Guidance to 2018 good practice:

Citation for published version:

Digital Object Identifier (DOI):
10.1186/s13601-019-0252-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Clinical and translational allergy

Publisher Rights Statement:
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Guidance to 2018 good practice: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma

Abstract

Aims: Mobile Airways Sentinel Network (MASK) belongs to the Fondation Partenariale MACVIA-LR of Montpellier, France and aims to provide an active and healthy life to rhinitis sufferers and to those with asthma multimorbidity across the life cycle, whatever their gender or socio-economic status, in order to reduce health and social inequities incurred by the disease and to improve the digital transformation of health and care. The ultimate goal is to change the management strategy in chronic diseases.

Methods: MASK implements ICT technologies for individualized and predictive medicine to develop novel care pathways by a multi-disciplinary group centred around the patients.

Stakeholders: Include patients, health care professionals (pharmacists and physicians), authorities, patient’s associations, private and public sectors.

Results: MASK is deployed in 23 countries and 17 languages. 26,000 users have registered.
Introduction

In all societies, the burden and cost of allergic and chronic respiratory diseases (CRDs) is increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system for integrated care with organizational health literacy. MASK (Mobile Airways Sentinel Network) [1] is a new development of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative [2, 3]. It works closely with POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health) [4], and collaborates with professional and patient organizations in the field of allergy and airway diseases. MASK proposes real-life care pathways (ICPs) centred around the patient with rhinitis and/or asthma multimorbidity. It uses mHealth monitoring of environmental exposure and considers biodiversity. With the help of three EU projects (DigitalHealthEurope, Euriphi and Vigour) recently accepted on the digital transformation of health, MASK proposes a second change management strategy. The first one was the ARIA change management associated with the recognition and wide acceptance by all stakeholders of the essential links between rhinitis and asthma. The second one deals with change management of care pathways for rhinitis and asthma [5].

In the context of implementing communication on the digital transformation of health and care, specifically in relation to chapter 5 of the document "Digital tools for citizen empowerment and for person-centred care" [6–8] (Fig. 1) as well as ICT (Information and Communication Technology) solutions (cell phones for patients, inter-operable tablets for health care professionals and a web-based questionnaire for physicians) [1, 9] (Fig. 2). The aim is to develop a change management strategy for chronic diseases [5].

MASK is a patient-centred ICT system [8]. A mobile phone app (the Allergy Diary, now called MASK-air), central to MASK, is available in 23 countries. It has been validated [10] and found to be an easy and effective method of assessing the symptoms of allergic rhinitis (AR) and work productivity [10–13]. MASK follows the checklist for the evaluation of Good Practices developed by the European Union Joint Action JACHRODIS (Joint Action on Chronic Diseases and Promoting Healthy Ageing across the Life Cycle) [14]. One of the major aims of MASK is to provide care pathways [15] in rhinitis and asthma multimorbidity [16] including a sentinel network using the geolocation of users [17]. It can also inform the App users of the pollen and/or pollution risk level in their area, by means of geolocation (Table 1). The practice has been developed for allergic rhinitis (and asthma multimorbidity), being the most common chronic disease globally [18, 19] and affecting all age groups from early childhood to old age. There are several unmet needs that should be addressed in an ICP. Moreover, the lessons learnt will benefit all chronic diseases participating in the 3rd Health Programme to learn more about the 10 good practices and key policy initiatives in the domain of digitally-enabled, integrated, person-centred care, with a view to possible transfer and replication of the presented practices.

The current paper reviews the questions raised during the workshop concerning the good practice on allergic rhinitis and asthma: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma multimorbidity using real-world evidence [1]. This practice is a GARD (Global Alliance against Chronic Respiratory Diseases) demonstration project.

The practice

The practice includes the care pathways defined in 2014 [6–8] (Fig. 1) as well as ICT (Information and Communication Technology) solutions (cell phones for patients, inter-operable tablets for health care professionals and a web-based questionnaire for physicians) [1, 9] (Fig. 2). The aim is to develop a change management strategy for chronic diseases [5].

MASK is a patient-centred ICT system [8]. A mobile phone app (the Allergy Diary, now called MASK-air), central to MASK, is available in 23 countries. It has been validated [10] and found to be an easy and effective method of assessing the symptoms of allergic rhinitis (AR) and work productivity [10–13]. MASK follows the checklist for the evaluation of Good Practices developed by the European Union Joint Action JACHRODIS (Joint Action on Chronic Diseases and Promoting Healthy Ageing across the Life Cycle) [14]. One of the major aims of MASK is to provide care pathways [15] in rhinitis and asthma multimorbidity [16] including a sentinel network using the geolocation of users [17]. It can also inform the App users of the pollen and/or pollution risk level in their area, by means of geolocation (Table 1). The practice has been developed for allergic rhinitis (and asthma multimorbidity), being the most common chronic disease globally [18, 19] and affecting all age groups from early childhood to old age. There are several unmet needs that should be addressed in an ICP. Moreover, the lessons learnt will benefit all chronic diseases participating in the 3rd Health Programme to learn more about the 10 good practices and key policy initiatives in the domain of digitally-enabled, integrated, person-centred care, with a view to possible transfer and replication of the presented practices.

The current paper reviews the questions raised during the workshop concerning the good practice on allergic rhinitis and asthma: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma multimorbidity using real-world evidence [1]. This practice is a GARD (Global Alliance against Chronic Respiratory Diseases) demonstration project.
diseases since rhinitis is considered as a mild disease although it impairs social life, school and work productivity considerably [20]. It is estimated that, in the EU, work loss accounts for 30–100 b€ annually. Moreover, it is essential to consider mild chronic diseases and to establish health promotion and management strategies...
early in life in order to prevent a severe outcome and to promote healthy ageing [21].

Level of care integration

MASK is used for the integration of primary and specialist care, of primary-secondary-tertiary health care, as well as of health and social care for disease management.

Deployment

Many of the GPs that are developed in one region (country) take into account health systems, availability of treatments and legal considerations which makes it difficult to scale up the practice without customization. MASK has taken the opposite direction starting with a tool immediately available in 10 languages and 14 countries and regularly scaled up. Moreover, the tool is included in a generic ICP (Fig. 2) that can be customized easily in any country globally.

Geographical scope of the practice

MASK was developed in English and is currently available in 23 countries and 17 languages (Table 2).

New countries

Deployment is in process in Bolivia, Colombia, Japan and Peru. The involvement of developing countries is needed to offer a practice for middle- and low-income countries that will benefit poverty areas of developed countries and that will be in line with the mission of GARD. Deployment to the US is being discussed with the National Institute for Allergy and Infectious diseases (NIH).

Transfer of innovation of allergic rhinitis and asthma multimorbidity in the elderly (MASK Reference Site Twinning, EIP on AHA)

The EIP on AHA includes 74 Reference Sites. The aim of this Twinning is to transfer innovation from the MASK App to other reference sites. The phenotypic characteristics of rhinitis and asthma multimorbidity in adults and the elderly have been compared using validated mHealth tools (i.e. the Allergy Diary and CARAT [22]) in 23 Reference Sites or regions across Europe, Argentina, Australia, Brazil and Mexico [23].

Individuals/institutions reached

ARIA has been implemented in over 70 countries globally [3], and several governments use the practice. Approximately 26,000 users have registered to the MASK database. 700 patients have been enrolled in the Twinning. Due to privacy, there is no possibility of assessing users who have reported data.

Timeframe

The project was initiated in 1999 during a World Health Organization (WHO) workshop (ARIA) and undergoes continuous developments. The ARIA initiative, commenced during a WHO workshop in 1999 [2], has been further developed by the WHO Collaborating Center

Table 1 The ICT solution

<table>
<thead>
<tr>
<th>App (MASK-air) deployed in 23 countries: TRL9 (Technology Readiness level), Electronic clinical decision support system (ARIA e-CDSS): TRL 7, e-physician questionnaire deployed in 16 countries: TRL9</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASK-air good practice [1, 14]</td>
</tr>
<tr>
<td>5-year work</td>
</tr>
<tr>
<td>App: 26,000 users, 23 countries, 17 languages</td>
</tr>
<tr>
<td>GDPR including geolocation [105]</td>
</tr>
<tr>
<td>GP of the EIP on AHA, follows CHRODIS [14]</td>
</tr>
<tr>
<td>Based on 11 EU grants (MeDALL [106], GA2LEN [107]) including—in 2018—POLLAR [4], VIGOUR, DigitalHealthEurope and Euripi</td>
</tr>
<tr>
<td>From a validated “research” tool (2004-2018) to large scale deployment (2019–)</td>
</tr>
<tr>
<td>Validation with COSMIN guidelines [40]</td>
</tr>
<tr>
<td>Baseline characteristics [12]</td>
</tr>
<tr>
<td>Work productivity [41, 42]</td>
</tr>
<tr>
<td>EQ-SD [43]</td>
</tr>
<tr>
<td>Novel phenotypes of allergic diseases [44]</td>
</tr>
<tr>
<td>Adherence to treatment and novel approaches to inform the efficacy of treatment [45]</td>
</tr>
<tr>
<td>Patient’s organizations and scientific societies involved</td>
</tr>
<tr>
<td>GARD (WHO alliance)</td>
</tr>
<tr>
<td>Presented during WHO and EU ministerial meetings</td>
</tr>
<tr>
<td>Next-generation care pathways meeting (Dec 3, 2018) with the EIP on AHA, POLLAR (EIT Health) and GARD</td>
</tr>
<tr>
<td>47 MASK papers in 12 languages [99, 108, 109]</td>
</tr>
<tr>
<td>Dissemination according to the EIP on AHA [26]</td>
</tr>
<tr>
<td>Transfer of innovation (TWINNING [110])</td>
</tr>
<tr>
<td>Interoperable platform with MASK</td>
</tr>
<tr>
<td>25 RS plus Argentina, Australia, Brazil, Canada, Mexico [99, 108, 109]</td>
</tr>
<tr>
<td>700 patients enrolled</td>
</tr>
<tr>
<td>GDPR solutions being solved</td>
</tr>
<tr>
<td>ARIA e-CDSS [9, 111]</td>
</tr>
<tr>
<td>Interoperable platform with MASK</td>
</tr>
<tr>
<td>Based on an expert meeting</td>
</tr>
<tr>
<td>Electronic version available</td>
</tr>
<tr>
<td>GDPR solutions being solved</td>
</tr>
</tbody>
</table>

Declarations

Developments

- App for home services
- App for sleep
- App for COPD
- App for other chronic diseases

GDPR including geolocation [105]

Interoperable platform with MASK

- 25 RS plus Argentina, Australia, Brazil, Canada, Mexico [99, 108, 109]
- 700 patients enrolled
- GDPR solutions being solved

ARIA e-CDSS [9, 111]

- Interoperable platform with MASK
- Based on an expert meeting
- Electronic version available
- GDPR solutions being solved
for Asthma and Rhinitis (2002–2013). The initial goals (Phase 1) were (1) to propose a new AR classification, (2) to promote the concept of multimorbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and all populations. ARIA has been disseminated and implemented in over 70 countries [3, 19, 24–32]. It was developed as a guideline [19] using the GRADE approach [33–39].

MASK, the Phase 3 ARIA initiative, is focusing on (1) the implementation of multi-sectoral care pathways (2) using emerging technologies (3) with real world data (4) for individualized and predictive medicine (5) in rhinitis and asthma multimorbidity (6) by a multi-disciplinary group or by patients themselves (self-care) using the AIRWAYS ICPs algorithm (7) across the life cycle [8, 17]. It will be scaled up using the EU EIP on AHA strategy [26].

Developments for 2019 include a multimorbidity App and the deployment of an app for home services.

The MASK project is intended to be sustainable and a business plan has been initiated.

The medium-term future is to develop care pathways for the prevention and control of chronic diseases to sustain planetary health. A symposium during the Finnish Presidency of the EU Council is planned for October 2019.

Scientific evidence and conceptual framework for configuring the practice

The scientific evidence is based on a validated “research” tool (The Allergy Diary, –2018) that has led to large scale deployment (MASK-air, 2019–):

- Validation of the app using COSMIN guidelines [40].
- Baseline characteristics informed [12].
- Work productivity associated with the control of allergic diseases [41, 42].
- EQ-5D is available and has been found to correlate to baseline characteristics [43].
- Novel phenotypes of allergic diseases have been discovered [44].

Table 2 List of countries using MASK-air

<table>
<thead>
<tr>
<th>Country/Dec</th>
<th>Dec</th>
<th>Nov</th>
<th>Oct</th>
<th>Sep</th>
<th>Aug</th>
<th>Jul</th>
<th>Jun</th>
<th>May</th>
<th>April</th>
<th>March</th>
<th>Feb</th>
<th>Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>223</td>
<td>229</td>
<td>219</td>
<td>187</td>
<td>133</td>
<td>127</td>
<td>112</td>
<td>110</td>
<td>85</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>874</td>
<td>869</td>
<td>863</td>
<td>861</td>
<td>850</td>
<td>844</td>
<td>749</td>
<td>739</td>
<td>727</td>
<td>714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>368</td>
<td>357</td>
<td>326</td>
<td>310</td>
<td>294</td>
<td>288</td>
<td>284</td>
<td>269</td>
<td>257</td>
<td>244</td>
<td>232</td>
<td>215</td>
</tr>
<tr>
<td>BE</td>
<td>286</td>
<td>281</td>
<td>276</td>
<td>263</td>
<td>255</td>
<td>251</td>
<td>242</td>
<td>217</td>
<td>192</td>
<td>185</td>
<td>179</td>
<td>170</td>
</tr>
<tr>
<td>BR</td>
<td>2967</td>
<td>2915</td>
<td>2853</td>
<td>2799</td>
<td>2726</td>
<td>2682</td>
<td>2645</td>
<td>2568</td>
<td>2514</td>
<td>2449</td>
<td>2377</td>
<td>2297</td>
</tr>
<tr>
<td>CA</td>
<td>68</td>
<td>68</td>
<td>66</td>
<td>66</td>
<td>60</td>
<td>58</td>
<td>57</td>
<td>51</td>
<td>47</td>
<td>44</td>
<td>42</td>
<td>38</td>
</tr>
<tr>
<td>CH</td>
<td>1765</td>
<td>1756</td>
<td>1751</td>
<td>1754</td>
<td>1738</td>
<td>1733</td>
<td>1729</td>
<td>1646</td>
<td>1075</td>
<td>947</td>
<td>930</td>
<td>915</td>
</tr>
<tr>
<td>CZ</td>
<td>73</td>
<td>71</td>
<td>67</td>
<td>66</td>
<td>65</td>
<td>59</td>
<td>51</td>
<td>25</td>
<td>18</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>1515</td>
<td>1476</td>
<td>1447</td>
<td>1415</td>
<td>1367</td>
<td>1340</td>
<td>1296</td>
<td>1192</td>
<td>1071</td>
<td>992</td>
<td>943</td>
<td>884</td>
</tr>
<tr>
<td>DK</td>
<td>198</td>
<td>196</td>
<td>195</td>
<td>194</td>
<td>192</td>
<td>189</td>
<td>185</td>
<td>173</td>
<td>164</td>
<td>161</td>
<td>160</td>
<td>156</td>
</tr>
<tr>
<td>ES</td>
<td>1341</td>
<td>1313</td>
<td>1264</td>
<td>1230</td>
<td>1180</td>
<td>1151</td>
<td>1105</td>
<td>1015</td>
<td>910</td>
<td>895</td>
<td>854</td>
<td>777</td>
</tr>
<tr>
<td>FI</td>
<td>642</td>
<td>627</td>
<td>614</td>
<td>605</td>
<td>597</td>
<td>595</td>
<td>581</td>
<td>555</td>
<td>514</td>
<td>503</td>
<td>492</td>
<td>468</td>
</tr>
<tr>
<td>FR</td>
<td>1779</td>
<td>1755</td>
<td>1729</td>
<td>1697</td>
<td>1668</td>
<td>1644</td>
<td>1607</td>
<td>1547</td>
<td>1146</td>
<td>1089</td>
<td>1074</td>
<td>1049</td>
</tr>
<tr>
<td>GB</td>
<td>1435</td>
<td>1399</td>
<td>1363</td>
<td>1333</td>
<td>1297</td>
<td>1281</td>
<td>1239</td>
<td>1157</td>
<td>1087</td>
<td>1060</td>
<td>1029</td>
<td>988</td>
</tr>
<tr>
<td>GR</td>
<td>465</td>
<td>453</td>
<td>432</td>
<td>420</td>
<td>410</td>
<td>406</td>
<td>396</td>
<td>374</td>
<td>353</td>
<td>330</td>
<td>298</td>
<td>282</td>
</tr>
<tr>
<td>IT</td>
<td>2617</td>
<td>2570</td>
<td>2522</td>
<td>2490</td>
<td>2463</td>
<td>2445</td>
<td>2422</td>
<td>2422</td>
<td>2282</td>
<td>2215</td>
<td>2154</td>
<td>2057</td>
</tr>
<tr>
<td>LT</td>
<td>740</td>
<td>726</td>
<td>711</td>
<td>695</td>
<td>679</td>
<td>675</td>
<td>657</td>
<td>611</td>
<td>533</td>
<td>474</td>
<td>460</td>
<td>424</td>
</tr>
<tr>
<td>MX</td>
<td>1566</td>
<td>1557</td>
<td>1479</td>
<td>1451</td>
<td>1367</td>
<td>1359</td>
<td>1324</td>
<td>1285</td>
<td>1174</td>
<td>1135</td>
<td>1105</td>
<td>975</td>
</tr>
<tr>
<td>NL</td>
<td>1755</td>
<td>1741</td>
<td>1717</td>
<td>1707</td>
<td>1683</td>
<td>1665</td>
<td>1626</td>
<td>1442</td>
<td>1335</td>
<td>1135</td>
<td>1050</td>
<td>975</td>
</tr>
<tr>
<td>PL</td>
<td>1745</td>
<td>1711</td>
<td>1673</td>
<td>1650</td>
<td>1550</td>
<td>1489</td>
<td>1433</td>
<td>1333</td>
<td>1204</td>
<td>1044</td>
<td>1006</td>
<td>949</td>
</tr>
<tr>
<td>PT</td>
<td>2704</td>
<td>2683</td>
<td>2661</td>
<td>2642</td>
<td>2615</td>
<td>2597</td>
<td>2570</td>
<td>2457</td>
<td>2382</td>
<td>2353</td>
<td>2322</td>
<td>2284</td>
</tr>
<tr>
<td>SE</td>
<td>272</td>
<td>265</td>
<td>252</td>
<td>249</td>
<td>249</td>
<td>232</td>
<td>231</td>
<td>214</td>
<td>199</td>
<td>187</td>
<td>183</td>
<td>179</td>
</tr>
<tr>
<td>TR</td>
<td>25906</td>
<td>25475</td>
<td>24967</td>
<td>24525</td>
<td>23901</td>
<td>23581</td>
<td>23091</td>
<td>22728</td>
<td>18993</td>
<td>18130</td>
<td>17513</td>
<td>16770</td>
</tr>
</tbody>
</table>

AR Argentina, AT Austria, AU Australia, Be Belgium, BR Brazil, CA Canada, CH Switzerland, CZ Czech Republic, DE Germany, DK Denmark, ES Spain, FI Finland, FR France, GB Great Britain, GR Greece, IT Italy, LT Lithuania, MX Mexico, NL The Netherlands, PL Poland, PT Portugal, SE Sweden, TR Turkey
• Adherence to treatment is extremely low and novel approaches to inform the efficacy of treatment have been proposed [45] leading to novel studies for a better understanding of guidelines [46, 47].

Evidence of impact
MASK has identified novel phenotypes of allergic diseases [44] that have been confirmed in classical epidemiologic studies by re-analyzing them [48–51]. One of the studies used the MASK baseline characteristics [49]. These phenotypes allowed the re-classification of allergic multimorbidity and the discovery of a new extreme phenotype of allergic diseases that need to be considered in the stratification of patients.

MASK has shown real-life mHealth data for the first time in allergy treatment in 9,950 users [1, 45]. This led to next-generation care pathways for allergic diseases (meeting co-organized by POLLAR, a member of EIT Health, EIP on AHA and GARD (WHO alliance): 3-12-2018) and proposed a change management strategy [5].

MASK is involved in an EIT Health project (POLLAR) which assesses the interactions between air pollution, asthma and rhinitis [4].

With the EIP on AHA, MASK is involved in 3 EU projects on the digital transformation of health and care (DigiHealthEurope, Euriphi and Vigour).

MASK is also involved in a large project on Planetary Health in a side event which will take place during the Presidency of the EU council (Finland). This event will gather researchers, academic leaders and other experts from European institutions as well as other stakeholders and will discuss Planetary Health global challenges and their scientific solutions. Experts on human health as well as on effects of climate change, urbanization and food production will be invited to prepare a European initiative to promote effective and sustainable research on planetary health issues. The event similarly aims at raising political awareness about the need for multidisciplinary and systemic approaches to Planetary Health issues globally and in the EU. The multimorbid App developed by MASK may be used in the project.

Contextual relevance
The practice addresses a public health priority
Chronic respiratory diseases (CRDs) are major non-communicable diseases (NCDs) [18]. Rhinitis and asthma multimorbidity is common and the two diseases should be considered jointly [19]. Asthma is the most common NCD in children and rhinitis is the most common chronic disease in Europe. They often start early in life, persist across the life cycle and cause a high disease burden in all age groups [19]. By 2020, rhinitis will affect at least 20% of the old age population [52–56]. These diseases represent an enormous burden associated to medical and social costs and they impact health and social inequalities.

The practice is based on a local/regional/national strategic action plan
The Polish Presidency of the EU Council (3051st Council Conclusions) made the prevention, early diagnosis and treatment of asthma and allergic diseases a priority to reduce health inequalities [57, 58]. The 3206th Cyprus Council Conclusions [59] recommended that the diagnosis and treatment of chronic diseases should be initiated as early as possible to improve AHA. Debates at the European Parliament recommended the early diagnosis and management of CRDs in order to promote active and healthy ageing (AHA) [60–62].

The practice is also a WHO-associated project: Initial workshop (1999), WHO Collaborating Center for rhinitis and asthma (2004–2014), Global Alliance against Chronic Respiratory Diseases (GARD) [63, 64] demonstration project (2015–).

Unmet needs
Several unmet needs have been identified in allergic diseases. They include (1) suboptimal rhinitis and asthma control due to medical, cultural and social barriers [65, 66], (2) better understanding of endotypes [67], phenotypes and multimorbidities, (3) assessment of allergen and pollutants as risk factors to promote sentinel networks in care pathways, (4) stratification of patients for optimized care pathways [68] and (5) promotion of multidisciplinary teams within integrated care pathways, endorsing innovation in clinical trials and encouraging patient empowerment [17, 69].

Overall goal
The general objective of AIRWAYS-ICPs [6–8] is to develop multi-sectoral ICPs for CRDs used across European countries and regions in order to (1) reduce the burden of the diseases in a patient-centred approach, (2) promote AHA, (3) create a care pathways simulator tool which can be applied across the life cycle and in older adults, (4) reduce health and social inequalities, (5) reduce gender inequalities, (6) use the lessons learned in CRDs for chronic diseases and (7) promote SDG3 (more specifically 3.4) (https://www.who.int/sdg/targets/en/). In September 2015, the UN General Assembly established the Sustainable Development Goals (SDGs), a set of global goals for fair and sustainable health at every level from planetary biosphere to
local community [70, 71], essential for sustainable development. SDG 3 prioritizes health and well-being for all ages.

The aim of AIRWAYS-ICPs is also to generalise the approach of the uniform definition of severity, control and risk of severe asthma presented to WHO [66] and allergic diseases [72] in order to develop a uniform risk stratification usable for chronic diseases in most situations.

MASK further refined AIRWAYS ICPs using mobile technology to promote the digital transformation of health and care in developed and developing countries for all age groups.

Target population

In the initial phase, the target population included all patients with allergic rhinitis and asthma multimorbidity. Rhinitis and asthma are considered as a model for all chronic diseases and the project is being extended to chronic diseases.

All patients able to use a smartphone (≥12 years) represent the target population. A special effort is being placed in underserved populations from developing countries as the practice is a GARD (Global Alliance against Chronic Respiratory Diseases, WHO alliance) demonstration project.

Stakeholders involved

Involvement in the design, implementation (including the creation of ownership), evaluation, continuity/sustainability

As from the very first workshop in 1999, the ARIA initiative has included all stakeholders required to develop a WHO programme on CRDs (GARD). In particular, patient's organizations were involved. All health care professionals were also involved (physicians, primary care, pharmacists, other health care professionals). Another important component of ARIA was the deployment to developing countries [73]. Moreover, policy makers were also actively involved.

ARIA has grown regularly over the past 20 years and an ARIA chapter is ongoing in over 70 countries in all continents with a very active scaling up strategy [26]. MASK has used the ARIA working group to scale up the practice.

All stakeholders were highly receptive

The ARIA and now the MASK community is very cohesive and all members are extremely reactive. They have been particularly active in deploying MASK in the 23 countries and we have received requests from many other countries in which MASK-air is not yet available.

Resistance or conflict of interest: None

Implementation methodology/strategy

We used the scaling up strategy of the European Innovation Partnership on Active and Healthy Ageing and proposed a 5-step framework for developing an individual: (1) what to scale up: (1-a) databases of good practices, (1-b) assessment of viability of the scaling up of good practices, (1-c) classification of good practices for local replication and (2) how to scale up: (2-a) facilitating partnerships for scaling up, (2-b) implementation of key success factors and lessons learnt, including emerging technologies for individualized and predictive medicine. This strategy has already been applied to the chronic respiratory disease action plan of the European Innovation Partnership on Active and Healthy Ageing [26].

Consistency in the pace of delivery

For the past 20 years, ARIA has been a success story in over 72 countries [3, 8, 19, 24, 25, 27, 28, 30–32, 38, 46, 74–100]. A Pocket Guide has been translated into 52 languages. MASK is following ARIA with the same group and the same strategy.

Main outcomes and evaluation of the practice

The ARIA strategy was to change management in the treatment of asthma and rhinitis since nasal symptoms—often the most troublesome—were not considered in most asthmatics. Over 85% of asthma in children and adolescents is associated with rhinitis, suggesting common pathways, whereas only 20–30% of rhinitis patients have asthma, suggesting rhinitis-specific genes. There is a link between asthma severity and rhinitis multimorbidity. Asthma is more severe in patients with rhinitis [101]. The strategy at all levels of care indicates that it is essential to consider multimorbidity in the management of asthma for the benefit of the patient and the satisfaction of the treatment as shown in many surveys (Fig. 3). Some studies have found that the ARIA strategy is more effective than free treatment choice [102]. Moreover, EMA has used the ARIA recommendations for the approval of a house dust mite immunotherapy tablet including asthma and rhinitis multimorbidity [103].

The change management strategy of MASK has not yet been evaluated. However, the results of the first studies indicate that the vast majority of patients are not adherent to treatment [45] and that next-generation care pathways are needed (Figs. 4 and 5).
Next-generation care pathways were initiated in Paris, December 3, 2018, as part of POLLAR, MASK and GARD.

Additional (secondary) outcomes assessed
Work productivity and school performance are measured. When rhinitis and/or asthma are not well controlled, work productivity is impaired [1, 41, 43].

Sustainability of the practice
The MASK App, The Allergy Diary, was used to demonstrate the scientific value of the project [1]. It has been replaced by the commercial App, MASK-air, which is version 3.0 and which includes questionnaires (e.g. tobacco and allergens) and sleep (VAS and Epworth questionnaire [104]) (Fig. 6). A business plan is in place for the sustainability of the practice.
Communication about the practice and dissemination of results

A communication strategy has been set up [1] and includes a website (mask-air.com), media coverage, leaflets and newsletters, publications in scientific journals and lay press, partners’ networks and events. The MASK community includes over 300 members in all countries in which MASK is deployed.

Budget required to implement the practice

The budget required to implement the MASK strategy is around 1.5 M€. It will be provided by the private sector (1 M€) and from EU grants, in particular a Structural and Development Fund. POLLAR has an additive budget of 2 M€ to embed outdoor air pollution and aerobiology data in the ICP using artificial intelligence.

It is difficult to estimate human resources since many physicians worked in the 23 countries for the translation,
adaptation of the practice and its implementation. It can be proposed that 50–100 h have been spent working in each country.

The practice has been presented to multiple national and international meetings.

Sustainability has been carefully evaluated and a business plan is in place.

Main lessons learned

• Adherence to treatment is the major problem of allergic disease.
• Self-management strategies should be considerably expanded (behavioural).
• Change management is essential in allergic diseases.
• Education strategies should be reconsidered using a patient-centred approach.
• Lessons learned for allergic diseases can be expanded to chronic diseases.

Improvement and expansion of the practice

An expert meeting took place at the Pasteur Institute in Paris, December 3, 2018, to discuss next-generation care pathways and lessons learnt (Fig. 7, Annex 1): (1) patient participation, health literacy and self-care through technology-assisted “patient activation”; (2) implementation of care pathways by pharmacists and (3) next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) assessed by mobile technology. The meeting was organized by POLLAR and MASK in collaboration with GARD, patient’s organizations and all European scientific societies in the field.

Abbreviations

AHA: active and healthy ageing; AIRWAYS ICPs: integrated care pathways for airway diseases; AR: allergic rhinitis; ARIA: allergic rhinitis and its impact on asthma; CDSS: clinical decision support system; CRD: chronic respiratory disease; DG CONNECT: directorate general for communications networks, content and technology; DG Santé: directorate general for health and food safety; EIP on AHA: European innovation partnership on AHA; EIP European innovation partnership; EQ-SD: euroquol; Euforea: European forum for research and education in allergy and Airways diseases; GARD: Global alliance against Chronic Respiratory Diseases (WHO Alliance); GINA: Global Initiative for Asthma; MACVIA: Fondation VIA-LR; SPLF: Société de Pneumologie de Langue Française; SFA: Société française d’Allergologie; WAO: World Allergy Organization.
Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Global Allergy and Asthma European Network (GA2LEN), Berlin, Germany.

10Dept of Respiratory Medicine, National Institute of Diseases of the Chest and Hospital, Dhaka, Bangladesh.

11Centre for Individualized Medicine, Department of Pediatrics, Faculty of Medicine, Linköping, Sweden.

12Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland.

13BIBER. Department of Dermatology and Allergy, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, Germany.

14Dept of Biochemistry and Clinical Chemistry, University of Pharmacy with the Division of Laboratory Medicine, Warsaw Medical University, Warsaw, Poland.

15Department of Dermatology and Allergy, Odense University Hospital, Odense, Denmark.

16Department of Respiratory Medicine and Allergology, University Hospital, Lund, Sweden.

17Department of Geriatrics, Montpellier University Hospital, Montpellier, France.

18EA 2991, Euromov, University Montpellier, France.

19Department of Pathophysiology and Transplantation, University of Milan, IRCCS Fondazione CaGranda Ospedale Maggiore Policlinico, Milan, Italy.

20Argentine Association of Respiratory Medicine, Buenos Aires, Argentina.

21Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Poland.

22Pediatric Department, University of Verona Hospital, Verona, Italy.

23UCO, Pneumologia, Instituto de Medicina Interna, F. Polidocimo Gemelli IRCCS, Universita Cattolica del Sacro Cuore, Rome, Italy.

24National and Heart and Lung Institute, Royal Brompton Hospital & Imperial College London, Imperial National Heart and Lung Institute, Imperial College London, University College Hospitals London, London, UK.

25Woolcock Institute of Medical Research, University of Sydney and Woolcock Emphysema Centre and Local Health District, Glebe, NSW, Australia.

26Allergist, La Rochelle, France.

27Associate Professor of Clinical medicine, Laval’s University, Quebec city, Quebec, Canada.

28Quebec Heart and Lung Institute, Laval University, Quebec City, Quebec, Canada.

29Centre Hospitalier Valenciennes, France.

30Head of Department of Clinical Pharmacy of Lithuanian University of Health Sciences, Kaunas, Lithuania.

31Institute of Lung Health, Respiratory Biomedical Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.

32Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.

33Department of Health Research Methods, Evidence and Impact Division of Medicine, Rhodes University, Grahamstown, South Africa.

34Professor Polydoro Ernani de São Thiago University Hospital, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, Brazil.

35Sleep Unit, Department of Neurology, Hôpital Gu-de-Chauliac Montpellier, Inserm U1061, France.

36Department of Dermatology and Allergy, Technische Universität München, Munich, Germany.

37Centre for Respiratory Medicine - The Bambino Gesù Children’s Research Hospital Holy see, Rome, Italy.

38Plateforme Transversale d'Allergologie, Institut du Thorax, CHU de Nantes, Nantes, France.

39ASA - Advanced Solutions Accelerator, Clapiers, France.

40Clinic of Children’s Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.

41Allergy and Clinical Immunology National Heart and Lung Institute, Imperial College London, UK.

42Division of Allergy, Department of Pediatric Medicine - The Bambino Gesù Children’s Research Hospital Holy see, Rome, Italy.

43Department of Dermatology and Allergy, Global Allergy and Asthma European Network (GA2LEN), School of Medicine, University of Minho, Braga, Portugal.

44ICVS/3B, PT Government Associate Laboratory, Braga/Guimarães, Portugal.

45Second University of Naples and Institute of Translational Medicine ‑ The Bambino Gesù Children’s Research Hospital Holy see, Rome, Italy.

46Department of Medicine, Nova Southeastern University, Davie, University of Miami Dept of Medicine, Miami, Florida, USA.

47Regional Director Assofarm Campania and Vice President of the Board of Directors of Cofasaer, Salerno, Italy.

48Pulmonology Research Institute, Tatishvili Medical Center Tbilisi, Georgia.

49UOC Pneumologia, Istituto di Medicina Interna, Università Cattolica del Sacro Cuore, Rome, Italy.

50Second University of Naples and Institute of Translational Medicine and Allergy, Institute of Inflammation and Repair, University of Manchester and University Hospital of South Manchester, Manchester, UK.

51Medical Consulting CZareklev, Levallois, France.

52The Centre for Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

53Innsamkaibe per i Servizzi Sanitari di Trento (APSS-Trento), Italy.

54Department of Internal Medicine and Allergy Clinic of Professor Polydoro Ernani di S. Giorgio Hospital, University of Genova, Genova, Italy.

55Department of Medicine, Division of Clinical Immunology and Allergy, National Heart and Lung Institute, Imperial College London, University College Hospitals London, London, UK.

56Department of Medicine, Division of Clinical Immunology and Allergy, National Heart and Lung Institute, Imperial College London, University College Hospitals London, London, UK.

57Institute of Lung Health, Respiratory Biomedical Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.

58Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.

59Department of Health Research Methods, Evidence and Impact Division of Medicine, Rhodes University, Grahamstown, South Africa.

60Department of Paediatrics, Oslo University Hospital and Odense Research Center for Anaphylaxis (ORCA), Odense, Denmark.

61Pharmacist, Municipality Pharmacy, Sarno, Italy.

62University of Medicine and Pharmacy Victor Babes, Timisoara, Romania.

63Instituto de Pediatria, Hospital Universitario de Caracas, Caracas, Venezuela.

64Regional Director Assofarm Campania and Vice President of the Board of Directors of Cofasaer, Salerno, Italy.

65Department of Internal Medicine and Allergy Clinic of Professor Polydoro Ernani di S. Giorgio Hospital, University of Genova, Genova, Italy.

66Institute of Lung Health, Respiratory Biomedical Unit, University Hospitals of Leicester NHS Trust, Leicester, UK.

67Service de pneumologie, CHU et université d’Auvergine, Clermont-Ferrand, France.

68Department of Respiratory Diseases, Montpellier University Hospital, France.

69Department of Paediatrics, Oslo University Hospital and University of Oslo, Oslo, Norway.

70Federal University of Minas Gerais, Belo Horizonte, Brazil.

71Assistant Director General, Montpellier, Région Occitanie, France.

72Mayor of Sarno and President of Salerno Province, Director, Anesthesiology Service, Sarno “Martiin del Villa Malta” Hospital, Italy.

73Division of Internal Medicine, Hospital Vall d’Hebron & ARADYAL Spanish Research Network, Barcelona, Spain.

74Department of Paediatrics, Oslo University Hospital and University of Oslo, Oslo, Norway.

76Regional Ministry of Health of Andalusia, Seville, Spain.

77Allergy and Asthma Associates of Southern California, Mission Viejo, CA, USA.

78Plateforme Transversale d'Allergologie, Institut du Thorax, CHU de Nantes, Nantes, France.

79Institute of Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA.

80CIC of infectious, chest diseases, dermatology and allergy, Vilnius University, Vilnius, Lithuania.

81Allergy and Clinical Immunology National Heart and Lung Institute, Imperial College London, UK.

82Guy’s and st Thomas’ NHS Trust, Kings College London, UK.

83Division of Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA.

84Pulmonology Research Institute, Tatishvili Medical Center Tbilisi, Georgia.

85Pulmonary Research Institute FMBA, Moscow, Russia and GARD Executive Committee, Moscow, Russia.

86National Heart & Lung Institute, Imperial College, London, UK.

87Service de Pneumologie, Centre Hospitalier Universitaire de Béni-Messous, Algiers, Algeria.

88Centre for Individualized Medicine ‑ The Bambino Gesù Children’s Research Hospital Holy see, Rome, Italy.

89Division of Allergy, Department of Pediatric Medicine - The Bambino Gesù Children’s Research Hospital Holy see, Rome, Italy.

90Department of Otorhinolaryngology, Academic Medical Centers, Amsterdam, the Netherlands.

91CINTESIS, Center for Research in Health Technologies and Information Systems, Facultade de Medicina da
Fe, Argentina Center for Allergy and Immunology, Santa Fe, Argentina. 215Dept of Otorhinolaryngology, Medical University of Vienna, AKH, Vienna, Austria. 216Hospital of the Hospitalier Brothers in Buda, Budapest, Hungary. 217Die Hautambulanz und Röntgen sale center, Berlin, Germany. 218Neumología y Alergología Infantil, Hospital La Fe, Valencia, Spain. 219Center for Health Technology and Services Research - CINTESIS and Department of Internal Medicine, Centro Hospitalar Sao Joao, Porto, Portugal. 220Caissé d'assurance retraite et de la santé au travail du Languedoc-Roussillon (CARSAT-LR), Montpellier, France. 221Director of Department of Pharmacy of University of Naples Federico II, Naples, Italy. 222ENT Department, University Hospital of Kinshasa, Kinshasa, Democratic Republic of Congo. 223Department of Respiratory Medicine, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria,Australia; Department of Immunology, Monash University, Melbourne, Victoria, Australia. 224Medical center 'Research expert', Varna, Bulgaria. 225National Hospital Organization, Tokyo National Hospital, Tokyo, Japan. 226Dept of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan. 227Dept of Otolaryngology, Nippon Medical School, Tokyo, Japan. 228Allergologo, Jalisco, Guadalajara, Mexico. 229Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso. 230Dept of Comparative Medicine; Messerli Research Institute of the University of Veterinary Medicine and Medical University, Vienna, Austria. 231Department of Immunology and Allergology, Faculty of Medicine and Faculty Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic. 232Division of Infection, Immunology and Respiratory Medicine, Department of Medicine of Hospital's, University of Manchester, Manchester, UK; and Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou," University of Athens, Athens, Greece. 233Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea. 234Respiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy. 235Allergy and Respiratory Diseases, Ospedale Policlinico San Martino - University of Genoa, Italy. 236Farmacias Holon, Lisbon, Portugal. 237Department of Pediatrics, Nippon Medical School, Tokyo, Japan. 238University of Southern Denmark, Kolding, Denmark. 239Université Grenoble Alpes, Laboratoire HP2, Grenoble, INSERM, U1042 and CHU de Grenoble, France. 240Allergy Unit, CUF-Porto Hospital and Institute; Center for Research in Health Technologies and information systems CINTEGIS, Universidade do Porto, Portugal. 241Sociologist, municipality area n3, Sorrento, Italy. 242Center for Rhinology and Allergology, Wiesbaden, Germany. 243Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. 244Centre for empowering people and communities, Dublin, UK. 245Conseil Général de l’Économie Ministère de l’Economie, de l’Industrie et du Numérique, Paris, France. 246Département de pédiatrie, CHU de Grenoble, Grenoble France. 247Medical School, University of Cyprus, Nicosia, Cyprus. 248Children's Hospital Srebrnjak, Zagreb, School of Medicine, University J.J. Strossmayer, Osijek, Croatia. 249Karl Landsteiner Institute for Clinical and Experimental Pneumology, Hietzing Hospital, Vienna, Austria. 250University Hospital "Sv. Ivan Rilski", Sofia, Bulgaria. 251Center for Rhinology and Allergology, Wiesbaden, Germany. 252Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. 253Centre of Academic Primary Care, Division of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom; Observational and Pragmatic Research Institute, Singapore, Singapore. 254Department of Otorhinolaryngology, University of Creta School of Medicine, Heraklion, Greece. 255European Forum for Research and Education in Allergy and Airway Diseases (EUFOREA), Brussels, Belgium. 256Allergologo, cancun quintana roo, Mexico. 257Lungen‑Clinic Grosshansdorf, Airway Research Center North, Member of the German Center for Lung Research (DZL), Grosshansdorf, Germany Department of Medicine, Christian Albrechts University, Airway Research Center North, Member of the German Center for Lung Research (DZL), Kiel, Germany. 258Department of Nephrology and Endocrinology, Karolinska University Hospital, Stockholm, Sweden. 259Farmácia São Paulo, Vila Nova de Gaia, Porto, Portugal. 260St Vincent’s Hospital and University of Sydney, Sydney, New South Wales, Australia. 261Allergologo, Mexico City, Mexico. 262Servicio de Pneumología-Hosp de las Clínicas UFPE-EBSSRH, Recife, Brazil. 263Universidade Federal de Sao Paulo, Sao Paulo, Brazil. 264Centre of Pneumology, Coimbra University Hospital, Portugal. 265Pneumonology Research, Valencia, Spain. 266Pediatric Allergy and Clinical Immunology, Hospital Angeles Pedregal, Mexico City, Mexico. 267Getafe University Hospital Department of Geriatrics, Madrid, Spain. 268Association Asthme et Allergie, Paris, France.
Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. 362Department of Medicine, Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada. 363Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany. 364Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Department of ENT diseases, Karolinska University Hospital, Stockholm, Sweden. 365Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA. 366International Primary Care Respiratory Group IPCRG, Aberdeen, Scotland. 367Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, UK. 368Allergologist - Medical College of Medical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada. 369Department of Medicine, Aarhus University Hospital, Aarhus, Denmark. 370Department of Pediatrics, Hospital ‘Archbishop Makarios III’, Nicosia, Cyprus. 371Celal Bayar University Department of Pulmonology, Manisa, Turkey. 372The Allergy and Asthma Institute, Islamabad, Pakistan. 373Department of Paediatrics and Child Health, Red Cross Children’s Hospital, and MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa. 374Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital and Beijing Institute of Otolaryngology, Beijing, China. 375Universidad Católica de Córdoba, Córdoba, Argentina. 376University Clinic of Respiratory and Allergic Diseases, Gelniken, Slovenia. 377Gesundheitsregion KölnBonn ‑ HRCB Projekt GmbH, Kohl, Germany. 378Akershus University Hospital, Department of Otorhinolaryngology, Akerhus, Norway. 379Chief of Staff, the Northern and Allergic Diseases, Golnik, Slovenia. 380Allergology and Clinical Immunology, Department of Allergology and Clinical Immunology of the Katholieke Universiteit Leuven, Belgium. 381Division of Respiratory and Allergic Diseases, Hospital A Cardarelli, University of Naples Federico II, Naples, Italy.

Competing interests
Dr. Anoitegard reports personal fees from Mundipharma, Rossal, Sanofi, MSD, Faes Farma, Hicka, UCB, AstraZeneca, outside the submitted work. Dr. Bosnic‑Anticevic reports grants from TEVA, personal fees from TEVA, Boehringer Ingelheim, AstraZeneca, Sanofi, Mylan, outside the submitted work. Dr Bousquet reports personal fees and others from Chiesi, Cipra, Hicka, Menarini, Mundipharma, Mylan, Novartis, Sanofi‑Aventis, Takeda, Teva, Uronch, others from Kymed, outside the submitted work. Dr. Boulet reports and Disclosure of potential conflicts of interest—last 3 years research grants for participation to multicentre studies, AstraZeneca, Boston Scientific, GlaxoSmithKline, Hoffman La Roche, Novartis, Ono Pharma, Sanofi, Takeda Support for research projects introduced by the investigator AstraZeneca, Boehringer‑Ingelheim, GlaxoSmithKline, Merck, Takeda. Consulting and advisory boards AstraZeneca, Novartis, Mephitarm. Royalties Co‑author of “Up‑To‑Date” (occupational asthma). Nonprofit grants for production of educational materials Astra‑Zeneca, Boehringer‑Ingelheim, GlaxoSmithKline, Merck Frost, Novartis. Conference fees AstraZeneca, GlaxoSmithKline, Merck, Novartis. Support for participation in conferences and meetings: Novartis, Takeda. Other participations Past president and Member of the Canadian Thoracic Society Respiratory Guidelines Committee; Chair of the Board of Directors of the Global Initiative for Asthma (GINA). Chair of Global Initiative for Asthma (GINA) Guidelines Dissemination and Implementation Committee; Laval University Chair on Knowledge‑Transfer, Prevention and Education in Respiratory and Cardiovascular Health; Member of scientific committees for the American College of Chest Physicians, American Thoracic Society, European Respiratory Society and the World Allergy Organization; 1st Vice‑President of the Global Asthma Organization ‘InterAsma’. Dr. Casale reports grants and non‑financial support from Stall‑ergenes, outside the submitted work. Dr. Cruz reports grants and personal fees from GlaxoSmithKline, personal fees from Boehringer‑Ingelheim, AstraZeneca, Novartis, Merck, Sharp & Dohme, MEDA Pharma, EUROFARMA, Sanofi‑Aventis, outside the submitted work. Dr. Ebisawa reports personal fees from DBV Technologies, Mylan EPD maruhou, Shionogi & CO., LTD, Kyorin Pharmaceutical Co., Ltd., Thermofisher Diagnostik, Pfizer, Beyer, Nippon Chemidr, Takeda Pharmaceutical Co., Ltd., MSD, outside the submitted work. Dr. Ivanovitch reports personal fees from Euro Farma Argentina, Faes Farma, non‑financial support from Laboratorios Casasco, outside the submitted work. Dr. Haahlela reports personal fees from Mundipharma, Novartis, and Orion Pharma, outside the submitted work. Dr. Klimek reports grants and personal fees from ALK Abelló, Denmark, Novartis, Switzerland, Allergopharma, Germany, Bionorica, Germany, GSK, Great Britain, Lofarma, Italy, personal fees from MEDA, Sweden, Boehringer Ingelheim, Germany, grants from Boimay, Austria, HAL, Netherlands, LETI, Spain, Roxxal, Germany, Bencard, Great Britain, outside the submitted work. VKV has received payment for consultancy from GSK and for lectures from StallergensGree, Berlin‑Chemie and sponsorship from MYLAN for in the following professional training: ARIA masterclass in allergic rhinitis participation. Dr. Larenas Linnemann reports personal fees from GSK, Astra‑Zeneca, MEDA, Boehringer Ingelheim, Novartis, Grunenthal, UCB, Amstrong, Sibriedt, DBIV Technologies, MSD, Pfizer, grants from Sanofi, AstraZeneca, Novartis, UCB, GSK, TEVA, Chiesi, Boehringer Ingelheim, outside the submitted work. Dr. Mösges reports personal fees from ALK, grants from ASIT biotech, Leti, BitopAG, Hulka, Ursapharm, Optima, personal fees from allergopharma, Nuvo, Meda, Friulchem, Hexal, Servier, Bayer, Johnson & Johnson, Klosterfrau, MSD, FAES, Stada, UCB, Allergy Therapeutics; grants and personal fees from Bencard, Stallergenes; grants, personal fees and non‑financial support from Lofarma; non‑financial support from Roxxol, Atmos, Bionorica, Oronomy, Ferraero; personal fees and non‑financial support from Novartis, Dr. Okamoto reports personal fees from Ezaal Co., Ltd., Shionogi Co., LTD, Tico, Co., Ltd., GSK, MSD, Kyowa Co., Ltd., grants and personal fees from Kyorin Co., Ltd., ThiCo, Ltd., grants from Yakuruto Co., Ltd., Yamada Bee Farm, outside the submitted work. Dr. Papadopoulos reports grants from Gerenlymatos, personal fees from Hal Allergy B.V., Novartis Pharma AG, Menarini, Hal Allergy B.V., outside the submitted work. Dr. Pěpin reports grants from AIR LIQUIDE FOUNDATION, AGIR à dom, ASTRA ZELENA, FISHER & PAYKEL, MUTUALIA, PHILIPS, RESMED, VITALAIRE, other from AGIR à dom, ASTRA ZELENA, BOEHRINGER‑INGELHEIM, JAZZ PHARMACEUTICAL, NIGHT BALANCE, PHILIPS, RESMED, SEFAM, outside the submitted work. Dr. Pifar reports grants and personal fees from ALK‑Abelló, Allergopharma Stallergenes Geer, HAL, Allergy Holding B.V./HAL Allergie GmbH, Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, grants from Boimay, ASIT Biotech Tools S.A, Laboratorios LETI/LETI Pharma, Anergis S.A., grants from Nuvo, Circassia, Glaxo Smith Kline, personal fees from Novartis Pharma, MEDA Pharma, Mobile Chamber Experts (a GA2LEN Partner), Pohl‑Boskamp, Indoor Biotechnologies, grants from, outside the submitted work. Dr. Todo‑Bom reports grants and personal fees from Novartis, Mundipharma, GSK Teva Pharma, personal fees from AstraZeneca, grants from Leti, outside the submitted work. Dr. Tsiligianni reports advisory boards from Boehringer Ingelheim and Novartis and a grant from GSK, outside the submitted work. Dr. Wallace reports and Indicates that she is the co‑chair of the Joint Task Force on Practice Parameters, a task force composed of 12 members of the American Academy of Allergy, Asthma, and Immunology and the American College of Allergy, Asthma, and Immunology. Dr. Waserman reports other from CSL Behring, Shire, AstraZeneca, Teva, Meda, Merck, outside the submitted work. Dr. Zuberbier reports and Organizational affiliations: Committee member: WHO‑Initiative “Allergic Rhinitis and Its Impact on Asthma” (ARIA). Member of the Board: German Society for Allergy and Clinical Immunology (DGAKI). Head: European Centre for Allergy Research Foundation (ECARF) Secretary General; Global Allergy and Asthma European Network (GAA‑LEN). Member, Committee on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO).

Availability of data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
FMC VIA LR.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 January 2019 Accepted: 4 February 2019 Published online: 11 March 2019
References

