Adults</td>
</tr>
<tr>
<td>Elderly</td>
</tr>
<tr>
<td>All ages</td>
</tr>
<tr>
<td>Ward-onset</td>
</tr>
<tr>
<td>IM</td>
</tr>
<tr>
<td>HCF</td>
</tr>
<tr>
<td>All ages</td>
</tr>
<tr>
<td>ICU</td>
</tr>
<tr>
<td>Children</td>
</tr>
<tr>
<td>Adults</td>
</tr>
<tr>
<td>Elderly</td>
</tr>
<tr>
<td>All ages</td>
</tr>
<tr>
<td>Ward-onset</td>
</tr>
<tr>
<td>IM</td>
</tr>
<tr>
<td>HCF</td>
</tr>
<tr>
<td>All ages</td>
</tr>
<tr>
<td>LTCF</td>
</tr>
<tr>
<td>Children</td>
</tr>
<tr>
<td>Adults</td>
</tr>
<tr>
<td>Elderly</td>
</tr>
<tr>
<td>All ages</td>
</tr>
<tr>
<td>Ward-onset</td>
</tr>
<tr>
<td>IM</td>
</tr>
<tr>
<td>HCF</td>
</tr>
<tr>
<td>All ages</td>
</tr>
</tbody>
</table>

Note: The data in the table represent meta-estimates of CDI incidence rates per 1000 admissions and incidence density per 10 000 patient-days, categorized by CDI category, age group, and region. The estimates are derived from various studies and are presented with 95% confidence intervals.
Table 3. Continued

<table>
<thead>
<tr>
<th>CDI Category</th>
<th>Age Group</th>
<th>N</th>
<th>IR (95% CI)</th>
<th>N</th>
<th>IR (95% CI)</th>
<th>N</th>
<th>IR (95% CI)</th>
<th>N</th>
<th>IR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>North America</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Western Pacific</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Children</td>
<td>5</td>
<td>8.878 (5.67-13.88)</td>
<td>4</td>
<td>9.58 (5.96-15.41)</td>
<td>1</td>
<td>5.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adults</td>
<td>9</td>
<td>19.95 (11.57-34.38)</td>
<td>6</td>
<td>25.45 (12.13-45.33)</td>
<td>3</td>
<td>14.36 (6.98-31.35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elderly</td>
<td>6</td>
<td>74.41 (37.74-146.70)</td>
<td>3</td>
<td>83.67 (33.23-210.65)</td>
<td>3</td>
<td>65.69 (18.73-230.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All ages</td>
<td>14</td>
<td>34.37 (20.82-63.82)</td>
<td>6</td>
<td>31.75 (16.80-60.32)</td>
<td>7</td>
<td>16.57 (8.60-31.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>CA-CDI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Children</td>
<td>8</td>
<td>15.27 (7.72-30.192)</td>
<td>4</td>
<td>23.35 (15.08-36.14)</td>
<td>3</td>
<td>10.63 (3.04-37.17)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adults</td>
<td>7</td>
<td>78.95 (47.70-130.67)</td>
<td>3</td>
<td>89.57 (51.51-155.73)</td>
<td>3</td>
<td>77.25 (41.07-145.32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elderly</td>
<td>6</td>
<td>323.32 (217.82-479.91)</td>
<td>3</td>
<td>502.04 (331.51-760.31)</td>
<td>3</td>
<td>272.44 (159.16-466.35)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All ages</td>
<td>15</td>
<td>41.94 (30.30-58.05)</td>
<td>4</td>
<td>53.52 (24.08-118.98)</td>
<td>7</td>
<td>42.5 (29.94-66.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>ICD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Children</td>
<td>4</td>
<td>5.45 (2.65-11.23)</td>
<td>4</td>
<td>5.45 (2.65-11.23)</td>
<td>4</td>
<td>5.45 (2.65-11.23)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adults</td>
<td>6</td>
<td>83.62 (64.72-108.04)</td>
<td>6</td>
<td>83.62 (64.72-108.04)</td>
<td>6</td>
<td>83.62 (64.72-108.04)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elderly</td>
<td>8</td>
<td>219.29 (187.33-256.69)</td>
<td>7</td>
<td>242.64 (207.01-284.39)</td>
<td>8</td>
<td>29.05 (21.61-37.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All ages</td>
<td>8</td>
<td>49.36 (34.01-71.75)</td>
<td>6</td>
<td>59.91 (43.66-82.19)</td>
<td>2</td>
<td>32.70-23.60</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The cumulative incidence of CDI per 100,000 population is shown for different age groups and regions. The incidence rates are calculated based on the number of cases divided by the population at risk for each age group and region. The rates vary significantly across different settings, with higher rates observed in elderly populations and in healthcare settings such as ICUs and hospitals. The incidence in children is generally lower, but recent studies have shown increasing trends in younger populations. The data highlights the importance of surveillance and targeted interventions to control CDI, especially in vulnerable populations and in settings with high patient turnover and risk factors for CDI.
ing with less severe disease, and with less prior exposure to antimicrobials [121]. Further knowledge of these factors and on the links with health care setting is important to develop strategies for lowering the rate of CDI in these distinct populations.

To our knowledge, this is the largest meta-analysis of CDI incidence data to date obtained data using publications from a 10-year period to identify a substantial amount of data. This comprehensive review allowed us to estimate CDI rates for a range of metrics across settings. Through the exclusion of studies that reported rates from outbreaks, our estimates provide a baseline epidemiological rate of the burden associated with CDI. However, there are limitations to our review and meta-analysis. One limitation is the low number of reports from several countries, preventing a truly global picture of CDI rates. Though this could partially be influenced by our inclusion criteria (peer-reviewed articles in English and Spanish), we added to the global reach of our search by including data from publically available surveillance reports. Other sources of data, beyond the scope of our study, including short bulletins and publications in other languages need to be systematically assessed. We also identified a limited number of reports of CDI for some clinical settings and case definitions (such as LTCF and community), which limits the estimation of the impact of C. difficile on these diverse populations. We used data in studies published between 2005 and 2015 to include a wide range of relevant reports. However, rates in the early years of these publications (ranging from 1993 until 2015) may be less representative of the current epidemiology of CDI due to changes in rates over time. In addition, some recent data on CDI incidence from 2015 may have not been included in our estimates because our search criteria might not have captured studies during this year. Finally, results from meta-analyses are impacted by the characteristics of the primary studies, which may include variations in case definitions, testing methods, and case identification. We aimed to limit these variations in this study through our inclusion criteria and analysis, yet, heterogeneity remains.

CONCLUSIONS

This study provides baseline epidemiological CDI rates and uncertainty ranges for a variety of settings highlighting the high global burden of disease associated with C. difficile. Our results also emphasize the need for the application of standardized surveillance recommendations, the reporting of age-specific incidence rates, and research in countries were sustainable surveillance by national or regional authorities is not possible to obtain a fuller picture of the burden of CDI. Improving surveillance and case ascertainment rates globally is important to characterize, to understand the burden of disease associated with C. difficile, and to implement effective prevention and infection control measures.

Acknowledgements: We are thankful to University of Edinburgh, Medical Librarian, Ms. Marshall Dozier for her assistance in developing search strategies and to investigators who kindly provided data for meta-analyses. Editorial assistance with the preparation of the manuscript was provided by a professional medical writer, Nicola Truss PhD of inScience Communications, Springer Healthcare, UK.

Funding: This work was supported financially by Sanofi Pasteur.

Authorship contributions: EB, HN, MHK, and HC conceived and designed the study. EB, TS, CL, JB, and IL conducted the study. EB analysed the data. EB, CL, JB, IL, CW, HC, MHK, and HN interpreted the data. EB and MHK wrote the first draft and are accountable for the accuracy and integrity of the contents in the manuscript. All authors provided critical revisions of manuscript for the intellectual content. All authors provided approval of the final draft of manuscript.

Competing interests: MHK is an employee of Sanofi Pasteur. EB, TS, CL, IL, JB, CW have no relevant conflict of interest to declare. HC and HN received grants from Sanofi Pasteur. HC is the Editor-in-Chief of the Journal of Global Health. All authors have completed the ICMJE uniform disclosure form at http://www.icmje.org/coi_disclosure.pdf (available upon request from the corresponding author), and declare no other conflicts of interest.

Additional material
Online Supplementary Document

REFERENCES

37. Bouza E, Rodríguez-Créixems M, Alcalá L, Marin M, De Ega E, Breaos J, et al. Is Clostridium difficile infection an increas

REFERENCES

Global burden of C. difficile infections

REFERENCES

REFERENCES

115 Kassavin DS, Pham D, Pascarella L, Yen-Hong K, Goldfarb MA. The combined use of proton pump inhibitors and antibiotics as risk factors for Clostridium difficile infection. Healthc Infect. 2013;18:76-9. doi:10.1017/HII12039

REFERENCES

Global burden of C. difficile infections

REFERENCES

REFERENCES

