The Genome of a Pathogenic Rhodococcus: Cooptive Virulence Underpinned by Key Gene Acquisitions

Citation for published version:

Digital Object Identifier (DOI):
10.1371/journal.pgen.1001145

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
PLoS Genetics

Publisher Rights Statement:
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
The Genome of a Pathogenic *Rhodococcus*: Cooptive Virulence Underpinned by Key Gene Acquisitions

Michal Letek¹, Patricia González¹,², Iain MacArthur¹,²,³, Héctor Rodríguez¹,², Tom C. Freeman⁴, Ana Valero-Rello¹,², Mónica Blanco¹,², Tom Buckley⁵, Inna Cherevach⁵, Ruth Fahy⁶, Alexia Hapeshi¹, Jolyon Holdstock⁷, Desmond Leadon², Jesús Navas⁵, Alain Ocampo², Michael A. Quail⁵, Mandy Sanders⁵, Mariela M. Scotti¹,⁹, John F. Prescott⁵, Ursula Fogarty², Wim G. Meijer⁶, Julian Parkhill⁵, Stephen D. Bentley⁵, José A. Vázquez-Boland¹,¹⁰

¹ Microbial Pathogenesis Unit, Centres for Infectious Diseases and Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, United Kingdom, ² Irish Equine Centre, Johnstown, Naas, Ireland, ³ Department of Pathobiology, University of Guelph, Guelph, Canada, ⁴ Division of Genetics and Genomics, Roslin BioCentre, University of Edinburgh, Edinburgh, United Kingdom, ⁵ Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom, ⁶ School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin, Ireland, ⁷ Oxford Gene Technology, Begbroke Science Park, Oxford, United Kingdom, ⁸ Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain, ⁹ Departamento de Bioquímica y Biología Molecular IV, Universidad Complutense, Madrid, Spain, ¹⁰ Grupo de Patogenómica Bacteriana, Universidad de León, León, Spain

Abstract

We report the genome of the facultative intracellular parasite *Rhodococcus equi*, the only animal pathogen within the biotechnologically important actinobacterial genus *Rhodococcus*. The 5.0-Mb *R. equi* 103S genome is significantly smaller than those of environmental rhodococci. This is due to genome expansion in nonpathogenic species, via a linear gain of paralogous genes and an accelerated genetic flux, rather than reductive evolution in *R. equi*. The 103S genome lacks the extensive catabolic and secondary metabolic complement of environmental rhodococci, and it displays unique adaptations for host colonization and competition in the short-chain fatty acid–rich intestine and manure of herbivores—two main *R. equi* reservoirs. Except for a few horizontally acquired (HGT) pathogenicity loci, including a cytoadhesive pilus determinant (*rpl*) and the virulence plasmid *vap* pathogenicity island (PAI) required for intramacrophage survival, most of the potential virulence-associated genes identified in *R. equi* are conserved in environmental rhodococci or have homologs in nonpathogenic *Actinobacteria*. This suggests a mechanism of virulence evolution based on the cooption of existing core actinobacterial traits, triggered by key host niche–adaptive HGT events. We tested this hypothesis by investigating *R. equi* virulence plasmid-chromosome crosstalk, by global transcription profiling and expression network analysis. Two chromosomal genes conserved in environmental rhodococci, encoding putative chorismate mutase and anthranilate synthase enzymes involved in aromatic amino acid biosynthesis, were strongly coregulated with *vap* PAI virulence genes and required for optimal proliferation in macrophages. The regulatory integration of chromosomal metabolic genes under the control of the HGT–acquired plasmid PAI is thus an important element in the cooptive virulence of *R. equi*.

Editor: Josep Casadesús, Universidad de Sevilla, Spain

Received April 8, 2010; Accepted August 31, 2010; Published September 30, 2010

Copyright: © 2010 Letek et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by the Horserace Betting Levy Board, UK (JAVB); the National Development Plan and Research Stimulus Fund, Ireland (Irish Equine Centre); and partially by a grant from the Grayson-Jockey Club Research Foundation, USA (JAVB). MMS is the holder of a “Ramon y Cajal” fellowship, Spain; IM was partially supported by the Natural Science and Engineering Research Council of Canada; and AH is the recipient of a PhD studentship from the Biotechnology and Biological Sciences Research Council, UK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: v.boland@ed.ac.uk

Introduction

Rhodococcus bacteria belong to the mycolic acid-containing group of actinomycetes together with other major genera such as *Corynebacterium*, *Mycobacterium* and *Nocardia* [1]. The genus *Rhodococcus* comprises more than 40 species widely distributed in the environment, many with biotechnological applications as diverse as the biodegradation of hydrophobic compounds and xenobiotics, the production of acrylates and bioactive steroids, and fossil fuel desulfurization [2]. The rhodococci also include an animal pathogen, *Rhodococcus equi*, the genome of which we report here.

R. equi, a strictly aerobic cocobacillus, is a multihost pathogen that causes purulent infections in various animal species. In horses, it is the etiological agent of “rattles”, a lung disease with a high mortality in foals [3]. *R. equi* lives in soil, uses manure as growth substrate, and is transmitted by the inhalation of contaminated soil dust or the breath of infected animals. Pathogen ingestion may result in mesenteric lymphadenitis and typhlocolitis, and multiplication in the fecal content of the intestine contributes to dissemination in the environment. *R. equi* causes chronic pyogranulomatous adenitis in pigs and cattle and severe opportunistic infections in humans, often in HIV-infected and immunosuppressed patients. Human rhodococcal lung infection
Rhodococcus is a prototypic genus within the Actinobacteria, one of the largest microbial groups on Earth. Many of the ubiquitous rhodococcal species are biotechnologically useful due to their metabolic versatility and biodegradative properties. We have deciphered the genome of a facultatively parasitic Rhodococcus, the animal and human pathogen R. equi. Comparative genomic analyses of related species provide a unique opportunity to increase our understanding of niche-adaptive genome evolution and specialization. The environmental rhodococci have much larger genomes, richer in metabolic and degradative pathways, due to gene duplication and acquisition, not genome contraction in R. equi. This probably reflects that the host-associated R. equi habitat is more stable and favorable than the chemically diverse but nutrient-poor environmental niches of nonpathogenic rhodococci, necessitating metabolically more complex, expanded genomes. Our work also highlights that the recruitment or cooption of core microbial traits, following the horizontal acquisition of a few critical genes that provide access to the host niche, is an important mechanism in actinobacterial virulence evolution. Gene cooption is a key evolutionary mechanism allowing rapid adaptive change and novel trait acquisition. Recognizing the contribution of cooption to virulence provides a rational framework for understanding and interpreting the emergence and evolution of microbial pathogenicity.

Apart from the key role of the plasmid vap PAI, little is known about the pathogenic mechanisms of R. equi. We investigated the biology and virulence of this pathogenic actinomycete by sequencing an analysing the genome of strain 103S, a prototypic clinical isolate. With its dual lifestyle as a soil saprotroph and intracellular parasite, R. equi offers an attractive model for evolutionary genomics studies of niche breadth in Actinobacteria. The comparative genomic analysis of R. equi and closely related environmental rhodococci reported here provides insight into the mechanisms of niche-adaptive genome plasticity and evolution in this bacterial group. The R. equi genome also provides fundamental clues to the shaping of virulence in Actinobacteria.

Results/Discussion

General genome features

The genome of R. equi 103S consists of a circular chromosome of 5,043,170 bp with 4,525 predicted genes (Figure S1) and a circular virulence plasmid of 80,610 bp containing 73 predicted genes [8]. Overall G+C content is 68.76%. Table 1 summarizes the main features of the R. equi genome.

Comparative analysis. Orthology analyses (Figure S1) and multiple alignments (Figure 1A) with representatively published actinobacterial genomes showed the highest degree of homology and synteny conservation with Rhodococcus jostii RHA1 [10]. Next in overall genome similarity was Nocardia farcinica, followed by Mycobacterium spp., whereas Streptomyces coelicolor appeared much more distantly related, consistent with 16S rRNA-derived actinobacterial phylogenies. Some phylogenetic studies have been inconclusive, positioning R. equi either with the nocardiae or rhodococci [1,11]. Our genome-wide comparative and phylogenomic analyses indicate this species is a bona fide member of the genus Rhodococcus (Figure 1, Figure S2).

Interestingly, R. equi has a substantially smaller genome than the soil-restricted versatile biodegrader R. jostii RHA1 (9.7 Mb) [10] and two recently sequenced environmental rhodococci, Rhodococcus erythropolis PR4 (8.69 Mb) and Rhodococcus opacus B4 (8.17 Mb) (see http://www.nite.go.jp/index-e.html). The rhodococcal genomes also differ in structure: R. equi and R. erythropolis have covalently closed chromosomes, whereas those of R. jostii and R. opacus are linear (Table 1, Figure S2). Chromosome topology does not seem to correlate with phylogeny, as R. equi and R. erythropolis belong to different subclades, and the latter is the prototype of the

Table 1. General features of the genomes of R. equi 103S and the environmental species, R. jostii RHA1.

<table>
<thead>
<tr>
<th>Replicon</th>
<th>Size (bp)</th>
<th>Topology</th>
<th>GC %</th>
<th>No. of CDS</th>
<th>Pseudo-genes</th>
<th>Coding %</th>
<th>Coding density (average CDS length in bp)</th>
<th>rRNA clusters</th>
<th>tRNAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. equi 103S Chromosome</td>
<td>5,043,170</td>
<td>Circular</td>
<td>68.82</td>
<td>4,525</td>
<td>14</td>
<td>90.3</td>
<td>0.89 (1009)</td>
<td>4</td>
<td>51</td>
</tr>
<tr>
<td>pVAPA1037</td>
<td>80,610</td>
<td>Circular</td>
<td>64.61</td>
<td>73</td>
<td>8*</td>
<td>72.7</td>
<td>0.81 (901)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>R. jostii RHA1 Chromosome</td>
<td>7,804,765</td>
<td>Linear</td>
<td>67.52</td>
<td>7,211</td>
<td>5</td>
<td>91.2</td>
<td>0.92 (987)</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>pRH1</td>
<td>1,123,075</td>
<td>Linear</td>
<td>65.05</td>
<td>1,146</td>
<td>2</td>
<td>82.1</td>
<td>1.02 (805)</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>pRH2</td>
<td>442,536</td>
<td>Linear</td>
<td>64.01</td>
<td>454</td>
<td>4</td>
<td>83.7</td>
<td>1.03 (816)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pRH3</td>
<td>332,361</td>
<td>Linear</td>
<td>64.91</td>
<td>334</td>
<td>0</td>
<td>84.9</td>
<td>1.00 (845)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

See http://www.nite.go.jp/index-e.html and Table S3 for data from two other sequenced genomes from environmental Rhodococcus spp., R. erythropolis PR4 and R. opacus B4 (released online by NITE, the Japanese National Institute for Technology and Evaluation).

*Of which seven in the HGT vap PAI.

doi:10.1371/journal.pgen.1001145.001
involved in central and intermediate metabolism (n = 1,108) and another quarter corresponds to surface/extracellular proteins (n = 1,073). “Regulators” is the next most populated functional category (n = 464, 10.3%). After adjusting for genome size, the number of membrane-associated proteins is average, but the regulome and secretome are clearly larger than in other Actinobacteria (Figure S4A, S4B, S4C), possibly reflecting specific needs associated with the habitat diversity of R. equi, from soil and feces to the macrophage vacuole. R. equi has 25 two-component regulatory systems, more than twice as many as host-restricted Mtb [13], and more regulators as a function of genome size than S. coelicolor [12] (Figure S4B). About 29% of the genome encodes products of unknown function. This percentage rises to 44.5% for secreted products (Figure S3B), 13% of which are unique to R. equi.

Ortholog comparisons with representative closely related mycolata (R. jostii, N. farcinica and Mtb) showed R. equi to have the highest proportion of species-specific surface/extracellular proteins, consistent with its large secretome. By contrast, R. jostii RHA1 has the largest proportion of unique metabolic genes (Figure S5), consistent with its catabolic versatility [10]. Indeed, R. jostii RHA1 is unique among Actinobacteria in its unusual overrepresentation of metabolic genes (Figure S4D).

Expansive evolution of rhodococcal genomes

The 5.0 Mb R. equi chromosome contains relatively few pseudogenes (n = 14, Table 1), most associated with horizontally acquired regions (n = 10, including two degenerate DNA mobility genes), consistent with a slow “core” gene decay rate. This suggests that the differences in chromosome size between rhodococci result mainly from genome expansion in environmental species rather than contraction in R. equi.

Gene duplication versus HGT. We analyzed the paralogous families and local DNA compositional biases to assess the impact of gene duplication (GD) and horizontal gene transfer (HGT) in rhodococcal genome evolution (Tables S1, S2). As expected, both contributed to the chromosome size increase, but with different patterns: linear for GD (i.e. similar percentage of duplicated genes, 32.1, 33.2 and 33.6%, in R. equi, R. erythropolis and R. jostii, respectively), and exponential for HGT (9.5, 14.8 and 19.5%, respectively) (Figure 2). A possible explanation is that HGT involves the simultaneous acquisition of several genes (mean no. of genes per HGT “island” in rhodococci, 8.2 to 10.6). The probability of HGT in rhodococci also increases with chromosome size, as indicated by the mean frequencies of HGT events (1 every 87.0, 67.0 and 54.2 genes in R. equi, R. erythropolis and R. jostii, respectively) (Table S1). Moreover, recently acquired HGT islands, mostly containing “non-adapted” DNA dispensable in the short term in the new host species, are likely to evolve more freely and to tolerate further HGT insertions. This may be the case for two large chromosomal HGT “archipelagos” of ≈90 and 190 Kb in 103S, which probably were generated by an accumulation of HGT events. The mosaic structure of these HGT regions and the diversity of source species, as indicated by reciprocal BLASTP best-hit analysis, suggest that they are a composite of several independent HGT events rather than the result of a single “en-block” acquisition (Figures S1 and S6).

Rhodococcal genome expansion also involves a linear increase in the number of paralogous families (with larger numbers of paralogs per family) and non-duplicated genes (Table S2), and an increasing number of unique hypothetical proteins (e.g. 164 in R. equi, 408 in R. jostii). Thus, genome expansion in rhodococci involves greater functional redundancy, diversity and innovation.

About 20% of R. equi HGT islands (Figure S1) are located close to tRNA genes, suggesting the involvement of phages or
integrative plasmids in their acquisition. However, almost no DNA mobilization genes or remnants thereof were found associated with HGT regions, suggesting that the lateral gene acquisitions in the *R. equi* chromosome are evolutionarily ancient. Most HGT genes (52.5%) probably originated from other *Actinobacteria*, 3.5% of the best hits were from other bacteria, and 44% had no homologs in the databases. Only four integrase genes, one of them degenerate, best hits were from other bacteria, and 44% had no homologs in the databases. Only four integrase genes, one of them degenerate, and an IS1650-type transposase pseudogene were identified in the 103S chromosome. *R. equi* seems therefore to be genetically stable in terms of mobile DNA element-mediated rearrangements. DNA mobility genes —mostly associated with HGT regions and increasing in abundance with genome size—are more numerous in environmental rhodococci (Table S3). Thus, increasing genetic flux and plasticity are associated with increasing chromosome size in rhodococci.

Role of plasmids. Rhodococcal genome expansion can be largely attributed to extrachromosomal elements. *R. equi* has a single 80 Kbp circular plasmid whereas environmental rhodococci have three to five plasmids, including large linear replicons up to 1,123 Kbp in size, accounting for a substantial fraction of the genome (e.g. >20% in *R. jostii* RHA1) (Table 1, Table S3). Thus, as observed for chromosomal HGT DNA, the amount of plasmid increases exponentially with genome size. Indeed, one third of the plasmid DNA was HGT-acquired (32.4%), range 19.35–49.7 vs 14.5%, range 9.5–19.5 for the chromosomes), and plasmids may themselves be considered potentially mobilizable DNA. Rhodococcal plasmids also have a much higher density of DNA mobilization genes (Table S5), pseudogenes (Table 1), unique species-specific genes (mean 44.3±16.0% vs 3.6% to 3.6%), and niche-specific determinants (e.g. the intracellular survival tap PAI in *R. equi* [8] and 11 of the 26 peripheral aromatic clusters in *R. jostii* [10]) than the corresponding chromosomes. Rhodococcal plasmids are therefore clearly under less stringent selection and are key players in rhodococcal genome plasticity and niche adaptability.

Niche-adaptive features

Basic nutrition and metabolism. No genes with an obvious role in carbohydrate transport were identified in 103S, consistent with the reported inability of *R. equi* to utilize sugars [14], confirmed here by Phenotype MicroArray (PMA) screens [15] and growth experiments in chemically defined mineral medium (MM) (Figure S7A). By contrast, *R. jostii*, *R. erythropolis* and *R. opacus* can grow on carbohydrates [16–18] and their genomes encode sugar transporters, including phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) permeases. Interestingly, the intracellular pathogens *R. equi*, *Mtb* and *Tropheryma whipplei* are the only mesophilic *Actinobacteria* lacking PTS sugar permeases (Table S4). However, *Mtb* grows on carbohydrates transported via non-PTS permeases. As the PTS is widespread in *Actinobacteria*, including nonpathogenic rhodococci and mycobacteria, the absence of PTS components in *R. equi*, *Mtb* and the genome-reduced obligate endocellular parasite *T. whipplei* probably results from gene loss.

The PMA and MM experiments showed that the only carbon sources used by *R. equi* 103S were organic acids (acetate, lactate, butyrate, succinate, malate, fumarate; but not pyruvate) and fatty acids (palmitate and the long-chain fatty acid-containing lipids Tween 20, 40 and 80) (Figure S7A). In addition to monocarboxylate and dicarboxylate transporters, the 103S genome encodes an extensive lipid metabolic network, with 36 lipases (16 of which secreted) and many fatty acid β-oxidation enzymes, with 40 acyl-CoA synthetases, 48 putative acyl-CoA dehydrogenases, and 23 enoyl-CoA hydratases/somerase. Thus, *R. equi* seems to assimilate carbon principally through lipid metabolism. A mutant in the glyoxylate shunt enzyme isocitrate lyase (REV38290) [19], required for anaplerosis during growth on fatty acids [20], has severely impaired intramacrophage replication and virulence [21], indicating that, as reported for *Mtb* [22], lipids are a major growth substrate for *R. equi* during infection in vivo.

The 103S genome encodes 21 putative amino acid/oligopeptide transporters, and PMA screens and MM growth assays confirmed that *R. equi* uses several amino acids (tryptophan, tyrosine, phenylalanine, cysteine, methionine) and dipeptides as sources of nitrogen. However, 103S also has pathways for the *de novo* synthesis of all essential amino acids, consistent with the ability of *R. equi* to grow in MM containing only an inorganic nitrogen source (Figure S7A). Thus, *R. equi* can flexibly adapt to fluctuating conditions of amino-acid availability and grow in amino acid-deficient environments, as typically encountered in the infected host by intracellular pathogens [23]. See Figure 3 for a schematic overview of *R. equi* 103S nutrition and metabolism.

Thiamine auxotrophy. *R. equi* strains cannot grow without thiamine and an analysis of the loci involved in its biosynthesis revealed that *thiaC* is absent from 103S, probably due to an HGT event affecting the *thiaCD* genes (Figure S7B, S7C, S7D). The auxotrophic mutation is probably irrelevant for *R. equi* in the intestine and manure-rich soil owing to the availability of...
microbially synthesized thiamine. Host-derived thiamine is also probably available to *R. equi* during infection.

Specialized metabolism. We investigated the nutritional and metabolic aspects of rhodococcal niche adaptation by comparing the metabolic network of *R. equi* with that of *R. jostii* RHA1, the only other rhodococcal species for which a detailed manually annotated genome is available. RHA1 originated from lindane-contaminated soil and was identified by screening for biodegradative capabilities on multiple aromatic compounds, including polychlorinated biphenyls and steroids. Not surprisingly, its genome has an abundance of aromatic degradation pathways and oxygenases involved in aromatic ring cleavage [10]. *R. equi* is also soil-dwelling but is primarily isolated from clinical specimens and manure-rich environments, involving clearly different selection criteria and habitat conditions. We used reciprocal best-match BLASTP comparisons to identify the species-specific metabolic gene complements, in which the catabolic specialization is likely concentrated. The related pathogenic Actinobacteria, *N. farcinica* (which shares a dual soil saprophytic/parasitic lifestyle with *R. equi*) and *Mtb* (quasiobligate parasite) were also included in the analyses. *R. jostii* RHA1 contains a disproportionately larger number of unique metabolic genes than *R. equi*, *N. farcinica* and *Mtb* (n = 1,260 or 47.2% of total metabolic CDS vs only 326 to 375 or 22.9 to 29.2%, respectively) (Figure S8). The oversized metabolic network of RHA1 results from an expansion in the number and gene content of paralogous families (Table S5) and nonparalogous genes (643 CDS in RHA1 vs 209 to 288). Only three of the 29 aromatic gene clusters present in *R. jostii* [10] were identified in the 103S genome.
Rhodococcus equi therefore has a much smaller metabolic network than, and essentially lacks the vast aromatic catabolome of, **R. stiit** RHA1.

R. equi resembles other environmental *Actinobacteria* in being able to produce oligopeptide secondary metabolites. The 103S genome encodes 11 large non-ribosomal peptide synthetases (NRPS), including three involved in siderophore formation (see below). The only polyketide synthase (REQ82050) is involved in the synthesis of mycolic acids. By contrast, RHA1 has 24 NRPS and seven polyketide synthases [10]. Thus, genome expansion in **R. stiit** has been accompanied by an extensive amplification of secondary metabolism.

Other metabolic traits. **R. equi** reduces nitrates to nitrates [14] through a NarGHIJ nitrate reductase (REQ04200-30). There is also a NirBD nitrite reductase (REQ32900-30), a NarK nitrate/nitrite transporter (REQ32940) and a putative nitric oxide (NO) reductase (REQ03280) [Figure 3]. nirBD is conserved in environmental rhodococci whereas narGHIJ and REQ3280 are not, indicating that **R. equi** is potentially well equipped for anaerobic respiration via denitrification, a useful trait for survival in microaerobic environments, as typically found in necrotic pyogranulomatous tissue [24], the intestine or manure. A narG mutation has been shown to attenuate **R. equi** virulence in mice [25], consistent with the bacteria encountering hypoxic conditions during infection, although this may also reflect defective nitrate assimilation in vivo [26].

Intriguingly, **R. equi** possesses a D-xylulose 5-phosphate (X5P)/D-fructose 6-phosphate (F6P) phosphoketolase (Xfrp, REQ18880), the key enzyme of the “Bifidobacterium” F6P shunt, which converts glucose into acetate and pyruvate and is the main hexose fermentation pathway in bifidobacteria [27]. Unexpected fermentative metabolism has been detected in some strictly aerobic bacteria, such as *Pseudomonas* and *Arthrobacter* [28], but no NAD+ (anaerobic)-dependent lactate dehydrogenase or other obvious pyruvate fermentation enzyme was identified in 103S. As **R. equi** does not use sugars, a catabolic role for the F6P shunt is possible only if fed via gluconeogenesis/glycogenolysis. Alternatively, the F6P shunt may function in reverse (anabolic) mode in **R. equi**, in parallel to gluconeogenesis, directing excess acetate and glyceraldehyde-3-phosphate (GAP), generated from lipid metabolism, into the pentose phosphate pathway (PPP) (Figure 3). **R. equi** 103S has a lutABC operon (REQ16290-320), recently implicated in lactate utilization via pyruvate in *Bacillus* [29].

Alkaline optimal pH. **R. equi** tolerates a wide pH range, but growth is optimal between pH 8.5 and 10 (Figure S9). This alkaline pH is similar to that of untreated manure, potentially providing a selective advantage for colonization of the farm habitat. The 103S genome encodes a urease (REQ15360-410), an arginine deiminase (REQ18880), an AmiE/F aliphatic amidase/formamidase (REQ26520, next to REQ26530 encoding a UreL-like urea/amidase transporter in an HGT island) and other amidases which, by releasing ammonia [30], may favor **R. equi** growth in acidic host habitats such as the macrophage vacuole (pH≈5.5), the airways or the intestine (typical pH values in horse, 5.3–5.7 and 6.4–6.7, respectively [31,32]).

Stress tolerance. Like other soil bacteria [33], **R. equi** encodes a large number of σ factors (21 σ7), and stress proteins (e.g. eight universal stress family proteins [Usp]), five cold shock proteins, three heat shock proteins and several Clp proteins. It also synthesizes the ppGpp alarmone involved in adaptation to amino acid starvation [34]. **R. equi** is transmitted by soil dust in hot, dry weather [3] and must therefore resist low water availability and desiccation-associated oxidative damage. There are two ABC glycerine betaine/choline transporters (REQ00540-70 and REQ14620-60), an aquaporin (REQ29550), and genes for the synthesis of an exopolysaccharide (see below) and the osmolytes ectoine (ectABC, REQ07580), hydroxyectoine (ectD, REQ07530) and trehalose (REQUEST7400-30), potentially important for osmoreprotection and water stress tolerance. **R. equi** is well equipped to face oxidative stress, with four catalases, four superoxide dismutases, six alkyl hydroperoxide reductases and two thiol peroxidases. It also synthesizes the unique actinobacterial redox-storage thiol compound, mycothiol [35], the antioxidant thioredoxin (REQ7340-50), and the protein-repairing peptide-methionine sulfoxide reductases MsxA (REQ10570) and MsxB (REQ29060) [36]. Three homologs of the virulence-associated mycobacterial histone-like protein Lsr2 [37] (one plasmid srap PAI-encoded [8], REQ30140 and 03900 chromosomal), and a Dps family protein [38] (REQ14900, cotranscribed with REQ14890 encoding a CsdA-like putative stress protein [39]), may protect against oxidative DNA damage. NO reductase REQ03280 and a putative NO dioxygenase (REQUEST10890) may confer resistance to nitrosative stress (Figure 3).

“Innate” drug resistance. **R. equi** 103S showed a degree of resistance to many antibiotics in the PMA screens, including 13 aminoglycosides, nine sulfonamides, six tetracyclines, 10 quinolones, 18 β-lactams and chloramphenicol. Standard susceptibility tests confirmed the resistance of 103S to a number of clinically relevant antibiotics (Table S7). This correlates with the presence in 103S of an array of antibiotic resistance determinants, including five aminoglycoside phosphotransferases, 10 β-lactamases and four multidrug efflux systems. Except for β-lactamase (REQUEST6610), none of the resistance genes are associated with HGT regions or DNA mobility genes, suggesting they are ancient traits selected to confer resistance to naturally occurring antimicrobials rather than recent acquisitions associated with the medical use of antibiotics. Soil organisms tend to carry multiple drug resistance determinants [40], and homologs of most **R. equi** resistance genes are present in the genomes of environmental rhodococci, at the same chromosomal location in some cases (Figure S10).

Virulence. Potential virulence-associated determinants were identified in silico based on (i) homology with known microbial virulence factors, (ii) literature mining for Mtb virulence mechanisms, (iii) automated genome-wide screening for virulence-associated motifs [41] and (iv) systematic inspection of HGT genes, the secretome, and of genes shared with pathogenic actinomycetes but absent from nonpathogenic species.

Mycobacterial gene families. The 103S genome harvests three complete mce (mammalian cell entry) clusters. Despite their name, the mechanisms by which these clusters contribute to mycobacterial pathogenesis remain unclear [42]. The mce2 operon from **R. stiit** and its homolog mce2 in **R. equi** have recently been shown to mediate cholesterol uptake, consistent with emerging evidence that mce clusters constitute a new subfamily of ABC importers [43,44]. The recently reported lack of effect of an mce2 mutation on **R. equi** survival in cultured macrophages [43] does not exclude a role in cholesterol utilization in vivo. The mce3 operon (REQUEST01750-30), and the peptidoglycan-modifying gene papP, is likely to play a role in cell wall biogenesis [45]. The mce4 operon (REQUEST01750-30) and the papP, is likely to play a role in cell wall biogenesis [46]. The PE and PPE proteins of *Mycobacterium tuberculosis* (Mtb) [47] for example, are thought to be involved in cell wall biogenesis [46]. The mce3 operon (REQUEST01750-30) and the peptidoglycan-modifying gene papP, is likely to play a role in cell wall biogenesis [48]. The PE and PPE proteins of *Mycobacterium tuberculosis* (Mtb) [49], for example, are thought to be involved in cell wall biogenesis [47]. The PE and PPE proteins of *Mycobacterium tuberculosis* (Mtb) [49], for example, are thought to be involved in cell wall biogenesis [47]. The PE and PPE proteins of *Mycobacterium tuberculosis* (Mtb) [49], for example, are thought to be involved in cell wall biogenesis [47].

Potential virulence-associated determinants were identified in silico based on (i) homology with known microbial virulence factors, (ii) literature mining for Mtb virulence mechanisms, (iii) automated genome-wide screening for virulence-associated motifs [41] and (iv) systematic inspection of HGT genes, the secretome, and of genes shared with pathogenic actinomycetes but absent from nonpathogenic species.
Mtb ESX clusters, and to the single ESX cluster present in Corynebacterium diphtheriae. ESX loci encode two small proteins, ESAT-6 (REQ23460) and CFP-10 (REQ35440), and their type VII secretion apparatus, which also mediates the export of PE and PPE proteins. ESAT-6 and CFP-10 form heterodimeric complexes and are major T-cell antigens and key virulence factors in Mtb [48].

R. equi possesses six \(mmpL \) genes, encoding members of the “mycobacterial membrane protein large” family of transmembrane proteins, which are involved in complex lipid and surface-exposed polypeptide secretion, cell wall biogenesis and virulence [49]. There are also four Fbp/antigen 85 homologs (REQ01990, 02000, 08890, 20840), involved in Mtb virulence as fibronectin-binding proteins and through their mycolyltransferase activity, required for cord factor formation and integrity of the bacterial envelope [50].

Cytoadhesive pili. A nine-gene HGT island (REQ18350-430) encodes the biogenesis of Flp-subfamily type IVb pili, recently described in Gram-negative bacteria [51]. We confirmed the presence of pilus appendages in 103S (Figure 4). Gene deletion and complementation analysis demonstrated that the identified R. equi pili (Rpl) mediated attachment to macrophages and epithelial cells (P. Gonzalez et al., manuscript in preparation). The rpl island is absent from environmental rhodococci and is unrelated to the pilus determinants recently identified in Mtb and C. diphtheriae [52,53].

Other putative virulence factors. R. equi is thought to produce capsular material [7,54], and an HGT region encompassing REQ02980-780 contains genes potentially responsible for extracellular polysaccharide synthesis. Two other HGT islands encode sortases, transpeptidases that attach surface proteins covalently to the peptidoglycan and which are important for virulence in Gram-positive bacteria [55]. Both st islands encode the putative substrates for the sortases (secreted proteins of unknown function) (Figure S11B).

Several secreted products are putative membrane-damaging or lipid-degrading factors, including a transmembrane protein with a putative hemolysin domain (REQ21290), three cholesterol oxidases (REQ42750, REQ26300, and REQ43910/ChoE [56]), four “cutinases”/serine esterases (REQ00490, REQ23810, REQ06540, REQ60600) with potential phospholipase A activity [57], and 16 lipases. REQ43990 encodes a secreted lipoprotein homologous to MBP70 and MPB83, two major mycobacterial antigens strongly expressed in Mycobacterium bovis BCG [58]. The REQ43990 product has a FAS1/BigH3 domain involved in cell adhesion via integrins [59]. There are also homology of two mycobacterial cytoadhesins, the heparan sulfate-binding hemagglutinin HbhA (Rx0475) involved in Mtb dissemination (REQ30170), and the multifunctional histone-like/laminin- and glycosaminoglycan-binding protein Lhp/Hlp (REQ31340) [60] (Figure 3).

Iron is essential for microbial growth and the ability to acquire ferric iron from the host is directly related to virulence. Two NRPS, Rbt1/IupS (bimodular, REQ08140-60) and IupU (REQ23810), are involved in the formation of catecholic siderophores [61] or “rhequibactins”. A third NRPS homologous to Mycobacterium smegmatis Fxb (REQ07630) may be involved in the formation of an oligopeptide ferriexochelin-like extracellular siderophore. This “rhequichelin” is probably transported by the iupABC (REQ24080-100)-encoded putative siderophore ABC permease [61], homologous to the M. smegmatis FxuABC ferriexochelin transporter [62] (Figure 3). The redundancy of iron acquisition systems may explain the lack of effect on virulence of individual iupU, rbt1/iupS and iupABC mutations [61].

Virulence gene acquisition versus cooption. Only a few species-specific putative virulence loci were found in the 103S
genome, all in HGT islands (e.g. the plasmid vap PAI or the chromosomal rpl locus). Most (≈90%) of the potential virulence-related determinants identified in R. equi were present in the environmental Rhodococcus spp. and/or had homologs in nonpathogenic Actinobacteria (Table 2, Table S8). These included orthology of many experimentally-determined Mtb virulence genes, most of which (~84%) are conserved among nonpathogenic mycobacteria or have close homologs in environmental actinomycetes (Table S9). The case of the mce, ESX, and PE/PPE loci is illustrative. Initially thought to be Mycobacterium-specific virulence traits, members of these multigene families are present in R. equi and in nonpathogenic rhodococci (Table S8), consistent with growing evidence that they are actually widely distributed among high-G+C gram-positives, whether environmental or pathogenic [42,63,64]. Notwithstanding that some of the unknown function genes of the 103S genome may encode novel, previously uncharacterized pathogenic traits, these observations are consistent with a scenario in which R. equi virulence largely involves the "appropriation" or cooption of core actinobacterial functions, originally selected in a non-host environment. Gene cooption (also known as preadaptation or exaptation) is a key evolutionary process by which traits that have evolved for one purpose are employed in a new context and acquire new roles, thus allowing rapid adaptive changes [65–67]. Coopitive evolution operates through critical modifications in gene expression and function [65]. These changes are particularly feasible in the larger genomes of soil bacteria, with a characteristic profusion of regulators and functionally redundant paralogs [68,69]. Without the need for major changes, stress-enduring mechanisms and other housekeeping components, such as the cell envelope mycolic acids or the bacterial metabolic network, may directly contribute to virulence by affording nonspecific resistance or by enabling the organism to feed on host components. We suggest that a few decisive niche (host)-adaptive HGT events have occurred in a direct ancestor of R. equi, such as acquisition of the plasmid vap "intramacrophage survival" PAI [8] and the rpl "host colonization" HGT island (Figure 4), triggered the rapid conversion of a "preparastatic" commensal organism into a pathogen via the cooption of preexisting bacterial functions.

Virulence plasmid–chromosome crosstalk

Based on the well-established principle that coexpression with pathogenicity determinants is a strong indicator of involvement in virulence [70,71], we sought to identify novel R. equi virulence-associated chromosomal factors through their coregulation with the plasmid virulence genes. The expression profiles of 103S and an isogenic plasmid-free derivative (103SΔvap) were compared, using a custom-designed genomic microarray and in vitro conditions known to activate (37°C pH 6.5) or downregulate (30°C pH 8.0) the virulence genes of the plasmid vap PAI [72,73]. The plasmid had little effect on the chromosome in vap gene-downregulating conditions, but significantly altered expression was observed for numerous genes in vap gene-activating conditions (n = 88 with ≥2 fold change) (Table S10). Most of the differentially expressed genes (68%) were upregulated in the presence of the plasmid. These data suggest that the virulence plasmid activates the expression of a number of chromosomal genes, but whether this upregulation involves direct, specific (potentially virulence related) interactions or incidental pleiotropic effects is unclear.

Network analysis. To define the extent and nature of the virulence plasmid-chromosome crosstalk, we subjected the microarray expression data to network analysis. Unlike classical pairwise comparisons, the network approach captures higher-order functional linkages between genes, facilitating the graphic visualization of gene interconnections. It is thus more powerful for biological inference and gene prioritization for experimental validation. Noisy data also tend to be randomly distributed in the network structure [74]. We used BioLayout Express3D, an application that constructs three-dimensional networks from microarray data by measuring the Pearson correlation coefficients between the expression profiles of every gene in the dataset. This is followed by graph clustering using the Markov Clustering (MCL) algorithm to divide the network graph into discrete modules with similar expression profiles [75]. Microarray data of 103S bacteria exposed to various combinations of temperature (20°C, 30°C and 37°C) and pH (5.5, 6.5 and 8) were included in the computations to control for the excessive weight of the variable presence/absence of plasmid and strengthen the correlation analysis.

Figure 5A shows a network representation of the functional connections detected in the R. equi transcriptome with a Pearson correlation threshold r = 0.85. The graph model grouped the virulence plasmid genes into two distinct coregulated modules or clusters: one comprised 36 of the 73 plasmid genes, almost all from the housekeeping backbone (replication and conjugal transfer functions) [8]; the other contained 15 of the 26 vap PAI genes together with a number of chromosomal genes (Table S11). The plasmid housekeeping backbone nodes clustered together outside the main regulation network, reflecting functional independence from the rest of the regulome, as would be expected from the autonomous nature of the extrachromosomal replicon (Figure 5A). This indicates that the graph structure is biologically significant and reflects actual functional relationships, validating the network model. By contrast, the vap PAI nodes were clearly embedded in the network and established multiple connections with chromosomal nodes (Figure 5A, Figure S12A), suggesting that the plasmid virulence genes have undergone a process of regulatory integration with the host R. equi genome. About half of the predicted products of the chromosomal vap PAI-coregulated cluster genes are metabolic enzymes, the others being transcriptional regulators and transporters (Table S11C). Raising the correlation threshold to a highly stringent r = 0.95 disintegrated the network graph into a multitude of discrete, unconnected subgraphs (see Dataset S2). This did not substantially alter the structure of the two plasmid

| Table 2. Bacterial groups in which homologs of potential R. equi virulence-associated genes were identified. |
|---|------------------|
| Categories | No. of genes |
| Actinobacteria (shared by pathogenic and non- | 228 |
| pathogenic spp.) | 84.75 |
| No significant match (R. equi-specific) | 25 |
| Rhodococcus (non-pathogenic spp.) | 10 |
| Mtb and/or pathogenic mycobacteria, Niocardia | 2 |
| farcinica | 0.74 |
| Chloroflexii | 2 |
| Cyanobacteria | 1 |
| Proteobacteria | 1 |
| Total | 269 |

Homology cutoff, ≥30% identity over 70% of sequence length. Mutually exclusive allocation to each category based on BLASTP best match. See Table S8 for complete list of genes.

*a*All in HGT islands, of which 76% in the virulence plasmid vap PAI.

*b*22.0% present in Mtb.

*c*50.9% of the encoded products are surface proteins/extracellular proteins.

doi:10.1371/journal.pgen.1001145.0002
gene-containing clusters, but isolated two chromosomal genes, REQ23860 and REQ23850, as the most significantly and strongly coregulated with the \textit{vap} PAI genes (Figure 5B), suggesting a direct regulatory interaction [76].

The genes from the plasmid backbone cluster were expressed constitutively in the conditions tested, whereas those from the \textit{vap} PAI-coregulated cluster responded strongly to temperature, with activation at 37°C. Chromosomal genes in this cluster, particularly REQ23860 and REQ23850, displayed the same pattern, with downregulation in 103SP at 37°C, suggesting that plasmid factors are required for their induction at high temperature (Figure S12B, Table S11B). The \textit{vap} PAI encodes two transcription factors, VirR (\textit{orf4}) and an orphan two-component regulator (\textit{orf8}) [8], both of which have been shown to influence \textit{vap} gene expression [77,78] and could be involved in the observed plasmid-mediated thermoregulation of the \textit{vap} PAI-coexpressed cluster.

REQ23860 and REQ23850 are required for efficient intracellular proliferation in macrophages. REQ23860 and REQ23850 null mutants were constructed and tested in J774 macrophages to determine whether the observed coregulation with the plasmid \textit{vap} PAI correlates with a role in virulence. The plasmidless derivative 103SP, unable to proliferate intracellularly [5], was used as an avirulent control. The two mutants had a significantly attenuated capacity to grow in macrophages, restored to wild-type levels upon complementation with the deleted genes (Figure 6), indicating that REQ23860 and REQ23850 are required for optimal intramacrophage proliferation. The mutated genes encode an AroQ (type II) chorismate mutase (CM) and a bifunctional anthranilate synthase (AS) with fused TrpE and TrpG subunits, respectively, two key metabolic enzymes catalyzing the initial committed steps in aromatic amino-acid biosynthesis. CM generates prephenate, the first intermediate in the pathway leading to phenylalanine and tyrosine, whereas AS catalyzes the first reaction in tryptophan biosynthesis [79]. Downstream at the same locus, REQ23840 encodes a prephenate dehydrogenase (Figure 7), which catalyzes the oxidative decarboxylation of prephenate to the tyrosine precursor 4-hydroxyphenylpyruvate [79]. The intracellular growth defect caused by the mutations may therefore be related to a diminished capacity for \textit{de novo} synthesis of aromatic amino acids. The \textit{R. equi} genome encodes four other CM enzymes (including one in the \textit{vap} PAI [8]) and an additional AS (bipartite, one subunit encoded in a \textit{trpECBA} operon and the other by a solitary \textit{trpG} gene elsewhere in the chromosome). Through their coregulation with the plasmid \textit{vap} PAI, the redundant REQ23850-60-encoded chorismate-utilizing enzymes may be important for \textit{R. equi} intracellular fitness and full proliferation capacity, by enhancing the \textit{de novo} supply of aromatic amino acids, which generally appear to be present at limiting concentrations in

Figure 5. Network analysis of virulence plasmid–chromosome regulatory crosstalk. (A) Integration of the virulence plasmid \textit{vap} PAI in the \textit{R. equi} regulatory network. 3D graph of the \textit{R. equi} 103S transcriptome (see text for experimental conditions) constructed with BioLayout Express3D, an application for the visualization and cluster analysis of coregulated gene networks [74,75]. Settings used: Pearson correlation threshold, 0.85; Markov clustering (MCL) algorithm inflation, 2.2; smallest cluster allowed, 3; edges/node filter, 10; rest of settings, default. Network graph viewable in Dataset S1. Each gene is represented by a node (sphere) and the edges (lines) represent gene expression interrelationships above the selected correlation threshold; the closer the nodes sit in the network the stronger the correlation in their expression profile. Note that the plasmid \textit{vap} PAI genes (red spheres) are embedded within, and establish multiple functional connections with, chromosomal nodes (see also Figure S12A) whereas those of the plasmid housekeeping backbone lie outside the main network, reflecting an independent regulatory pattern. (B) Isolated subgraph of the \textit{R. equi} transcription network obtained with \(r = 0.95\) Pearson correlation threshold, showing the coregulation of the chromosomal genes REQ23860 (putative AroQ chorismate mutase) and REQ23850 (putative TrpEG-like bifunctional anthranilate synthase) (see Figure 7) with the virulence plasmid \textit{vap} PAI genes. Color codes for nodes as indicated in (A) (spheres, \textit{vap} PAI-coregulated cluster; cubes, plasmid housekeeping backbone cluster). MCL inflation, 2.2, smallest cluster allowed, 3; rest of settings, default. See Dataset S3.

doi:10.1371/journal.pgen.1001145.g005
The in vivo replication niche of intramacrophage vacuo-residing microbial pathogens [23,80,81].

Conclusions

Somewhat counterintuitively for an organism with a dual lifestyle as a soil saprotroph and intracellular parasite, the *R. equi* genome is significantly smaller than those of environmental rhodococci. This may reflect that the main *R. equi* habitats—herbivore intestine, manure and animal tissues—provide a richer and more stable environment than the chemically diverse and probably nutrient-scarce environments of the nonpathogenic species. In nutrient-poor conditions, the simultaneous use of all available compounds as sources of carbon and energy may offer a competitive advantage, driving the selection of expanded genomes with greater metabolic versatility [10,68]. Indeed, the much larger genome of the polychlorinated biphenyl-biodegrading *R. jostii* RHA1 encodes a disproportionately large metabolic network [10], with a wider diversity of paralogous families, unique metabolic genes and catabolic pathways. The relatively small number of pseudogenes and virtual lack of DNA mobilization genes in *R. equi* suggests that this species has not experienced a sudden evolutionary bottleneck with a concomitant relaxation of selective pressure and increase in mutation fixation [82]. The “coprophilic” and parasitic lifestyle specialization of *R. equi* seems to result from a “non-traumatic” adaptive process in an organism that, despite having suffered some specific functional losses (e.g. sugar utilization, thiamine synthesis), remains an “average” soil actinomycete with a normal-sized genome under strong selection. The greater genomic complexity of the environmental *Rhodococcus* spp. may reflect a “multi-substrate” niche specialization necessarily linked to the strict selection criteria—for unusual metabolic versatility—under which these species are generally isolated, [10].

Our analyses show that genome expansion in the environmental rhodococci has involved a linear gain of paralogous genes and an accelerated pattern of gene acquisition through HGT and extrachromosomal replicons, which evolve more rapidly and clearly play a critical role in rhodococcal niche specialization.

The lipophilic, asaccharolytic metabolic profile and capacity for assimilating inorganic nitrogen may be key traits for proliferation in herbivore intestine and feces, which are rich in volatile fatty acids [3], and in the macrophage vacuole and chronic pyogranuloma, presumably poor in amino acids and rich in membrane-derived lipids [20,23]. The potential for anaerobic respiration via denitrification may be critical for survival in the anoxic intestine or, as suggested for *Mtb* [83,84], in necrotic granulomatous tissue. The inability to use sugars, unique among related actinomycetes, may confer a competitive advantage in the intestine and feces, dominated by carbohydrate-fermenting microbiota generating large amounts of short-chain fatty acids, which *R. equi* use as main carbon source. Alkalophily is probably an advantage in fresh manure, a major *R. equi* reservoir. *R. equi* is also well equipped to survive desiccation, important for dustborne dissemination in hot, dry weather, when rhodococcal foal pneumonia is transmitted [3,4].

R. equi infections are notoriously difficult to treat due to the intracellular localization of the pathogen, compounded by a lack of susceptibility to antibiotics (e.g. penicillins, cephalosporins, sulfamides, quinolones, tetracyclines, clindamycin, and chloramphenicol) (Table S7 and refs. therein). With its panoply of drug resistance determinants, the 103S genome illustrates how naturally selected resistance traits, typically abundant in soil organisms, may have an important impact on the clinical management of microbial infections [40].

Finally, our analyses suggest that the appropriation of preexisting core actinobacterial components and functions are key events in the evolution of rhodococcal virulence. Although the underlying notion may be intuitively apparent when considering, for example, the contribution of housekeeping genes to bacterial virulence [85], here we are identifying it specifically as “gene cooption”, a key mechanism enabling rapid adaptive evolution and the emergence of new traits [63–67]. Underpinned by a few critical “host niche-accessing” HGT events, such as acquisition of the “intracellular survival” plasmid *top* PAI or the “cytoadhesin” chromosomal spl locus, this evolutionary mechanism is likely to have facilitated the rapid conversion of what was probably an
animal-associated commensal into the pathogenic \textit{R. equi}. Given the pervasive distribution of the "virulence-associated" gene pool among nonpathogenic species (Tables S8, S9), the notion of cooptive virulence is possibly applicable to all pathogenic actinomycetes and, indeed, universally to bacterial pathogens. The incorporation of adaptive changes in the regulation of the "appropriated" genes is a key mechanism in genetic cooption [65]. Our genome-wide microarray experiments and transcription network analyses indicate that the plasmid \textit{pag} PAI, essential for intracellular survival and pathogenicity, has recruited housekeeping genes from the rhodococcal core genome under its regulatory influence. Among these are two chromosomal genes encoding key metabolic enzymes involved in aromatic amino-acid biosynthesis, coexpressed with the virulence genes of the \textit{pag} PAI in response to an increase in temperature to 37°C (the body temperature of the warm-blooded host). These two metabolic genes are required by \textit{R. equi} for full proliferation capacity in macrophages, providing supporting experimental evidence for the cooptive nature of \textit{R. equi} virulence. A cooptive virulence model is consistent with the sporadic isolation of "nonpathogenic" (pre-parasitic) \textit{Actinobacteria}, including environmental rhodococci (e.g., \textit{R. erythropolis} [86]), as causal agents of opportunistic infections. An appreciation of the importance of gene cooption in the acquisition of pathogenicity provides a conceptual framework for better understanding and guiding research into bacterial virulence evolution.

Materials and Methods

Genome sequencing and analysis

We sequenced the original stock of the foal clinical isolate 103, designated clone 103S, to avoid mutations associated with prolonged subculturing \textit{in vitro}. Strain 103 belongs to one of the two major \textit{R. equi} genogroups (DNA macrorestriction analysis, unpublished data), is genetically manipulable, and is regularly used for virulence studies [25,56]. Random genomic libraries in pUC19 were pair-end sequenced using dye terminator chemistry on ABI3700 instruments, with subsequent manual gap closure of shotgun assemblies and sequence finishing, as previously described [8]. The 103S genome sequence was manually curated and annotated with the software and databases listed in Table S12. A conservative annotation approach was used to limit informational noise [8]. For phylogenomic analyses, putative core ortholog genes were identified by reciprocal FASTA using a minimum cutoff of 50% amino acid similarity over 80% or more of the sequence. A similarity distance matrix was built with the average percentage amino acid sequence identity obtained by pairwise BLASTP comparisons (distance = 100 – average percent identity of 665 loci) and used to infer a neighbor-joining tree with the Phylip 50% amino acid similarity over 80% or more of the sequence. A

Microarray expression profiling and network analysis

Total RNA was obtained from logarithmically growing \textit{R. equi} bacteria (OD600 = 0.8) in Luria-Bertani (LB) medium, by homogenization in guanidinium thiocyanate-phenol-chloroform (Tri reagent, Sigma) with FastPrep-24 lyzing matrix and a FastPrep apparatus (MP bio), followed by chloroform-isopropanol extraction, DNAase treatment (Turbo DNA-free, Ambion) and purification with RNeasy kit (Qiagen). RNA quality and quantity were determined with a Nanodrop (Thermo Scientific) and 2100 Bioanalyzer with RNA 6000 Nano assay (Agilent). RNA samples (500 ng) were amplified with the MessageAmp II-bacteria kit and 5-(3-amionallyl)-UTP (Ambion), labeled with Cy3 or Cy5 NHS-ester reactive dyes (GE Healthcare), and purified with RNeasy MinElute (Qiagen). Whole-genome 8×15K custom microarrays with up to four different 60-mer oligonucleotides per CDS (13,823 probes for the chromosome, 201 for the virulence plasmid) (Agilent) were hybridized in Surecyd BAChambers (Agilent) with 300 ng of Cy3/Cy5-labeled aRNA, using Gene Expression Hybridization and Wash Buffer kits (Agilent). Three experimental replicates per condition were analyzed, one with dye swap. The hybridization signals were captured and linear intensity-normalized, with Agilent’s DNA microarray scanner and Feature Extraction software. Data were subsequently LOESS-normalized by intensity and probe location and analyzed with Genespring GX 10 software (Agilent). Network analysis of microarray expression data was carried out with Bioulayout [3D 3.0 software [74], using log base 2 normalized ratios of Cy3/Cy5 signals and methods described in detail elsewhere [75]. Bioulayout Express 3D is freely available at http://www.biolayout.org/.

Mutant construction and complementation

In-frame deletion mutants of REQ23860 and REQ23850 were constructed by homologous recombination [56], using the suicide vector pSelAct for positive selection of double recombinants on 5-fluorocytosine (5-FC) [43]. Briefly, oligonucleotide primer pairs CMDEL1/CMDEL2 and CMDEL3/CMDEL4 were used for PCR amplification of two DNA fragments of \(-1.5 \text{ Kb corresponding to the seven 3}^{\prime} \text{- and six 5}^{\prime} \text{-terminal codons plus adjacent downstream and upstream regions of REQ23860. The CMDEL2 and CMDEL3 primers are complementary and were used to join the two amplicons by overlap extension. The PCR product carrying the } \text{REQ23860 allele was inserted into pSelAct, using Spel and Xhel restriction sites; the resulting plasmid was introduced into 103S by electroporation and transformants were selected on LB agar supplemented with 80 \mu g/ml apramycin. The same procedure was followed for } \text{REQ23860, with primers ASDEL1 to 4. Allelic exchange double recombinants were selected as previously described [43,56]. For complementation, the } \text{REQ23860-50 genes plus the entire upstream intergenic region were amplified by PCR with CACOMP1 and 2 primers and stably inserted into the } \text{R. equi chromosome, using the integrative vector pSET152 [88]. PCR was carried out with high-fidelity PhiUltra II fusion HS DNA polymerase (Strategene). The primers used are shown in Table S14.}

Macrophage infection assays

Low-passage (<20) J774A.1 macrophages (ATCC) were cultured in 24-well plates at 37°C, under 5% CO2 atmosphere, in DMEM supplemented with 2mM L-glutamine (Gibco) and 10% fetal bovine serum (Lonza) until confluence (\(\times 10^5 \text{ cells/} \))
well. J774A.1 monolayers were inoculated at 10:1 MOI with washed R. equi from an exponential culture at 37°C in brain-heart infusion (BHI, OD560=1.0). Infected cell monolayers were immediately centrifuged for 3 min at 172 x g and room temperature, incubated for 45 min at 37°C, washed three times with Dulbecco’s PBS to remove nonadherent bacteria, and incubated in DMEM supplemented with 5ug/ml vancomycin to prevent extracellular growth. After 1 h of incubation with vancomycin and room temperature, incubated for 45 min at 37°C, washed twice with PBS, detached with a rubber policeman and lysed by incubation for 3 min with 0.1% Triton X-100. Intracellular bacterial counts were determined by plating appropriate dilutions of cell lysates onto BHI. The presence of the virulence plasmid was checked by PCR on a random selection of colonies, using traA and vapA-specific primers [9] to exclude the possibility of intracellular growth defects being due to plasmid loss. As the intracellular bacterial population at a given time point depends on initial numbers, bacterial intracellular kinetics data are expressed as a normalized “Intracellular Growth Coefficient” [89] according to the formula \(n(t) = \frac{n(0) - n(t)}{n(0)} \), where \(n(t) \) and \(n(0) \) are the intracellular bacterial numbers at a specific time point, \(t = 0 \), and \(t = 0 \), respectively.

Supporting Information

Dataset S1 Layout file of expression network analysis with \(r=0.85 \). Viewable with Biolayout Express 3D (http://www.biolayout.org/).

Found at: doi:10.1371/journal.pgen.1001145.s001 (0.34 MB ZIP)

Dataset S2 Layout file of expression network analysis with \(r=0.95 \). Viewable with Biolayout Express 3D (http://www.biolayout.org/).

Found at: doi:10.1371/journal.pgen.1001145.s002 (0.06 MB ZIP)

Dataset S3 Layout file of expression network analysis with \(r=0.95 \) (nodes not belonging to plasmid gene-containing clusters have been removed). Viewable with Biolayout Express 3D (http://www.biolayout.org/).

Found at: doi:10.1371/journal.pgen.1001145.s003 (0.03 MB ZIP)

Figure S1 Circular diagram of the *R. equi* 103S genome (chromosome and virulence plasmid). Outer two rings, coding sequences in the forward and reverse strand colored according to functional class (see Figure S3). Left, *R. equi* 103S chromosome with ortholog comparison and horizontally acquired (HTG) islands. Ortholog plots from 13 actinobacterial genomes are shown concentrically (outside to inside, from more to less related: *R. jostii* RHA1, *Nocardia farcinica* IFM10152, *Mycobacterium smegmatis* MC2 155, *Streptomyces coelicolor* A3(2), *Mycobacterium tuberculosis* H37Rv, *Arthrobacter* sp. FB24, *Corynebacterium glutamicum* ATCC 13032, *Thermohalophila fusca* YX, *Frankia* sp. Ce13, *Corynebacterium diphteritiae* NCTC 13129, *Propionibacterium acnes* KPA171202, *Bifidobacterium longum* NCC2705 and *Tropheryma whippelii* TW08 27; see Table S13 for accession nos.). HTG DNA identified by Alien Hunter [92] is shown in red (HTG “archipelagos” 1 and 2 boxed; see Figure S6). The HTG islands tend to coincide with void areas in the ortholog plots, indicating they are species-specific DNA regions; note that they are regulary distributed across the genome. Inner plots: G+C % (gray) and G+C skew (violet/yellow, origin of replication is clearly detectable). Right, circular diagram of the pVAPA1037 virulence plasmid (not represented to scale); the *vak* PAI (HTG-acquired) is indicated by a thick black line. A detailed annotation and analysis of pVAPA1037 has been published elsewhere [8].

Found at: doi:10.1371/journal.pgen.1001145.s004 (0.93 MB PDF)

Figure S2 Pairwise ACT alignments of rhodococcal chromosomes (*R. equi* 103S, *R. jostii* RHA1, *R. opacus* B4 and *R. erythropolis* PR4); see Figure 1A for interpretation. *R. opacus* has a large (7.25 Mb) linear chromosome like *R. jostii* (Table 1). The chromosome of *R. erythropolis* (6.52 Mb) is circular, as in *R. equi*. The four rhodococcal species sequenced to date share a common core of 2,674 orthologs. Mean identity of shared core orthologs between *R. equi* and *R. opacus*, 75.90%; *R. erythropolis*, 73.3%. Between *R. jostii* RHA1 and: *R. erythropolis* PR4, 76.88%; *R. opacus*, 94.87%. The chromosomes of *R. jostii* and *R. opacus* are highly homologous and syntenic and share 72% of the coding sequences (CDS). Based on the number of shared orthologs, average percent identity among shared core genes, and overall genome homology, *R. equi* appears to be phylogenetically equidistant to *R. erythropolis*, *R. jostii* and *R. opacus*, while the last two species are clearly very closely related (see also Figure 1B). *R. jostii* RHA1 genome published in [10]. *R. opacus* B4 and *R. erythropolis* PR4 genomes published online by NITE, the Japanese National Institute for Technology and Evaluation (http://www.nite.go.jp/index-e.html; accession nos. in Table S13).

Found at: doi:10.1371/journal.pgen.1001145.s005 (3.23 MB PNG)

Figure S3 Functional classification of *R. equi* 103S genome. According to the Ecocyc classification scheme [93]. (A) Functional categories of *R. equi* 103S genes. “Surface/extracellular proteins” includes products with a signal sequence and/or transmembrane domain not allocated to another main functional category (e.g. central metabolism, degradation of small molecules, regulators, etc.). About 17% of *R. equi* CDSs correspond to “hypothetical proteins” or “conserved hypothetical” proteins. In addition to the 517 annotation entries as “putative membrane protein”, “integral membrane protein” or “secreted protein”, 28.5% of the *R. equi* genome products are of unknown function. (B) Functional categories of *R. equi* 103S secretome. The *R. equi* secretome comprises 736 CDSs, of which 44.5% encode proteins of unknown function, 20.3% correspond to transporters, 17.1% to lipoproteins, and 10.3% to extracellular enzymes possibly involved in nutrient breakdown and assimilation.

Found at: doi:10.1371/journal.pgen.1001145.s006 (0.17 MB PDF)

Figure S4 Scatter plots of selected functional categories vs genome size (≥4 Mb) of *R. equi* 103S and 10 other representative Actinobacteria. Data were inferred using the Comprehensive Microbial Resource (http://cmr.jcvi.org/) and the available genomes (Data Release 23.0). See Table S13 for accession nos. Membrane-associated and secreted proteins, as determined from TMHMM and SignalP outputs (see Materials and Methods). The number of regulator per genome has been calculated from keyword parsing of protein annotation. (A) Membrane-associated proteins. (B) Regulators. (C) Secreted proteins. (D) Metabolic proteins.

Found at: doi:10.1371/journal.pgen.1001145.s007 (0.11 MB PDF)

Figure S5 Species-specific gene complements of *R. equi* 103S, *R. jostii* RHA1, *N. farcinica* IFM10152, and *M. tuberculosis* H37Rv. The Venn diagram shows the number of chromosomal CDSs shared within a particular relationship (in brackets those unique to that relationship) as determined by ortholog comparisons (reciprocal FASTA best hits). Below the name of each species, the total number of genes in the genome is shown. The pie charts show the functional classification of the CDSs unique to each species and the shared common core.

Found at: doi:10.1371/journal.pgen.1001145.s008 (0.35 MB PDF)
Genetic structure of the two large chromosomal HGT regions in *R. equi* 103S. The position of these regions on the chromosome is indicated in Figure S1. Functional categories of the genes are indicated in color code as in Figure S3. Alien Hunter [92] HGT hits are indicated as black bars in the center. HGT region 1 (positions 1,684,996-1,775,619, REQ1611-10770) encompasses 14 CDSs and is rich in genes encoding nucleases, helicases and restriction enzymes. HGT region 2 (positions 2,734,493-2,848,474, REQ25610-26970) encompasses 132 CDSs with a diversity of functional categories but mostly involved in metabolism. It also includes three of the 14 pseudogenes found on the *R. equi* 103S chromosome. The mosaic structure of these regions and the diversity of source species, as indicated by reciprocal BLASTP best-hit analysis, suggest they are a composite of several independent HGT events rather than the result of a single ’’en bloc’’ acquisition.

Found at: doi:10.1371/journal.pgen.1001145.s009 (1.14 MB PNG)

Figure S7
R. equi nutrition and metabolism. (A) Carbon source utilization. Growth assays of *R. equi* 103S in mineral medium (MM) [19] at 37°C. MM was supplemented (unless otherwise stated) with 20 mM of the indicated carbon sources and bacterial growth was monitored at OD600 every 30 min in a Fluostar Omega plate reader (BMG Labtech). Growth was detected only with lactate and acetate (mean of three experiments ±SD). Chemicals were purchased from Sigma. The nutritional and metabolic profile of *R. equi* (and its susceptibility to various chemicals and antibiotics) was initially investigated with Phenotype MicroArray (PMA) screens [15]. In the PMA plates PM1 and PM2 (carbon sources), certain substrates (e.g. glucose, arabinose, ribose, xylose, D-glucosamine, dihydroxyacetone and lyxose) sometimes give false positive results due to abiotic dye reduction (source: Michael Zisman, Biolog Inc.). Experiments in MM confirmed that *R. equi* 103S does not utilize these substrates as sole carbon source. (B) ACT pairwise comparison of the thiamine biosynthesis gene clusters *thiCD* and *thiGSOE* in *R. equi* 103S and environmental rhodococci. In *R. equi*, the *thiC* gene has been replaced by an HGT region (black bar in the center) encoding proteins of unknown function. (C) Thiamine auxotrophy. Growth assay of *R. equi* 103S in 20 mM lactate MM medium. HMP, 4-amino-5-hydroxyethylpyrimidine phosphate (5% v/v of the crude preparation described in [94]). Negative control: no supplement. Most (~90%) of the *R. equi* strains displayed thiamine auxotrophy. Experimental conditions as described in the legend to (A). (D) Diagram of the rhodococcal thiamine biosynthesis pathway. The *thiCD* genes are required for the production of 4-amino-5-hydroxyethyl-2-methylpyrimidine phosphate; *thiG-5OM* are involved in the generation of 4-methyl-5-(β-hydroxyethyl) thiazole phosphate, the second substrate required for the *thiE*-mediated synthesis of thiamine phosphate. Thiamine phosphate is ultimately phosphorylated by the product of the *thiL* gene to generate the biologically active thiamine pyrophosphate. As shown in (C), HMP did not support *R. equi* 103S growth, indicating that the thiamine biosynthetic pathway of *R. equi* 103S is also functionally affected downstream from *thiC*.

Found at: doi:10.1371/journal.pgen.1001145.s010 (0.61 MB PDF)

Figure S8
Species-specific metabolic gene complements of *R. equi* 103S, *R. jostii* RH1, *N. farcinica* IFM10152, and *M. tuberculosis* H37Rv. Determined by ortholog comparison (reciprocal FASTA best hits). As the functional categories used for the annotation of the four genomes were not directly comparable, we first extracted the metabolism-related CDSs manually, on the basis of their predicted function. The Venn diagram shows the number of CDSs shared within a particular relationship (in brackets those unique to that relationship). Below the name of the species, the total number of metabolic genes present in the genome is shown. See Table S5 for paralogy analysis of the species-specific metabolic gene complements.

Found at: doi:10.1371/journal.pgen.1001145.s011 (0.36 MB PNG)

Figure S9
Optimal growth pH of *R. equi* 103S. Phenotype MicroArray [15] output of the relevant wells of plate PM10. Incubation was for 48 h at 37°C in an OmniLog instrument with readings taken every 15 minutes. Data were analyzed with OmniLog PM software. Consensus phenotypes for at least two replicates were determined based on the area difference under the kinetic curve of dye formation. Reported optimal pH values for other rhodococcal species: *R. ruber* 7.0 [95], *R. koreensis* 7.0–7.8 [96], *R. kroppenstedtii* 8.0 [97], *R. amnigenus* 7.5–7.9 [98], *R. koryceniomyces* 7.0 [99], *R. percolatus* 7.0–7.5 [100], *R. pyridinivorans* 7.5–8.5 [101], *R. takaensis* 5.5–8.5 [102], *R. yunnanensis* 7.0–8.0 [103].

Found at: doi:10.1371/journal.pgen.1001145.s012 (0.23 MB PNG)

Figure S10
Examples of antibiotic resistance determinants located at the same chromosomal position in *R. equi* and two environmental *Rhodococcus* spp. Homologous resistance determinants indicated by yellow stripes in the ACT alignments.

Found at: doi:10.1371/journal.pgen.1001145.s013 (0.49 MB PNG)

Figure S11
Virulence-related loci of *R. equi* 103S. (A) PE/PPPE locus and corresponding chromosomal regions in *R. jostii* RH1A, *R. erythropolis* PR4, *N. farcinica* IFM10152 and *M. tuberculosis* H37Rv. Arrows in ACT alignments indicate PE and PPE genes. The PE gene is of the “short” subclass (only a conserved N-terminal PE module of 99 to 102 residues); the PPE gene is of the “unique C-terminal domain” subclass [104]. The *R. equi* PE/PPPE locus is inserted at the same chromosomal position in the nonpathogenic *Rhodococcus* spp. and in *N. farcinica*; no PE/PPPE genes are present at the corresponding chromosomal region of *Meb*, other mycobacteria and corynebacteria, indicating this PE/PPPE locus is specific to the *Nocardiaceae* within the *Corynebacteriaceae*. The PE/PPPE genes are fused in *R. jostii* RH1A. (B) Sortase HGT islands *srt1* and *srt2* of *R. equi* 103S. ACT comparisons of *srt1* (above) and *srt2* (below) and corresponding regions of *R. jostii* RH1A and *R. erythropolis* PR4. Alien Hunter [92] outputs indicated as black bars in the center. *srt1* is unique to *R. equi* among the sequenced *Rhodococcus* spp., including *R. opacus* B4 (not shown). The *srt2* island is conserved in *R. erythropolis* but at a different chromosomal location and encoding only one of the two putative sortase substrates (surface protein RER_38400, which like its *R. equi* homolog REQ27480 contains an LPVTG sorting motif). Apart from a serine peptidase encoded by the *esx* locus (REF35490), no proteins with the typical hallmarks of sortase substrates, i.e. a C-terminal membrane-spanning region preceded by a sortase recognition motif LPXTG, or a variant thereof [105], are encoded outside the two *srt* islands.

Found at: doi:10.1371/journal.pgen.1001145.s014 (0.75 MB PDF)

Figure S12
Network analysis of *R. equi* microarray expression data. (A) Detailed view of the network graph of Figure 5A showing the web of functional linkages (edges) between the *vap* PAI-coregulated cluster (red nodes) and direct neighbor clusters (green nodes, plasmid backbone cluster; other clusters represented in different colors; individual directly connected nodes are in gray regardless of whether they belong to a larger cluster; chromosomal nodes are...
represented as spheres, plasmid nodes as cubes). All other nodes have been removed. Predominant functional classes among
neighbor clusters \((n = 129\) nodes): Central and energy metabolism
27.1%, Membrane-associated/surface proteins/transporters
23.3%, Hypothetical proteins 18.6%, Regulators 9.3%. Degradation
of small molecules 7.75%. Metabolism-related products
encoded by direct neighbor nodes include enzymes of the
shikimate pathway/biosynthesis of aromatic amino acids (pre-
phenate dehydrogenase \(\text{REQ02960}\), prephenate dehydratase
\(\text{REQ01720}\); porphyrin metabolism (magnesium chelatase
\(\text{REQ18110}\) and cobalamin biosynthesis (uroporphyrinogen-III
C-methyltransferase \(\text{REQ02960}\), CobB homolog \(\text{REQ28830}\));
synthesis of cysteine, activated sulfate \((\text{cytD}, \text{G}, \text{B}, \text{M}, \text{Q}\) and \(\text{N/C}
\) homologs); and mycophytol (mycophytol ligase MshC \(\text{REQ29900}\),
urease \((\text{UreA}, \text{C}, \text{D}, \text{F}, \text{and G} \) homologs), and nitrite reductase
\(\text{NirB1} \) \(\text{REQ32930}\)). (B) Representative expression profiles of the
plasmid gene-containing clusters identified with \(r = 0.85\) Pearson
correlation threshold (see Table S11). Maroon lines, \(\text{vap}\)
coregulated cluster (red and yellow nodes in Figure 5A); green
lines, plasmid backbone cluster (green nodes in Figure 5A).
The individual profiles of three biological replicates per test condition
are plotted. Note that the \(\text{vap}\) PAI-coexpressed cluster, which
includes chromosomal genes, is activated by both plasmid and
temperature \((37^\circ\text{C})\) whereas the plasmid backbone cluster is
expressed constitutively in the same conditions. Common
reference: average signal of 103S at 37°C pH 6.5.
Found at: doi:10.1371/journal.pgen.1001145.s015 (2.47 MB PNG)

Table S1 | Statistics of horizontal gene acquisition (HGT) in
actinobacterial chromosomes. HGT DNA was identified with the
Alien Hunter program (http://www.sanger.ac.uk/Software/anal-
ysis/), which identifies horizontally acquired DNA by reliably
capturing local compositional biases based on a variable-order
motif distributions method [92]. The thick gray line delimits the
genomes with chromosomes of less than and more than 4 Mb in
length. Accession nos. of the genomes used are shown in Table S13.

Table S2 | Chromosomal gene duplication and paralogous families in
\(\text{R. equi} \) 103S and 19 other representative \(\text{Actinobacteria}\).
Paralogous families were identified by clustering of proteomes with
BLASTChust (see Table S12).

Table S3 | DNA mobility genes in \(\text{R. equi} \) 103S and environmental
\(\text{Rhodococcus}\) spp genomes. Identified by keyword parsing of
protein annotation; in brackets, genes associated with HGT
regions. Plasmids from \(\text{R. erythropolis} \) PR4 published in [106].

Table S4 | Phosphoenolpyruvate-sugar phosphotransferase sys-
tem (PTS) components in a selection of actinobacterial genomes.
Identified using motif search in Plasm database (Plasm motif
identifiers indicated in footnotes).

Table S5 | Ranking of the ten most populated paralogous
metabolic gene families of \(\text{R. equi} \) 103S, \(\text{R. jostii} \) RH1, \(\text{N. farcinica}
\) IFM10152, and \(\text{M. tuberculosis} \) H37Rv. Determined by BLAS-
TCLUST analysis. In brackets, number of paralogs within the
family.

Table S6 | Putative DosR/DevR boxes and corresponding transcriptional units in
\(\text{R. equi} \) 103S \(^4\). Identified with CLC Main
Workbench (http://www.clcbio.com/) and the 20-bp consensus
DosR/DevR box 5’-NNNGGGHCNWNGNCBNN-3’
\((\text{N} = \text{any nucleotide}, \text{H} = \text{A/C/T}, \text{B} = \text{C/G/T}, \text{W} = \text{A/T})\) defined by
Park et al. [70] and modified according to [107,108]. Accuracy
cutoff \(\geq 0.85\), intergenic position relative to start codon \(\leq 150\) nt.
The conserved DosR motif is boxed, the invariant G6 and C8
positions and matching nucleotides at the opposite half-site of the
palindromic are shaded in black, deviations from the consensus
motif are shown in lower case.

Found at: doi:10.1371/journal.pgen.1001145.s021 (0.12 MB PDF)

Table S7 | Minimal inhibitory concentrations (MIC) of \(\text{R. equi} \) 103S to various antibiotics. Determined by the broth microdilu-
tion method. The data are consistent with previously reported
antimicrobial susceptibility studies of \(\text{R. equi} \) isolates [111–116].

Table S8 | Potential virulence-associated genes of \(\text{R. equi} \) 103S
identified by bioinformatic mining of the genome and homologs in
other pathogenic and nonpathogenic \(\text{Actinobacteria}\).

Table S9 | Experimentally determined virulence-associated genes of
\(\text{M. tuberculosis} \) and homologs in nonpathogenic \(\text{Actinobacteria}\).

Table S10 | Virulence plasmid-chromosome crosstalk. Gobal
microarray expression analysis of \(\text{R. equi} \) 103S and an isogenic
plasmid-cured derivative (103S\(^-\)) during exponential growth in
LB medium (OD\(_{600}\) = 0.8) in the indicated conditions (part A of
table, 30°C pH 8.0 = \(\text{vap}\) PAI gene-downregulating conditions;
part B of table, 37°C pH 6.5 = \(\text{vap}\) PAI gene-activating conditions
[72,73]). Chromosomal genes differentially expressed with \(P<0.05\)
and fold-change cutoff \(\geq 2\) are listed. Expression data are
presented as average fold-change of 103S relative to 103S\(^-\); positive
values indicate upregulation in the presence of the
plasmid.

Found at: doi:10.1371/journal.pgen.1001145.s024 (0.08 MB XLS)

Table S11 | Plasmid gene-containing coregulated clusters. Gene
allocation defined by graph clustering of the transcription network
shown in Figure 5A. (A) Plasmid backbone cluster. Shown for each
gene, average pairwise comparison ratios of normalized micro-
array expression data from exponential cultures of \(\text{R. equi} \) 103S in
LB medium (OD\(_{600}\) = 0.8) at 37°C relative to 20°C (pH 6.5). This
cluster contains only plasmid genes, virtually all from the
housekeeping backbone and mostly constitutively expressed in
the experimental conditions tested (see Figure S12B). (B) Same
information as in (A) but for the plasmid \(\text{vap}\) PAI-coexpressed
cluster \(^5\), in the indicated conditions. \(P\) versus NP, pairwise
comparison of \(\text{R. equi} \) 103S and its isogenic plasmidless derivative
103S\(^-\) in \(\text{vap}\) gene-activating conditions [72,73]. In bold, fold
change differences \(\geq 1.5\) and \(P<0.05\). (C) Short list of \(\text{vap}\) PAI-
coexpressed chromosomal genes and putative functions. Genes
from part B not showing significant differential regulation by both
temperature (at least one experimental condition) and plasmid in
pairwise comparisons have been excluded (fold-change \(\geq 1.5,\)
\(P<0.05\) two-tailed Student’s t test).

Found at: doi:10.1371/journal.pgen.1001145.s026 (0.16 MB PDF)

Table S12 | Software and databases used to annotate and analyze the
\(\text{R. equi} \) 103S genome.

Table S13 | GenBank accession nos. of the genomes used in this
study. \(\text{R. erythropolis} \) PR4 and \(\text{R. opacus} \) B4 genomes published
Online by NITE, the Japanese National Institute for Technology and Evaluation (http://www.nite.go.jp/index-e.html).

Table S14 Oligonucleotide primers used for mutant construction and complementation. SpeI, XbaI and EcoRV restriction sites used for the cloning of PCR products are underlined.

Acknowledgments

We thank An Armandez for training and advice on Pathway Tools metabolic reconstruction software, J.C. Perez-Diaz and S. Amyes for MIC determinations, M. Ziman and B. Bochner for PMA screens, D. Downs for the HMP preparation, S. Mitchell for electron microscopy, M. Hernandez for genomic DNA extraction, and R. Cain for critically reading the manuscript. M. Babb is gratefully acknowledged for hosting one of us in his laboratory, as are J. E. Davies, S. Ricketts, and S. Takai for their enthusiastic support of this project. The National Institute of Technology and Evaluation (NITE, Japan) is acknowledged for publishing online the genome sequences of R. erythropolis PR4 and R. palustris B4. We also wish to thank the Dorothy Russel Havemeyer Foundation for sponsoring the R. equi International Workshops series, from which the idea of sequencing the genome of this pathogen emerged.

Author Contributions

Conceived research: JAVB JFP WGM JP SDB. Performed research: ML PG HR IC AH JJ MN MAQ MS. Analyzed data: ML IM TCF AVR MB TB RF DL JJ NO AMMS UF WGM JP SDB JAVB. Wrote the paper: JAVB ML. Prepared the manuscript: JAVB ML MMS.

References

Rhodococcus equi Genome and Cooptive Virulence

