Analogue modelling of plate rotation effects in transform margins and rift-transform intersections

Citation for published version:

Digital Object Identifier (DOI):
10.1029/2018TC005261

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Tectonics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Analogue modelling of plate rotation effects in transform margins and rift-transform intersections.

G. P. Farangitakis1, D. Sokoutis2,3, K. J. W. McCaffrey1, E. Willingshofer2, L. M. Kalnins3, J. J. J. Phethean1, J. van Hunen1 and V. van Steen2

1Department of Earth Sciences, Durham University, Science Site, Durham, DH1 3LE, UK.

2Department of Earth Sciences, Utrecht University, Princetonplein 6, 3854 CD Utrecht, the Netherlands.

3University of Oslo, Department of Geosciences, Oslo, Norway.

4School of GeoSciences, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FE, UK.

Corresponding author: Georgios-Pavlos Farangitakis (georgios-pavlos.farangitakis@durham.ac.uk)

Key Points:

- We use analogue models to study transtension and transpression on transform margins and rift-transform intersections due to plate rotation.

- The extent and topography of the structures created are strongly dependent on the relative velocity between transform margins.

- Our results show good agreement with natural examples from the Gulf of California and the Tanzania Coastal Basin.
Abstract

Transform margins are first-order tectonic features that accommodate oceanic spreading. Uncertainties remain about their evolution, genetic relationship to oceanic spreading, and general structural character. When the relative motion of the plates changes during the margin evolution, further structural complexity is added. This work investigates the evolution of transform margins, and associated rift-transform intersections, using an analogue modelling approach that simulates changing plate motions. We investigate the effects of different crustal rheologies by using either a) a two-layer brittle-ductile configuration to simulate upper and lower continental crust, or b) a single layer brittle configuration to simulate oceanic crust. The modeled rifting is initially orthogonal, followed by an imposed plate vector change of 7° that results in oblique rifting and plate overlap (transpression) or underlap (transtension) along each transform margin. This oblique deformation reactivates and overprints earlier orthogonal structures, and is representative of natural examples. We find that: a) a transtensional shift in the plate direction produces a large strike-slip principal displacement zone, accompanied by en-echelon oblique-normal faults that accommodate the horizontal displacement until the new plate motion vector is stabilized, while b) a transpressional shift produces compressional structures such as thrust fronts in a triangular zone in the area of overlap. These observations are in good agreement with natural examples from the Gulf of California (transtensional) and Tanzania Coastal Basin (transpressional) shear margins, and illustrate that when these deformation patterns are present, a component of plate vector change should be considered in the evolution of transform margins.

Plain Language Summary

Tectonic plate boundaries in our planet are categorized by their relative motion with respect to each other. The three main categories are those moving away, towards, and parallel to one another. We study the processes occurring when two tectonic plates moving parallel begin to rotate and move away or towards each other. Currently this is occurring in the Gulf of California, and in the past it occurred in areas such as the Southern Atlantic, creating the segmented pattern along its mid-ocean ridge. To study these tectonic plate boundaries, we use sandbox modelling. We make miniature models of the Earth’s crust with silicone putty and sand, and recreate the same movements that tectonic plates go through. This allows us to understand the structures created in such environments better. The pattern and the height or depth of these structures is related to how fast the plates move. This work can help recognize areas where similar deformation has occurred in the past, which is important for hydrocarbon exploration. It can also assist with geothermal energy exploration, as areas where plates move parallel and away from each other present good opportunities for hotter temperatures in the sub-surface.

1 Introduction

Transform margins and oblique rifts are first-order structural features present in almost every tectonic plate across the globe. Transform continental margins, in particular, represent 16% of the cumulative length of continental margins (Basile, 2015; Mercier de Lépinay et al., 2016) and accommodate or have accommodated oceanic spreading motion. These features were first discussed and described in the context of shear margins in the 1960-1970s (e.g. Wilson, 1965; Le Pichon & Hayes, 1971; Turcotte, 1974; Masce, 1976; Scrutton, 1979). Studies in the past three decades have provided improved conceptual models for the evolution of these margins (e.g. Lorenzo, 1997; Reid & Jackson, 1997; Basile & Brun, 1999;
Bird, 2001; Basile, 2015; Mercier de Lépinay et al., 2016). However, transform margins remain considerably less studied than their continental divergent and convergent counterparts. Studies of these margins across the world such as Voring (Talwani & Eldholm, 1972), Gulf of Aden (Leroy et al., 2012; Autin et al., 2013), India-Arabia plate boundary (Rodriguez et al., 2016), and West Greenland (Peace et al., 2017) suggest that they have a genetic relationship with pre-existing structures or anisotropy in the crust (or even the mantle). However, Basile (2015) argues that there are two types of transforms: a) transform faults that first form in continental lithosphere may reactivate or cross-cut pre-existing structural features (e.g., the Equatorial Atlantic) and b) transform faults that form after the initiation of oceanic accretion to connect propagating oceanic spreading axes (e.g., the Woodlark Basin, Gerya, 2012) that display little or no inheritance. Bellahsen et al. (2013) proposes a similar classification: Type 1 that form synchronously with the synrift structures, Type 2 that form during the continent-ocean transform and Type 3 that form within the oceanic domain, after the onset of oceanic spreading. Moreover, transform margins are areas of active hydrocarbon exploration with significant exploration risk factors such as uncertainty over the post-breakup uplift patterns in space and time, poor knowledge of structural architecture and associated topography, as well as diachronous timing of the transform fault activity (Nemcok et al., 2016).

In this study, we focus on examples where plate boundary re-organisations or changes in extension direction or rate have impacted a transform system. This is the case in the Gulf of California (GoC), where a change in extension direction between the Pacific and North American plates results in a large transtensional zone of oblique slip faults and sigmoidal horseshoe splays, particularly in the north (e.g., Lizarralde et al., 2007; Seiler et al., 2009; Persaud et al., 2017). West of Madagascar, a plate re-arrangement led to the formation of the Davie Fracture Zone (DFZ) in the Tanzania Coastal Basin (TCB), overprinting the pre-existing spreading centre and fracture zones (Phethean et al., 2016). In Western Australia and the Jan Mayen Ridge near Greenland, changes in extension direction may have resulted in the formation of free-moving microcontinents (e.g., Heine et al., 2002; Stagg et al., 2004; Whittaker et al., 2016; Schiffer et al., 2018). Finally, Davison et al. (2016) suggest the existence of conjugate zones of compressional deformation along the Romanche Fracture Zone.

Dauteuil and Brun (1993) presented the first analogue modelling experiment of oblique rifting or transform margins, investigating the Mohls and Reykjanes ridges in the N. Atlantic to identify segments of oblique transfer zones between the rift segments. Thereafter, Basile and Brun (1999) used a Riedel box with a brittle-ductile configuration to produce transtensional faulting patterns in continent-ocean transforms and pull-apart basins. Acocella et al. (1999) showed how orientation, geometry and kinematics of transfer zones depend upon pre-existing basement anisotropies, while Dauteuil et al. (2002) tested the influence of lithosphere strength on the development of deformation above a transform boundary. They concluded that major transform faults associated with fast-spreading ridges are formed by diffuse, complex arrays of strike-slip segments, while transform faults associated with slow-spreading ridges form deep, narrow linear valleys. Autin et al. (2013) used a four-layer brittle/ductile/brittle/ductile model of the Gulf of Aden to investigate how inherited basins could partly control present-day geometry of an oblique rift and localisation of fracture zones. Philippon et al. (2015) investigated the relation between dip-slip and strike-slip displacement along orthogonal and oblique faults in relation to extension direction. Finally, Zwaan and Schreurs (2017) tested the effects of oblique extension and inherited structural offsets on continental rift interaction and linkage. Experiments with temperature-dependent materials

© 2019 American Geophysical Union. All rights reserved.
include the work of Grokholskii (2005) and Dubinin et al. (2018), who used heat and a mix of paraffins in their models to replicate the structures created in rifts.

In this work, we report the results of a series of analogue experiments designed to investigate the role that small changes in relative plate motions play in the evolution of transform faults and of strike-slip plate boundaries more generally. We introduce a sequential three-step experiment where a) orthogonal motion, b) a rotation and then c) oblique motion are imposed on an initially orthogonal rift. This mimics the effect of a change in spreading direction due to a change in the relative Euler pole between the plates and leads to an oblique rift and accompanying transtensional and transpressional zones on the lateral margins. Observations are compared to seismic reflection images from two different margins: the transtensional Gulf of California partitioned oblique margin and the transpressional Tanzania Coastal Basin offshore East Africa (Figure 1).

2 Geological Background

The GoC is an early-stage transform margin, with seafloor spreading in the southern and central Gulf (Lizzaralde et al., 2007), and rifting (with potential continental break-up) in the north (Martin-Barajas et al., 2013). Dextral transform motion between the Pacific and North American plates began ~20 Ma (Lonsdale, 1989; Axen, 1995; Atwater & Stock, 1998; Bennett et al., 2013) (Figure 1c), with extension in the Proto-Gulf of California beginning ~12 Ma (Persaud et al., 2003; Bennett et al., 2013) (Figure 1d). Bennett & Oskin (2014) suggest a 15° clockwise rotation in the relative motion between the plates at ~8 Ma increased the rift obliquity and favoured the development of strike-slip faulting. Shearing localised in en-echelon strike-slip shear zones, which developed into nascent pull-apart basins by 6 Ma (Bennett et al., 2013), (Figure 1e) and then into a series of long dextral transform faults connected by smaller rift basins (Persaud et al., 2003; Lizzaralde et al., 2007) (Figure 1f).

In the northern GoC, the nature and timing of continental rupture is still uncertain, with the presence of oceanic crust suggested in some basins (Martin-Barajas et al., 2013; Gonzalez-Escobar et al., 2014) and delayed rupture suggested for others (Lizzaralde et al., 2007; Martin-Barajas et al., 2013). Deformation in the north is distributed across a pull-apart structure between the Cerro Prieto Fault (CPF) and the Ballenas Transfrom Fault Zone (BTFZ) (Persaud et al., 2017) (Figure 7a). This deformation migrated north from the Tiburon Basin ~3.5-2 Ma following a plate reorganisation (Seiler et al., 2009). The CPF and BTFZ strike 6-7° more northerly (312°) than the transforms in the south (305°) (Lonsdale, 1989). Dorsey and Umhoefer (2012) and Van Wijk et al. (2017) argue that this increased obliquity contributes to the basin development and late or absent rupture, although initial fault geometries, thick sedimentation, and changing loci of extension may also be factors.

The N-S trending DFZ (Figure 1f) in the TCB is a fossil transform fault that guided the southward drift of East Gondwana (Antarctica, Australia, India, and Madagascar) away from West Gondwana (Africa and South America) during the Jurassic and Early Cretaceous (e.g., Coffin & Rabinowitz, 1987). Following continental breakup at approximately 170 Ma (Geiger et al., 2004), an initial phase of NNW-SSE plate separation resulted in the development of SSE trending oceanic fracture zones offshore Tanzania (e.g., Davis et al., 2016; Phethean et al., 2016; Sauter et al., 2016; Tuck-Martin et al., 2018) (Figure 1g-h). By
about 150 Ma, the strong continental cores of East and West Gondwana were no longer juxtaposed. Together with the alignment of spreading segments to the north, this created an approximately N-S band of weaker lithosphere. This alignment coincided with a change in plate motion, resulting in N-S separation of East and West Gondwana (e.g. Davis et al., 2016; Phethean et al., 2016; Sauter et al., 2016) (Figure 1i). This change in plate motion was incompatible with SSE trending fracture zones offshore Tanzania, resulting in transpressional deformation along these structures. Recent work shows evidence of intra-plate deformation of the oceanic crust within the TCB adjacent to the DFZ. Sauter et al. (2018) describe buckle folding and thrusting in “deformation corridors” interpreted as pre-existing oceanic fracture zone fabric. This transpressional event was most likely ended by the development of the DFZ, which then accommodated N-S spreading (Figure 1j-l) (Reeves et al., 2016; Phethean et al., 2016).

These two cases of transtension (GoC) and transpression (TCB) provide ideal natural examples to test our analogue modelling experimental approach. In turn, our models can provide insight into the structural evolution of margins such as these and the complexity that may arise.

3 Methodology

3.1 General definition of the models

We use a modified experimental array based on Basile and Brun (1999), which comprises a moving plate sliding underneath a brittle/ductile layer configuration that creates pre-imposed velocity discontinuities (VDs). In this approach, deformation is driven entirely by externally applied boundary conditions (Schellart & Strak, 2016), with pre-imposed VDs, similar to those in Allemand and Brun (1991) and Tron and Brun (1991). We also use a similar brittle to ductile ratio (2:1, to simulate continental crust) and imposed extension velocity (5 to 10 cm/h). To simulate similar processes in oceanic crust, we also use a brittle-only configuration (Burov, 2011).

Following an initial orthogonal extension phase, we introduce a rotation of 7°, consistent with the amount of rotation observed in natural examples: Lonsdale (1989) and Bennett et al. (2016) report evidence of ~7-15° of rotation in the GoC from ~6.5 Ma. In Madagascar, the reconstruction in Figure 1c-h shows ~10° of rotation. Mauduit and Dauteuil (1996) also report a series of transform zones with obliquities ranging between 3° and 8°. Finally, Whittaker et al. (2016) report up to 10° rotation in the Exmouth Plateau in W. Australia.

The brittle/ductile experiments were performed at 5 cm/h and 10 cm/h to explore the influence of velocity, and through it, brittle-ductile layer coupling, with increased velocity
corresponding to stronger coupling. This difference in pulling velocity also creates different crustal rheologies in the models (Brun, 2002). The strain rate in the ductile layer increases with increased pulling velocity, leading to more uniform behaviour between the ductile and brittle layers. The layer is non-newtonian, so the increased strain rate corresponds to an increase in apparent viscosity, with the brittle and ductile layers being more similar in strength (Figures 3a, b). This translates to more distributed strain and the formation of more diffuse structures. In contrast, the brittle experiment corresponding to oceanic crust is independent of velocity (and thus strain rate) (Table 1 and Figure 3c). Topography changes in the models are mapped using a laser scanner at discrete intervals. Finally, we use a small funnel to manually add alternating colour layers of feldspar sand in the topographic lows (and thrust fronts). This is done every 2-3 minutes after checking that new structural features have been created. These layers act as act as syn-rift sedimentation (and in the case of thrusts as an extra protective layer) and facilitate observations of deformation when the models are cut to produce cross-sections. At the end of each experiment run, the model is also covered with a thick protective layer of black and white sand for the wetting and cutting process.

3.2 Kinematic set-up

The model configuration (Figure 2) allows us to simultaneously investigate both overlap and underlap caused by the rotation of the moving plate on parallel strike-slip boundaries. The rotating plate is represented by a 60x30 cm plastic plate underneath the silicone putty/feldspar sand layers. At the trailing edge of the plastic plate, a second plastic sheet is fixed above the moving plate and acts as a VD imposing a rift (Figure 2). The moving plate is guided by a series of metal bars at the front and rear of the model. These a) guide the plate to move straight and then rotate and b) do not allow it to rotate more than 7°. Two heavy metal blocks act as a mechanical elbow (Figure 2, yellow boxes), forcing the plate to rotate until it hits the front left guide bar and acquires a new motion vector. Once the step motor is started, the plate moves orthogonally towards the mechanical elbow, creating two parallel strike-slip shear zones and a divergent (rift) zone above the VD imposed by the fixed plastic sheet (Figure 2b). During the rotation phase, zones of transtension and transpression are created on the right and left sides of the plate, respectively, and an oblique rift develops at the back (Figure 2c). After the rotation, the plate is constrained by the top guide bars, creating new shear zones on each side (Figure 2d) that are oblique to the originals.

3.3 Model rheology and materials used

Our brittle/ductile models represent a two layer continental crust, while the brittle-only model represents a single layer of oceanic (Figure 3). Layers were as follows:

a) For brittle crust, we use dry feldspar sand (which deforms according to the Mohr-Coulomb criterion) with a density of $\rho = 1.3 \text{ g/cm}^3$ (Luth et al., 2010), sieved to a grain size $d = 100-350 \mu\text{m}$ and an internal friction coefficient of μ_{fric} of 0.6 (Sokoutis et al., 2005).

b) Ductile crust is represented by transparent silicone putty SGM-36 in the PDMS group, a poly-dimethyl siloxane with a density of $\rho = 0.970 \text{ g/cm}^3$, no yield strength and viscosity at room temperature of $\mu_{\text{vis}} = 5 \times 10^4 \text{ Pa.s}$ (Weijermars, 1986a; Weijermars, 1986b; Weijermars 1986c).

© 2019 American Geophysical Union. All rights reserved.
The governing equations for the strength in each layer are derived from Brun (2002). For the brittle layers, the strength profile along the strike slip fault is given by the equation:

\[\sigma_1 - \sigma_3(\text{SS}) = \rho gh_b (\text{Equation 3.1}) \]

where \(\sigma_1 - \sigma_3(\text{SS}) \) is brittle layer strength along the fault, \(g \) gravitational acceleration and \(h_b \) thickness of the sand layer.

For extension in the brittle layers, the governing equation is:

\[\sigma_1 - \sigma_3(r) = \frac{2}{3} (\sigma_1 - \sigma_3)(\text{SS}) (\text{Equation 3.2}) \]

where \(\sigma_1 - \sigma_3(r) \) is the extending brittle layer strength.

For the ductile layer, the strength is:

\[\sigma_1 - \sigma_3(d) = 2 \left(\eta \frac{V}{h_d} \right) (\text{Equation 3.3}) \]

where \(\sigma_1 - \sigma_3(d) \) is ductile layer shear strength, \(\eta \) is ductile layer viscosity, \(V \) is pulling velocity and \(h_d \) is ductile layer thickness.

These equations produce the rheological profiles shown in Figure 3. These strength profiles apply only to the very early stages of deformation in each experiment.

3.4 Scaling

Scaling of our analogue models to their natural prototypes was based on Ramberg’s (1981) principles of maintaining similarity in the geometry of the structures, the kinematic evolution of the models, and the rheology of the crust in each model run. In the brittle/ductile models, the 2.4 cm thick model corresponds to 15 km (Persaud et al., 2015) to 25 km (Lizarralde et al., 2007) of upper and lower continental crust in the GoC. This results in a prototype to model ratio \(T = T_p / T_m \) of 0.625 x 10^7 to 1.041 x 10^7, meaning 1 cm in the experiment equals between 6-10 km in nature. In the brittle-only configuration, the 4 cm of model thickness correspond to about 4-5 km of oceanic crust near the DFZ (Phethean et al., 2016), with a ratio of 1x10^6. To scale the experimental velocity, we use the strain rate ratio between the natural example and the model, \(\dot{\gamma}_p / \dot{\gamma}_m \), where \(p = \) prototype, \(m = \) model, \(\dot{\gamma} = V / T_d \), \(V \) = velocity and \(T_d \) = ductile layer thickness. The N. GoC has had a relative plate velocity of 30-50 mm/a for at least 12 Ma (Brune et al., 2016), and the thickness of the crust before extension is estimated at 10-15 km in the north to 20-25 km in the South (González-Fernández et al., 2005; Lizarralde et al., 2007). The strain rate ratio is thus 2.2-8.8 x 10^{-3}, so 5 cm/hr corresponds to 13-50 mm/a in nature, and 10 cm/hr to 25-100 mm/a.

3.5 Limitations

Our model does not have 100% orthogonal motion in the first centimetre of deformation. However, when scaled to the natural examples, the deviation (approximately 0.5°-1°) would still be classified as an orthogonal rift within experimental limits. For the brittle/ductile configuration, the experimental runs are stopped before the ductile layer is ruptured.
completely. In nature that would translate to the moment before continental rupture. Thus strictly speaking, the structures created are not transform faults but strike-slip faults or shear zones that would then be classified as transform faults after the onset of rupture. However, the transpressional and transtensional structures would remain imprinted on the margins, indicating past plate motion changes. Since our models represent only the crust, we are obliged to assume that the mantle underneath accommodates this motion. As in most brittle/ductile analogue models, there is no isostatic compensation, which contributes to the differences between the natural examples and our models (Schellart & Strak 2016). Finally, we do not account for the effects of erosion or heat transfer between the layers.

4 Results

We describe the fault kinematic evolution in the experiments, based on observations from top-view time-lapse images (Figures 4, 5, and 6) and cross-sections from the end of each model run. We use the topography derived from the surface scanning in order to identify normal/reverse motion in faults and the pink marker lines in the top-view time-lapse images to identify strike-slip motion and temporal relationships between faults.

4.1 Experiment 1 (weak brittle-ductile coupling)

4.1.1 Orthogonal stage

Transtension: After ~1.8 cm of orthogonal motion, a series of dextral Riedel (R) faults develop from the trailing edge of the plate, propagating towards the rift (Figure 4e). A series of higher angle shear structures develop near the front of the moving plate boundary, potentially representing P shears (Tchalenko, 1970). The development of en-echelon strike-slip faults in this broad zone forms the initial transtensional shear margin. This zone is wider further away from the rift, with a maximum width of ~4 cm. Closer to the rift, there is no visible surface rupture, but localisation of this motion on incipient faults can be seen from the displacement of the pink marker lines.

Transpression: At the other boundary, fault formation appears to be incipient throughout, with no surface expression apart from displacement of marker lines (Figure 4f, n). However, in the outer part of the plate boundary, a thrust front appears to form. This is due to the freedom of movement of the plate, which has already started rotating to produce the first transpressional features.

Rift: The rift zone in the back is focused on two main faults and has similar width throughout (Figure 4m, n).

4.1.2 Rotation Stage

Transtension (start of rotation): After 2.5 cm of movement, the plate reaches the mechanical elbow, initiating rotation. The P shears described in the orthogonal stage now develop a normal-oblique slip character (Figure 4g). New strike-slip faults also form which cross-cut older structures to accommodate the rotating motion vector. The surface expression
of horizontal motion propagates backwards in a diffuse zone ~5 cm wide as a series of strike-slip faults. On the fixed part of the experiment, the outermost faults in the transtension zone start to develop a normal-oblique slip character, as they no longer accommodate exclusively horizontal motion, and distinct fault scarps begin to form along them (Figure 4g). The topography change (Figure 4o) indicates that the biggest depression lies at the front end of the moving plate, further from the pole of rotation, where plate separation is much larger.

Transpression side (start of rotation): Here, horizontal motion is accommodated by one main fault, which displays an oblique-reverse component (Figure 4h). Similar to the transtension side, the locus of deformation is focused near the front end of the moving plate, where plate overlap is significantly greater, resulting in a higher degree of compression (Figure 4p).

Transtension side (end of rotation): After approximately another 2.5 cm of movement (5 cm total), displacement takes place along a narrow zone of strike-slip faulting, the principal displacement zone (PDZ) (Figure 4i). The PDZ now extends back to the rift-transform intersection (RTI) and is encased on both sides by oblique-normal faulting (Figure 4i). The topography shows further deepening occurring here (Figure 4q).

Transtension side (end of rotation): At the end of the 7° plate rotation (Figure 2c), horizontal and vertical motion is still accommodated by the same two faults created at the start of the rotation phase (Figure 4j). Between those two faults, the total model thickness has increased by around 45% (Figure 4r).

Rift: The rift starts to develop an oblique character during the rotation, with the initiation of curved faults on its flanks (mainly on the transtensional side) (Figure 4g, i). By the end, it is already asymmetrical, ~ 4 cm wide at the transpressional RTI and ~6 cm at the transtensional RTI (Figure 4o-r). Further extension in the rift zone now propagates behind the initial rift zone (closer to the fixed plastic sheet) through a new graben (Figure 4i).

4.1.3 Final plate vector stage

Transpression side: The plate now has its final plate motion vector. After 2 cm of motion (7 cm in total), the PDZ is clearly more developed, with strike-slip faults extending all along the edge of the moving plate (Figure 4k). The majority of the P shears (with the exception of those adjacent to the RTI) are now oblique-normal, shown by the presence of fault scarps (Figure 4k, s).

Transpression side: The zone of transpression is now cross-cut by a series of strike-slip faults with clear surface expressions that accommodate horizontal motion between the two main thrust fronts (Figure 4l). Furthermore, at the inside corner of the RTI, a triangular-shaped series of normal faults has developed, bounded by a strike-slip fault. Reverse faulting appears
to have stopped, and the motion is now purely horizontal with the original uplifted zone cross-cut by the newly formed strike-slip faults (Figure 4t).

Rifting: The new oblique rift is now very asymmetrical, with the part near the transtensional RTI >10 cm wide, while the part in the transpressional RTI is ~7 cm (Figure 4s, t). Topography (Figure 4s) shows the locus of deformation focused in a 1 cm deep depression near the transpressional RTI. New faults have formed at the back of the rift zone in the newly added sediments to accommodate the continuing extension. These faults appear to be oriented orthogonally to the new extension direction vector. The arcuate faults in the back now extend the whole length of the rift. (Figure 4k, l).

4.2 Experiment 2 (strong brittle-ductile coupling)

4.2.1 Orthogonal stage:

Transtension side: After ~1.8 cm of orthogonal motion, a series of dextral Riedel (R) faults develops from the edge of the moving plate, propagating towards the trailing edge of the plate (Figure 5e). The first structure in the bottom of the panel is boundary-related, and thus is not interpreted as an R fault. The initial transtensional shear zone is ~4 cm wide throughout.

Transpression side: Any strike-slip faulting appears to be incipient and is only observable in the displacement of the pink marker lines (Figure 5f). However, the topography shows a slight rise of 3-5 mm, indicating the initiation of transpression in the area due to free plate movement (Figure 5n).

Rift: Rifting over the VD is considerably wider this time, and is focused in three main fault zones. The width of the rift is ~5 cm with curved faults developing at the edges (Figure 5e, f, m. and n).

4.2.2 Rotation Stage

Transtension side (start of rotation): After 2.5 cm of approximately orthogonal movement, the plate reaches the mechanical elbow, initiating rotation. A series of higher angle shear structures has developed, potentially representing P shears (Figure 5g). These are oblique-normal, as there are clearly visible fault scarps along them (Figure 5o). A few are more pronounced towards the RTI, displaying a horsetail splay character (Figure 5g). A PDZ develops at this stage, comprising a series of strike-slip faults aligned from the front to the trailing end of the moving plate, accommodating horizontal motion. Figure 5o shows that the deepest depression is located at the front end of the moving plate.

Transpression side (start of rotation): Here, horizontal motion is accommodated by an oblique-reverse fault and a series of cross-cutting strike-slip faults that are parallel to sub-
parallel to the plate motion vector (Figure 5h). From the cross-cutting relationships between these strike-slip faults, it can be inferred that those parallel to the current plate vector are the youngest. Furthermore, a series of horsetail splays starts to develop adjacent to the RTI corner (Figure 5h).

Transtension side (end of rotation): After approximately another 2.5 cm of plate movement, the PDZ has followed the moving plate’s vector change through the development of new motion-parallel en-echelon strike-slip faults, at a 7° orientation to the original (Figure 5i). The PDZ is now fully connected to the RTI at the trailing end of the moving plate. The P shears now extend throughout the right flank of the PDZ and display oblique-normal slip characteristics, with scarps visible in the topography and horizontal motion visible in the overhead views (Figure 5q, i). On the fixed side of the experiment, a series of normal faults develops to accommodate the extensional component of the transtensional shear (Figure 5i, q). The total width of the transtensional shear zone is ~8 cm throughout, but the PDZ is much narrower (~2.5 cm).

Transpression side (end of rotation): At the end of the rotation, the transpression zone has been uplifted more than 15 mm, increasing in thickness by about 60% (Figure 5r). More strike-slip faults have developed, with the newest formed parallel to the new plate motion vector, as inferred from their cross-cutting relationships (Figure 5j). Furthermore, near the RTI corner, the horsetail splays have developed further and are now accompanied by two normal faults. Finally, the initial oblique-reverse faults now only accommodate thrusting motion, as interpreted from the overhead views.

Rift: The rift acquires an oblique character during the rotation stage. A series of arcuate faults develops on its sides (mainly on the transtensional side) (Figure 5g, i). By the end of plate rotation, it is clearly asymmetrical, ~7 cm wide at the transpressional RTI and ~12.5 cm wide at the transtensional RTI (Figure 5q, r). Further extension in the rift zone propagates at the back of the initial rift zone (closer to the fixed plastic sheet) through a series of new grabens (Figure 5i, j).

4.2.3 Final plate vector stage

Transtension side: The plate now has acquired its final directional vector. After another 2.7 cm of motion (7.2 cm in total), the PDZ has developed further. The horsetail splays in the RTI are more pronounced and merge with the rift faults, giving the RTI a distinct corner shape (Figure 5k). Topographically, the part of the transtensional shear zone closer to the RTI does not appear to have experienced any significant extension apart from the topography disruptions directly above the faults (Figure 5s).

Transpression side: In the zone of transpressional shear, a series of new motion-parallel faults has developed, similar to those that developed at the end of the rotation stage (Figure 5l). The
two long strike-slip faults between the thrust fronts appear to have accommodated all of the horizontal motion. Furthermore, an extensional triangle has developed in the RTI, bounded by a series of horsetail splays. These horsetail splays display an oblique-normal slip character, as is evident from the topographic depression along them (Figure 5t).

Rifting: The new oblique rift is now very asymmetrical, with the part near the transtensional RTI >13 cm wide, while the part in the transpressional RTI is ~7-8 cm (Figure 5s, t). Extension is focused in an elongated trough near the transtensional RTI (Figure 5s). Continuing extension is accommodated by newer faults forming at the back of the rift zone. These faults appear to be orthogonal to the original orthogonal plate vector, but curve at the ends (Figure 5k, l).

4.3 Experiment 3 (brittle only)

4.3.1 Orthogonal stage

Transtension side: After ~1.8 cm of orthogonal motion, a series of dextral Riedel faults has developed from the edge of the moving plate to the RTI (Figure 6e). These Riedel faults define a series of en-echelon pull-aparts whose depressions can be seen in Figure 6i. The initial transtensional shear zone is a constant width of ~3 cm (Figure 6e).

Transpression side: Any faulting motion appears to be incipient and only observable in the displacement of the pink marker lines (Figure 6f). However, the topography shows a slight elevation increase of 1-2 mm in a broad triangular zone, indicating the very early stages of transpression due to free plate movement (Figure 6n).

Rift: Rifting initiates over the VD within a relatively narrow, symmetrical zone of extension. Two curved main faults are visible in the transpressional RTI side (Figure 6e, f).

4.3.2 Rotation stage

Transtension side (start of rotation): The moving plate intercepts the mechanical elbow after 2.5 cm of orthogonal movement. The en-echelon pull-apart basins now become more pronounced and start to merge, visible as undulations in topography (Figure 6o). The boundary of the pull-apart basins on the moving plate side is defined by a series of connecting strike-slip faults, representing the PDZ. The extensional component of this transtensional zone is accommodated by a series of oblique-normal and normal faults, representing the other boundary of the pull-apart basins (Figure 6g, o).
Transpression side (start of rotation): Two main thrust fronts develop over the overlapping plate boundary (Figure 6p). The fault situated above the moving plate displays an oblique-reverse slip character (Figure 6h). Between these two reverse faults, a series of strike-slip faults starts to develop, forming the initial RTI.

Transtension side (end of rotation): After approximately another 2.5 cm of plate movement, the PDZ has rotated a total of 7°, following the moving plate’s vector change through the development of new motion-parallel strike-slip faults (Figure 6i). The PDZ is now fully connected to the RTI, forming a corner shape. The pull-apart basins have now almost completely merged, with similar depth across them (Figure 6q). The oblique-normal faults in the flanks of the fixed side of the experiment have also developed further (Figure 6i, q).

Transpression side (end of rotation): By the end of the rotation, new strike-slip faults have developed parallel to the new plate vector. The second of the two original thrust fronts (Figure 6h) has now also acquired an oblique component, as indicated by the displacement of the pink marker lines (Figure 6j). Topographically, the area has been thickened by ~25% between the two main thrust fronts (Figure 6r). Finally, another thrust front has formed at the right side of the transtensional shear zone (Figure 6j), potentially a boundary effect.

Rift: The rift acquires an oblique character in the rotation stage, with a series of arcuate faults developing on both sides (Figure 6g, h, i, and j). The obliquity leads to the rift being ~7 cm wide at the transpressional RTI and ~11 cm wide at the transtensional RTI (Figure 6i, j).

4.3.3 Final plate vector stage

Transtension side: The plate now has acquired its final directional vector, and we observe only horizontal motion. After 2 cm of further motion (7 cm in total), the PDZ is in the same location, following the motion of the moving plate (Figure 6k).

Transpression side (end): The new motion has now produced three long sub-parallel strike-slip faults that cross-cut the pre-existing ones. (Figure 6l). These faults extend from the front end of the moving plate to the RTI.

Rifting: The oblique rift is now more asymmetrical, >12 cm wide near the transtensional RTI and ~8 cm in the transpressional RTI (Figure 6k, l, s, and t).
5 Discussion

5.1 Comparison with natural examples

5.1.1 Gulf of California

Figure 7. Comparison between Experiment 2 and seismic cross-sections from the N. Gulf of California. a: Surface fault patterns in the N. GoC (modified after Persaud et al., 2003 and Martín-Barajas et al., 2013). b: Surface fault patterns in Experiment 2. c, d, e: Comparison between a seismic cross-section across the Lower Delfín Basin (LDB) spreading centre and a section across the rift of Experiment 2. MRF: Main Rift Fault. f, g, h, i, j: Comparison between a seismic cross-section across the Ballenas Transform Fault Zone (BTFZ) and two sections across the transtensional RTI of Experiment 2. Original model layering from bottom to top: Black, Yellow, Blue, Pink. In figures e and j, the blue-shaded alternating white, black, and pale pink top layers represent the sediments added during the model run. The brown and white/cream layers above the models are the protective layer added before cutting. Seismic interpretations from the UL9905 high-resolution reflection seismic dataset (Stock et al., 2015). Bathymetry from GMRT Grid Version 3.3. For higher resolution uninterpreted model sections, see Figures S13-S15.

We use the high-resolution UL9905 seismic dataset (Stock et al., 2015) to compare profiles in the northern GoC with profiles through the transtensional side of Experiment 2 (Figure 7). The N. GoC is thought to have undergone a plate re-arrangement around 3 Ma, which corresponds to Unit 8 (yellow in Figure 7c, f) (Martín-Barajas et al., 2013). The seismic dataset images the first few km of crust, but it is reasonable to assume that the structures extend deeper and thus would scale to our models. The early stages of evolution of the transtensional side of Experiment 3 (Figure 6e, g, and i) are also compared with the evolution of the whole GoC area from 12.5 Ma onwards (Figure 1d, e, and f).

The fault patterns overall appear similar. In the northern GoC, there is a series of sigmoidal normal faults at the NW edge of the BTFZ (Figure 7a), similar to the series of horsetail splays formed at the end of Experiment 2, which appear to almost merge with the rift (Figure 7b). These sigmoidal faults accommodate the discrepancy between the plate motion vector and the direction of extension.

We next compare the change in fault motion and development due to the change in plate motion. In our model, faults that were strike-slip during the initial orthogonal phase (Figure 5g) became either oblique-normal or purely normal by the end of the rotation. Horizontal motion became concentrated on faults aligned with the new plate vector (Figure 5i, k). This is analogous to examples of large transform faults in the northern GoC. These faults, such as the Tiburon fault, accommodated plate motion before the change in extension direction (Figure...
They were then abandoned because of this rotation and became either oblique-normal or purely extensional structures.

We then compare a seismic profile across the Lower Delfin Basin rift (Figure 7c) with a profile across the rift in Experiment 2 (Figure 7d, e). In both, rifting is controlled by one major rift fault (MRF), accompanied by a series of antithetic faults on the opposite side (Figure 7c, d, e). A series of smaller grabens has also developed in the back of each rift. This is located directly NW of the MRF in Figure 7c for the northern GoC and to the left of the MRF in figure 7d, e. The syn-sedimentary sequence is thickest over the main part of the rift. This is represented by the blue-shaded alternating white, black, and pale pink units above the pink layer in the model (Figure 7d, e) and the yellow layer Unit 8/Top Pliocene in the seismic cross-section (Figure 7c) (Martin-Barajas et al., 2013).

Finally, we compare the evolution of the whole GoC since 12.5 Ma with the surface evolution of the transtensional side of Experiment 3. We see a direct correlation in how the transtensional boundary evolves when a change in extension direction is imposed. In the beginning, Bennet et al. (2013) argue that shearing was localised in en-echelon dextral strike-slip shear zones (Figures 1d and 6c). These shear zones evolved into pull-apart basins that formed the proto-Gulf (Figures 1e and 6g). Finally, when the extension direction changes, the margins of the GoC began to drift apart at varying rates (Figures 1f and 6i).

5.1.2 Tanzania Coastal Basin

The TCB underwent a plate re-organisation ~150 Ma, resulting in the formation of the DFZ. In both Experiment 3 (Figure 8b) and the TCB (Figure 1g-i and 8a), zones of compression develop adjacent to the main strike-slip structures as the motion changes, and the pattern of strike-slip faults evolves to accommodate the changed angle. In Experiment 3, some of the initial strike-slip faults are abandoned after the change in motion (Figure 6j, l, 8a, b – pink faults). Those that remain active reorient themselves by developing kinks, leading to a curved surface expression that is not completely aligned with the final plate motion (Figure 6l, 8a, b – red faults). The DFZ shows a similar pattern: the earliest transform faults have been abandoned, and the DFZ has a slightly kinked, ‘open S’ shape, reflecting this two-stage history (Figure 8a, Phethean et al., 2016).

The deep seismic cross-section from the DFZ (Figure 8c) shows clear evidence for intra-plate compressional deformation. The same coexistence of strike-slip and compression is apparent in the two profiles across the tranpressional side of Experiment 3 (Figure 8d, e, f, g). During the plate rotation in Experiment 3, the compressional structures form to accommodate that component of motion (Figure 6h, j). These structures stop developing after rotation has ceased, when only the large strike-slip faults are active (Figure 6i). We can thus infer that intra-oceanic crustal thrusting may have occurred in the TCB to accommodate the plate motion change around 150 Ma, prior to the complete development of the DFZ. This is further
supported by Sauter et al., (2018), who date the uppermost syn-deformational sediments (Figure 8c) as pre-Aptian (125 Ma). In the model cross-sections (Figure 8 d, e, f, g), thrusts develop on both sides of the strike-slip zone, but this is not observed in the seismic example (Figure 8c). This is because the crust to the east of the DFZ is much younger and formed as the MOR passed this location, marking the end of deformation in this region. During the Jurassic, there probably was deformed crust on both sides of the DFZ here, but the eastern side moved southwards with Madagascar and is now likely located in the Morondava Basin.

5.2 Further Discussion

Our results provide good first-order agreement with natural transform plate boundaries that have experienced a change in relative motion during their evolution, resulting in either transpression (TCB) or transtension (GoC). During the initial orthogonal phase, the structures that develop are similar to those observed by Basile and Brun (1999). Faster plate velocity results in strong brittle/ductile layer coupling and diffuse rifting (13 cm at its maximum width) (Figure 5s), while slower rifting velocity results in weak brittle/ductile coupling and narrower rifting (10 cm at its maximum width) (Figure 4s). Other parameters that can affect the model rheology and thus the rift width, such as the thickness of the brittle layer (Vendeville et al., 1987), are held constant, so the difference is due to the strain contrast between the layers being minimised when a higher velocity is imposed (Brun, 2002). The same appears to be the case even when rifting is oblique.

The opposite appears to be the case in the transtensional and transpressional shear zones. The transtensional shear zone in Experiment 1 reaches widths between 5-10 cm (Figure 4s), while in Experiment 2 it has a constant width of about 5-6 cm throughout (Figure 5s). Similarly, the transpressional zone of Experiment 2 (Figure 5t) is 50% narrower than the one in Experiment 1 (Figure 4t). This corresponds to natural transform examples where faster transforms have narrower deformation zones (see Table 1 of Mauduit & Dauteuil, 1996, for spreading velocities and corresponding transform widths). However, all three experiments produce wide zones of oblique lateral deformation, recording several stages of fault evolution. This is consistent with the numerical modelling of Le Pourhiet et al. (2017), who argue that transforms experiencing obliquity do not develop as line segments, but form diffuse zones ~100 km wide recording several phases of deformation prior to oblique break-up.

The brittle-only experiment shows good correlation with the evolution of the Davie Fracture Zone. It supports the suggestion by Phethean et al. (2016) that ~150 Ma a change occurred in the plate motion that was accommodated by compression, with previous transforms cross-cut by a much larger structure that became the Davie Fracture Zone. In our experiment, the initial strike-slip faults become inactive once the final motion vector is established (Figure 6h, j, and l – pink strike-slip faults). Then, horizontal motion is taken up by new cross-cutting faults parallel to the final plate vector (Figure 6h, j, and l – red strike-slip faults).
Although the DFZ formed in oceanic crust, there is a strong similarity with the surface features developing on the transpressional part of Experiment 2 (Figure 5i). In particular, a large sigmoidal fault develops in Experiment 2, similar in shape to the DFZ (long red fault in Figure 5i). This could be explained by the strength profile of Experiment 2 (Figure 2b), where the maximum strength of the brittle layer and the ductile layer are almost identical, similar to oceanic lithosphere. Although the model is not scaled to represent oceanic lithosphere, this might potentially explain the morphological similarity.

Another natural example comparable to Experiment 2 is the Gulf of Aden. The Alula-Fartac Transform Fault is not characterised by a single narrow transform valley, but rather by two sub-parallel 180 x 10 km troughs that join two offset ridge segments (d’Acremont et al., 2010). The spreading direction has recently rotated counterclockwise, resulting in extension in the transform basins (d’Acremont et al, 2010). This results in the transform zones migrating in time and space, similar to Experiment 2.

In the transpressional sides of Experiments 1 and 2, we see a thickness increase in the models of approximately 45% and 60%, respectively (Figures 4t and 5t). Based on our experimental scaling, the crustal thickness range for these experiments is 15-25 km. Such a thickness increase would then imply real-world elevation changes of ~7-11 km for Experiment 1 and 9-15 km for Experiment 2. However, because our scaling is based on the density contrast between the brittle and ductile layers, we need to apply a topographic correction factor C_{Topo} (Schellart & Strak 2016):

$$C_{\text{Topo}} = \frac{\rho_m(\rho_n - \rho_m)}{\rho_m(\rho_n - \rho_m)}$$

(Equation 6.4)

where ρ_m is the model’s lower crust density (0.970 g/cm3), ρ_n is the natural example’s lower crustal density (2.9 g/cm3), ρ_{m1} is the model’s upper crustal density (1.3 g/cm3) and ρ_{n1} is the natural example’s upper crustal density (2.7 g/cm3).

Applying equation (4) to our experiments, C_{Topo} is ~0.209, which would reduce the thickness changes to physically reasonable values of 1.4-2.3 km for Experiment 1 and 1.9-3.1 km for Experiment 2. In addition, the analogue models do not include isostatic compensation, which would further reduce the amount of crustal thickening expressed as topographic relief, perhaps by up to a factor of 2 (Schellart & Strak, 2016). Erosion would also reduce the topography.

Nonetheless, our experiments show that overlapping, transpressional transform margins are accompanied by topographic highs parallel to the plate motion. Features such as marginal ridges or plateaus (Mercier de Lépinay et al., 2016) are observed at transform margins that have experienced overlapping plate motions such as the Exmouth Plateau (Whittaker et al., 2019).
2016), the Romanche Fracture Zone (Davison et al., 2016), and, in our example, the Davie Ridge. As Euler poles typically migrate over a few Ma, other examples of these tranpressive or transtensional feature might be preserved where oceanic fracture zones change curvature, indicating a past change in spreading direction (e.g. Iaffaldano et al, 2012; Schettino 2015).

6 Conclusions

A series of experiments designed to simulate the effects of a change in plate motion on transform margins and rift-transform intersections produces structural patterns and topographic effects that show good agreement with natural examples. They provide an understanding of the fault geometries and kinematics and the temporal and spatial relationship of structural features that develop in transtensional and tranpressional margins. These are caused by underlap or overlap on the transform margin when the plate motion vector changes.

In transtensional margins, such as the Gulf of California or the Gulf of Aden, we find oblique-normal faults that have developed from original strike-slip faults. These oblique-normal faults accommodate the extensional component of the plate rotation. As the plate vector changes, the PDZ’s direction also rotates to accommodate the new horizontal motion.

In tranpressional margins, such as the Tanzania Coastal Basin, we report thrust fronts developing to accommodate plate overlap. These thrust fronts are also often oblique and are accompanied by strike-slip faults. As motion in the new direction continues, newer strike-slip faults develop and cut through the pre-existing fabric. This is observed both in our lab experiments and in the natural example of the Davie Fracture Zone.

Acknowledgements

The unprocessed data supporting the analysis and conclusions are available online through the open access repository: [http://doi.org/10.5281/zenodo.1321232]. The work contained in this paper contains work conducted during a PhD study undertaken as part of the Natural Environment Research Council (NERC) Centre for Doctoral Training (CDT) in Oil & Gas [grant number NEM00578X/1]. It is co-sponsored by Durham University whose support is gratefully acknowledged. LMK is supported by a Royal Society of Edinburgh Personal Research Fellowship funded by the Scottish Government. We thank Antoine Auzemerry for assisting with the experimental set-up and the laser scanning operation and the editor L. Jolivet, the associate editor, A. Schettino, and two anonymous reviewers for their helpful comments.

References

© 2019 American Geophysical Union. All rights reserved.

© 2019 American Geophysical Union. All rights reserved.

Weijermars, R. (1986c). Finite strain of laminar flows can be visualized in SGM 36-polymer. Naturwissenschaften 73, 33.

Table 1. Model parameters.

<table>
<thead>
<tr>
<th>Experiment Number</th>
<th>Model type</th>
<th>Brittle layer thickness (cm)</th>
<th>Ductile layer thickness (cm)</th>
<th>Extension Velocity (cm/hr)</th>
<th>Total extension (cm)</th>
<th>Rotation angle (°)</th>
<th>Scaled thickness (km)</th>
<th>Scaled velocity (cm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Brittle/ductile</td>
<td>1.6</td>
<td>0.8</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>14.4-24 (continental)</td>
<td>~2.5 (range: 1.5-5)</td>
</tr>
<tr>
<td>2</td>
<td>Brittle/ductile</td>
<td>1.6</td>
<td>0.8</td>
<td>10</td>
<td>7.2</td>
<td>7</td>
<td>14.4-24 (continental)</td>
<td>~5 (range: 3.1-10)</td>
</tr>
<tr>
<td>3</td>
<td>Brittle Only</td>
<td>4</td>
<td>-</td>
<td>Strain rate independent</td>
<td>7</td>
<td>7</td>
<td>4-5 (oceanic)</td>
<td>Velocity independent</td>
</tr>
</tbody>
</table>
Figure 1. Schematic interpretation of the evolution of a: a transtensional margin and b: a transpressional margin. c-f: evolution of the Gulf of California from 20 Ma to present (modified from Bennett et al., 2013). g-l: evolution of the Tanzania Coastal Basin between 182-125 Ma (Reeves et al., 2016; Phethean et al., 2016; Tuck-Martin et al., 2018).
Figure 2. Model array: a) initial configuration and dimensions, b) orthogonal motion stage, c) end of rotation stage, d) new oblique plate motion vector stage.
Figure 3. Model strength profiles: a) 5 cm/h model run (weak brittle/ductile coupling), b) 10 cm/h model run (strong brittle/ductile coupling) c) brittle only run (oceanic crust). White background: brittle layers, grey background: ductile layers.
Figure 4. Experiment 1 (5 cm/hr). a-d: Surface feature development. e-l: Surface feature development (interpreted). m-t: Topography development. Figure split into transtensional (panels e,g,i,k,m,o,q,s) and transpressional side (panels f,h,j,l,n,p,r,t). PDZ: Principal Displacement Zone, RTI: Rift-Transform Intersection. Note the evolution of normal faulting (blue faults) in the top of panels e-l. In the mid-section of each panel, note the evolution of transtensional (pink/purple faults) and transpressional (pink/green faults) deformation zones. The red faults in panel l correspond to the last strike-slip faults formed in the experiment. For higher resolution un-interpreted top views, see Figures S1-S4.
Figure 5. Experiment 2 (10 cm/hr). a-d: Surface feature development. e-l: Surface feature development (interpreted). m-t: Topography development. Panels and abbreviations as in Figure 4. Note the evolution of normal faulting (blue faults) in the top of panels e-l. In the mid-section of each panel, note the evolution of transtensional (pink/purple faults) and transpressional (pink/green faults) deformation zones. The red faults in panel l correspond to the last strike-slip faults formed in the experiment. For higher resolution un-interpreted top views, see Figures S5-S8.
Figure 6. Experiment 3 (Brittle Only). a-d: Surface feature development. e-l: Surface feature development (interpreted). m-t: Topography development. Panels and abbreviations as in Figure 4. Note the evolution of normal faulting (blue faults) in the top of panels e-l. In the mid-section of each panel, note the evolution of transtensional (pink/purple faults) and transpressional (pink/green faults) deformation zones. The red faults in panel l correspond to the last strike-slip faults formed in the experiment. For higher resolution un-interpreted top views, see Figures S9-S12.
Figure 7f, g, h, i, j compares two sections across the dextral transform adjacent to the RTI in Experiment 2 with a seismic cross-section across the dextral Ballenas Transform Fault Zone. The strike-slip motion is accommodated by a main transtensional shear zone. Deformation is partitioned, with horizontal motion taken up by strike-slip and oblique-normal faults (7f, g, h, i, j). The latter also accommodate the extensional component of the tectonic regime, producing a topographic depression. This extension shifts northward with time, reflected in the northward migration of the locus of sedimentation. A similar pattern is observed in the syn-rift layers of our models (7g, h, i, j). In the northern GoC, a series of oblique-normal faults on the Baja California peninsula also accommodates that oblique motion (Bennett & Oskin, 2014).
Figure 8. Comparison between the TCB and Experiment 3. a, b: Surface fault patterns in the TCB and Experiment 3, respectively. c: Schematic cross-section across the DFZ. d, e, f, g: Cross-sections across the transpressional zone of Experiment 3. TCB configuration modified from Phethean et al., 2016. Seismic interpretation in c is re-interpreted from Sauter et al., (2018). In panel b, the red faults correspond to the last strike-slip faults formed. Syn-tectonic sedimentation above the main structures is a protective layer. For higher resolution un-interpreted experiment sections, see Figures S16-S17.