White matter lesion intensity and cognitive ability: relationships in youth and old age

M. Valdés Hernandez1, L. Penke2, S. Muñoz Maniega1, N. Royle1, C. Murray3, A. J. Gow2, I. J. Deary2, M. E. Bastin1, and J. M. Wardlaw1

1Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom; 2Psychology, University of Edinburgh, Edinburgh, United Kingdom; 3Medical Physics, University of Edinburgh, Edinburgh, United Kingdom

Introduction

In this work we investigate relationships between white matter lesion (WML) intensity and measures of cognitive ability obtained in youth and old age in the Lothian Birth Cohort 1936 (LBC1936). This unique cohort of 1091 healthy people, who undertook cognitive testing at age 11 and again at age 70 years [1], are currently undergoing brain MRI at age 71 to 73 years. Using structural MRI data, WML volumes were measured and their degree of severity classified according to their appearance on MRI, specifically intense (iWML) and less intense (LiWML). We examine how the distribution, extent and severity of WML load relates to cognitive ability in youth and old age.

Methods

Subjects: The study population was the first 250 participants of the LBC1936. These volunteers underwent structural MRI, specifically T2-, T1-, T2*- and FLAIR-weighted sequences, and a T1-weighted volume scan (3D T1W) on a GE Signa LX 1.5T clinical scanner.

Cognitive tests: Subjects’ IQ was tested at age 11 in June 1947 using a version of the Moray House Test (MHT) of verbal reasoning. Between 2004 and 2007 they took a battery of mental tests, including the same version of the MHT they took approximately 60 years earlier, a subset of WAIS-III performance tests, and measures of information processing speed (simple and 4-choice reaction times, and inspection time).

MRI acquisition: Apart from the FLAIR sequence which had a slice thickness of 4 mm, all three structural scans shared the same contiguous slice locations, field-of-view (256 × 256 mm), reconstructed acquisition matrix (256 × 256) and slice thickness (2 mm), giving co-registered whole brain volumes with resolution of 1 × 1 × 2 mm. The 3D T1W scan was aligned with the long line of the hippocampus and had 1.3 mm thick slices.

Image processing: Using FSL (http://www.fmrib.ox.ac.uk) tools, the structural sequences were pre-processed to extract the brain and remove bulk patient motion. After interpolation of the FLAIR volume to 1 × 1 × 2 mm resolution, regions of normal appearing white matter (NAWM) and WMLs were identified using the MCMxxxVI (1936) brain segmentation tool [2]. Briefly, the 3D T1W and T2W volumes were registered, modulated in green and red channels respectively, fused and colour-dithered by minimum variance quantisation to extract NAWM. The same process was performed with T2*-W and FLAIR volumes to segment WMLs. The resulting NAWM and WML masks allowed the identification of iWMLs, visible in both T2W and FLAIR, LiWML, visible in FLAIR only, and NAWM (see Fig. 1). The iWML and LiWML masks from 89 individuals with significant WML load (excluding those with stroke) were normalized into standard space using FNIRT. Standard space group maps of iWMLs and LiWMLs were created by summing the normalized binary masks (see Fig. 2). Total brain volume was determined from the T1*W volumes.

Statistical analysis: Correlations between WML volumes and measures of cognitive ability were assessed using Pearson’s r. Since the former were strongly skewed, a log-transform was used. General factors of cognitive ability (g), speed of information processing (gmemory), and memory (gmemory) were extracted from the WAIS-III and reaction time tests.

Results

The group maps show that the distribution of iWMLs is predominant in frontal regions while LiWMLs are mainly located posteriorly. The maximum frequency of iWMLs is located in the periventricular regions adjacent to the frontal horns of the lateral ventricles, while the maximum frequency of LiWMLs spreads between the midbody of the corpus callosum and the superior and posterior corona radiate (Fig. 2). Both are highly correlated (r = 0.70), indicating subjects with high iWML load also have high LiWML load. Table 1 shows that iWMLs have a stronger relationship with cognition than LiWMLs in youth (r = -0.22 and -0.19) and old age (r = -0.34 and -0.28).

Discussion

These preliminary results indicate that this methodology is useful for characterizing WMLs in the ageing brain and determining their relationship with cognition. Our findings agree with the “frontal ageing” hypothesis which predicts that age-related brain change would selectively impact frontal regions [3]. They also show that there are relationships between early life cognitive ability and disease burden in old age.

<table>
<thead>
<tr>
<th>% WML per BT volume %</th>
<th>% iWML per BT</th>
<th>% LiWML per BT</th>
<th>% iWML in BT, LiWML controlled</th>
<th>% LiWML in BT, iWML controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age 11 IQ (MHT)</td>
<td>-0.18**</td>
<td>-0.22*</td>
<td>-0.19*</td>
<td>-0.13</td>
</tr>
<tr>
<td>Age 70 IQ (MHT)</td>
<td>-0.21**</td>
<td>-0.34**</td>
<td>-0.28**</td>
<td>-0.21*</td>
</tr>
<tr>
<td>g</td>
<td>-0.20**</td>
<td>-0.26**</td>
<td>-0.26**</td>
<td>-0.12</td>
</tr>
<tr>
<td>g memory</td>
<td>0.13</td>
<td>0.24</td>
<td>0.10</td>
<td>0.24**</td>
</tr>
</tbody>
</table>

Table 1. Pearson correlations for WMLs. (p < 0.05*, p < 0.01**; BT: total brain tissue volume)

Acknowledgements

MVF, SMM and CM are funded by the MRC and are part of the Help the Aged-funded Disconnected Mind project (http://www.disconnectedmind.ed.ac.uk/). The BBRC, EPSRC, ESRC, MRC and University of Edinburgh provide core funding for the Centre for Cognitive Ageing and Cognitive Epidemiology which supports this research (http://www.ccace.ed.ac.uk/). MRI data were collected at the SFC Brain Imaging Research Centre, University of Edinburgh (http://www.sbirc.ed.ac.uk/); part of the SINAPSE Collaboration (http://www.sinapse.ac.uk). SINAPSE also part funds JMW.

References