Guidance to 2018 good practice:

Citation for published version:

Digital Object Identifier (DOI):
10.1186/s13601-019-0252-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Clinical and translational allergy

Publisher Rights Statement:
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Guidance to 2018 good practice: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma

Abstract

Aims: Mobile Airways Sentinel NetworK (MASK) belongs to the Fondation Partenariale MACVIA-LR of Montpellier, France and aims to provide an active and healthy life to rhinitis sufferers and to those with asthma multimorbidity across the life cycle, whatever their gender or socio-economic status, in order to reduce health and social inequities incurred by the disease and to improve the digital transformation of health and care. The ultimate goal is to change the management strategy in chronic diseases.

Methods: MASK implements ICT technologies for individualized and predictive medicine to develop novel care pathways by a multi-disciplinary group centred around the patients.

Stakeholders: Include patients, health care professionals (pharmacists and physicians), authorities, patient’s associations, private and public sectors.

Results: MASK is deployed in 23 countries and 17 languages. 26,000 users have registered.
Introduction

In all societies, the burden and cost of allergic and chronic respiratory diseases (CRDs) is increasing rapidly. Most economies are struggling to deliver modern health care effectively. There is a need to support the transformation of the health care system for integrated care with organizational health literacy. MASK (Mobile Airways Sentinel Network) [1] is a new development of the ARIA (Allergic Rhinitis and its Impact on Asthma) initiative [2, 3]. It works closely with POLLAR (Impact of Air POLLution on Asthma and Rhinitis, EIT Health) [4], and collaborates with professional and patient organizations in the field of allergy and airway diseases. MASK proposes real-life care pathways (ICPs) centred around the patient with rhinitis and/or asthma multimorbidity. It uses mHealth monitoring of environmental exposure and considers biodiversity. With the help of three EU projects (DigitalHealthEurope, Euriphi and Vigour) recently accepted on the digital transformation of health, MASK proposes a second change management strategy. The first one was the ARIA change management associated with the recognition and wide acceptance by all stakeholders of the essential links between rhinitis and asthma. The second one deals with change management of care pathways for rhinitis and asthma [5].

In the context of implementing communication on the digital transformation of health and care, specifically in relation to chapter 5 of the document "Digital tools for citizen empowerment and for person-centred care" , DG SANTE has taken steps towards supporting the scaling-up and wider implementation of good practices in the field of digitally-enabled, integrated, person-centred care. The aim is to develop a change management strategy for chronic diseases [5].

The practice

The practice includes the care pathways defined in 2014 [6–8] (Fig. 1) as well as ICT (Information and Communication Technology) solutions (cell phones for patients, inter-operable tablets for health care professionals and a web-based questionnaire for physicians) [1, 9] (Fig. 2). The practice includes the care pathways defined in 2014 [6–8] (Fig. 1) as well as ICT (Information and Communication Technology) solutions (cell phones for patients, inter-operable tablets for health care professionals and a web-based questionnaire for physicians) [1, 9] (Fig. 2). The aim is to develop a change management strategy for chronic diseases [5].

MASK is a patient-centred ICT system [8]. A mobile phone app (the Allergy Diary, now called MASK-air), central to MASK, is available in 23 countries. It has been validated [10] and found to be an easy and effective method of assessing the symptoms of allergic rhinitis (AR) and work productivity [10–13]. MASK follows the checklist for the evaluation of Good Practices developed by the European Union Joint Action JA-CHRODIS (Joint Action on Chronic Diseases and Promoting Healthy Ageing across the Life Cycle) [14]. One of the major aims of MASK is to provide care pathways [15] in rhinitis and asthma multimorbidity [16] including a sentinel network using the geolocation of users [17]. It can also inform the App users of the pollen and/or pollution risk level in their area, by means of geolocation (Table 1). One of the major aims of MASK is to provide care pathways [15] in rhinitis and asthma multimorbidity [16] including a sentinel network using the geolocation of users [17]. It can also inform the App users of the pollen and/or pollution risk level in their area, by means of geolocation (Table 1).

The practice has been developed for allergic rhinitis (and asthma multimorbidity), being the most common chronic disease globally [18, 19] and affecting all age groups from early childhood to old age. There are several unmet needs that should be addressed in an ICP. Moreover, the lessons learnt will benefit all chronic diseases participating in the 3rd Health Programme to learn more about the 10 good practices and key policy initiatives in the domain of digitally-enabled, integrated, person-centred care, with a view to possible transfer and replication of the presented practices.

The current paper reviews the questions raised during the workshop concerning the good practice on allergic rhinitis and asthma: ARIA digitally-enabled, integrated, person-centred care for rhinitis and asthma multimorbidity using real-world evidence [1]. This practice is a GARD (Global Alliance against Chronic Respiratory Diseases) demonstration project.

Lessons learnt: (i) Adherence to treatment is the major problem of allergic disease, (ii) Self-management strategies should be considerably expanded (behavioural), (iii) Change management is essential in allergic diseases, (iv) Education strategies should be reconsidered using a patient-centred approach and (v) Lessons learnt for allergic diseases can be expanded to chronic diseases.

Keywords: App, Asthma, Care pathways, MASK, mHealth, Rhinitis, DG Santé
diseases since rhinitis is considered as a mild disease although it impairs social life, school and work productivity considerably [20]. It is estimated that, in the EU, work loss accounts for 30–100 b€ annually. Moreover, it is essential to consider mild chronic diseases and to establish health promotion and management strategies.
early in life in order to prevent a severe outcome and to promote healthy ageing [21].

Level of care integration

MASK is used for the integration of primary and specialist care, of primary-secondary-tertiary health care, as well as of health and social care for disease management.

Deployment

Many of the GPs that are developed in one region (country) take into account health systems, availability of treatments and legal considerations which makes it difficult to scale up the practice without customization. MASK has taken the opposite direction starting with a tool immediately available in 10 languages and 14 countries and regularly scaled up. Moreover, the tool is included in a generic ICP (Fig. 2) that can be customized easily in any country globally.

Geographical scope of the practice

MASK was developed in English and is currently available in 23 countries and 17 languages (Table 2).

New countries

Deployment is in process in Bolivia, Colombia, Japan and Peru. The involvement of developing countries is needed to offer a practice for middle- and low-income countries that will benefit poverty areas of developed countries and that will be in line with the mission of GARD. Deployment to the US is being discussed with the National Institute for Allergy and Infectious diseases (NIH).

Transfer of innovation of allergic rhinitis and asthma multimorbidity in the elderly (MASK Reference Site Twinning, EIP on AHA)

The EIP on AHA includes 74 Reference Sites. The aim of this TWINNING is to transfer innovation from the MASK App to other reference sites. The phenotypic characteristics of rhinitis and asthma multimorbidity in adults and the elderly have been compared using validated mHealth tools (i.e. the Allergy Diary and CARAT [22]) in 23 Reference Sites or regions across Europe, Argentina, Australia, Brazil and Mexico [23].

Individuals/institutions reached

ARIA has been implemented in over 70 countries globally [3], and several governments use the practice. Approximately 26,000 users have registered to the MASK database. 700 patients have been enrolled in the Twinning. Due to privacy, there is no possibility of assessing users who have reported data.

Timeframe

The project was initiated in 1999 during a World Health Organization (WHO) workshop (ARIA) and undergoes continuous developments. The ARIA initiative, commenced during a WHO workshop in 1999 [2], has been further developed by the WHO Collaborating Center.
for Asthma and Rhinitis (2002–2013). The initial goals (Phase 1) were (1) to propose a new AR classification, (2) to promote the concept of multimorbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and all populations. ARIA has been disseminated and implemented in over 70 countries [3, 19, 24–32]. It was developed as a guideline [19] using the GRADE approach [33–39].

MASK, the Phase 3 ARIA initiative, is focusing on (1) the implementation of multi-sectoral care pathways (2) using emerging technologies (3) with real world data (4) for individualized and predictive medicine (5) in rhinitis and asthma multimorbidity (6) by a multi-disciplinary group or by patients themselves (self-care) using the AIRWAYS ICPs algorithm (7) across the life cycle [8, 17]. It will be scaled up using the EU EIP on AHA strategy [26].

Developments for 2019 include a multimorbidity App and the deployment of an app for home services. The MASK project is intended to be sustainable and a business plan has been initiated.

The medium-term future is to develop care pathways for the prevention and control of chronic diseases to sustain planetary health. A symposium during the Finnish Presidency of the EU Council is planned for October 2019.

Scientific evidence and conceptual framework for configuring the practice

The scientific evidence is based on a validated “research” tool (The Allergy Diary, –2018) that has led to large scale deployment (MASK-air, 2019–):

- Validation of the app using COSMIN guidelines [40].
- Baseline characteristics informed [12].
- Work productivity associated with the control of allergic diseases [41, 42].
- EQ-5D is available and has been found to correlate to baseline characteristics [43].
- Novel phenotypes of allergic diseases have been discovered [44].

Table 2 List of countries using MASK-air

<table>
<thead>
<tr>
<th>Country</th>
<th>Dec</th>
<th>Nov</th>
<th>Oct</th>
<th>Sep</th>
<th>Aug</th>
<th>Jul</th>
<th>Jun</th>
<th>May</th>
<th>April</th>
<th>March</th>
<th>Feb</th>
<th>Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>233</td>
<td>229</td>
<td>219</td>
<td>187</td>
<td>133</td>
<td>127</td>
<td>110</td>
<td>75</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>874</td>
<td>869</td>
<td>863</td>
<td>861</td>
<td>850</td>
<td>844</td>
<td>749</td>
<td>739</td>
<td>727</td>
<td>714</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>368</td>
<td>357</td>
<td>326</td>
<td>310</td>
<td>294</td>
<td>288</td>
<td>284</td>
<td>269</td>
<td>257</td>
<td>244</td>
<td>232</td>
<td>215</td>
</tr>
<tr>
<td>BE</td>
<td>286</td>
<td>281</td>
<td>276</td>
<td>263</td>
<td>255</td>
<td>242</td>
<td>217</td>
<td>192</td>
<td>185</td>
<td>179</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>2967</td>
<td>2915</td>
<td>2853</td>
<td>2799</td>
<td>2726</td>
<td>2682</td>
<td>2645</td>
<td>2586</td>
<td>2514</td>
<td>2449</td>
<td>2377</td>
<td>2297</td>
</tr>
<tr>
<td>CA</td>
<td>68</td>
<td>68</td>
<td>66</td>
<td>66</td>
<td>60</td>
<td>58</td>
<td>57</td>
<td>51</td>
<td>47</td>
<td>44</td>
<td>42</td>
<td>38</td>
</tr>
<tr>
<td>CH</td>
<td>1765</td>
<td>1756</td>
<td>1751</td>
<td>1745</td>
<td>1738</td>
<td>1733</td>
<td>1729</td>
<td>1646</td>
<td>1075</td>
<td>947</td>
<td>930</td>
<td>915</td>
</tr>
<tr>
<td>CZ</td>
<td>73</td>
<td>71</td>
<td>67</td>
<td>66</td>
<td>65</td>
<td>59</td>
<td>51</td>
<td>25</td>
<td>16</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>1515</td>
<td>1476</td>
<td>1447</td>
<td>1415</td>
<td>1367</td>
<td>1340</td>
<td>1296</td>
<td>1127</td>
<td>1001</td>
<td>943</td>
<td>894</td>
<td>849</td>
</tr>
<tr>
<td>DK</td>
<td>180</td>
<td>196</td>
<td>195</td>
<td>194</td>
<td>192</td>
<td>189</td>
<td>185</td>
<td>173</td>
<td>164</td>
<td>161</td>
<td>160</td>
<td>156</td>
</tr>
<tr>
<td>ES</td>
<td>1341</td>
<td>1313</td>
<td>1264</td>
<td>1230</td>
<td>1180</td>
<td>1151</td>
<td>1105</td>
<td>1015</td>
<td>910</td>
<td>845</td>
<td>834</td>
<td>777</td>
</tr>
<tr>
<td>FI</td>
<td>642</td>
<td>627</td>
<td>614</td>
<td>605</td>
<td>597</td>
<td>595</td>
<td>581</td>
<td>555</td>
<td>514</td>
<td>503</td>
<td>492</td>
<td>468</td>
</tr>
<tr>
<td>FR</td>
<td>1779</td>
<td>1755</td>
<td>1729</td>
<td>1697</td>
<td>1668</td>
<td>1644</td>
<td>1607</td>
<td>1476</td>
<td>1146</td>
<td>1089</td>
<td>1074</td>
<td>1049</td>
</tr>
<tr>
<td>GB</td>
<td>1435</td>
<td>1399</td>
<td>1363</td>
<td>1333</td>
<td>1297</td>
<td>1281</td>
<td>1239</td>
<td>1157</td>
<td>1087</td>
<td>1060</td>
<td>1029</td>
<td>988</td>
</tr>
<tr>
<td>GR</td>
<td>465</td>
<td>453</td>
<td>432</td>
<td>420</td>
<td>410</td>
<td>406</td>
<td>396</td>
<td>374</td>
<td>353</td>
<td>330</td>
<td>298</td>
<td>282</td>
</tr>
<tr>
<td>IT</td>
<td>2617</td>
<td>2570</td>
<td>2522</td>
<td>2490</td>
<td>2463</td>
<td>2445</td>
<td>2322</td>
<td>2322</td>
<td>2322</td>
<td>2294</td>
<td>2215</td>
<td>2104</td>
</tr>
<tr>
<td>LT</td>
<td>740</td>
<td>726</td>
<td>711</td>
<td>685</td>
<td>679</td>
<td>675</td>
<td>657</td>
<td>611</td>
<td>533</td>
<td>474</td>
<td>460</td>
<td>424</td>
</tr>
<tr>
<td>MX</td>
<td>1566</td>
<td>1537</td>
<td>1497</td>
<td>1461</td>
<td>1437</td>
<td>1437</td>
<td>1324</td>
<td>1285</td>
<td>1228</td>
<td>1188</td>
<td>1135</td>
<td>1050</td>
</tr>
<tr>
<td>NL</td>
<td>1755</td>
<td>1741</td>
<td>1717</td>
<td>1707</td>
<td>1683</td>
<td>1666</td>
<td>1626</td>
<td>1442</td>
<td>1335</td>
<td>1270</td>
<td>1155</td>
<td>975</td>
</tr>
<tr>
<td>PL</td>
<td>1745</td>
<td>1711</td>
<td>1673</td>
<td>1654</td>
<td>1590</td>
<td>1489</td>
<td>1333</td>
<td>1216</td>
<td>1076</td>
<td>1049</td>
<td>1004</td>
<td>966</td>
</tr>
<tr>
<td>PT</td>
<td>1745</td>
<td>1711</td>
<td>1673</td>
<td>1590</td>
<td>1489</td>
<td>1333</td>
<td>1216</td>
<td>1076</td>
<td>1049</td>
<td>1004</td>
<td>1004</td>
<td>966</td>
</tr>
<tr>
<td>SE</td>
<td>272</td>
<td>265</td>
<td>252</td>
<td>249</td>
<td>232</td>
<td>231</td>
<td>214</td>
<td>199</td>
<td>190</td>
<td>183</td>
<td>144</td>
<td>177</td>
</tr>
<tr>
<td>TR</td>
<td>2070</td>
<td>2083</td>
<td>2061</td>
<td>2042</td>
<td>2026</td>
<td>2015</td>
<td>2009</td>
<td>1983</td>
<td>1952</td>
<td>1922</td>
<td>1893</td>
<td>1865</td>
</tr>
<tr>
<td>Total</td>
<td>25906</td>
<td>25475</td>
<td>24967</td>
<td>24525</td>
<td>24301</td>
<td>23581</td>
<td>23091</td>
<td>22728</td>
<td>21728</td>
<td>18993</td>
<td>18130</td>
<td>17513</td>
</tr>
</tbody>
</table>

AR Argentina, AT Austria, AU Australia, Be Belgium, BR Brazil, CA Canada, CH Switzerland, CZ Czech Republic, DE Germany, DK Denmark, ES Spain, FI Finland, FR France, GB Great Britain, GR Greece, IT Italy, LT Lithuania, MX Mexico, NL The Netherlands, PL Poland, PT Portugal, SE Sweden, TR Turkey

Table 2 List of countries using MASK-air
• Adherence to treatment is extremely low and novel approaches to inform the efficacy of treatment have been proposed [45] leading to novel studies for a better understanding of guidelines [46, 47].

Evidence of impact
MASK has identified novel phenotypes of allergic diseases [44] that have been confirmed in classical epidemiologic studies by re-analyzing them [48–51]. One of the studies used the MASK baseline characteristics [49]. These phenotypes allowed the re-classification of allergic multimorbidity and the discovery of a new extreme phenotype of allergic diseases that need to be considered in the stratification of patients.

MASK has shown real-life mHealth data for the first time in allergy treatment in 9,950 users [1, 45]. This led to next-generation care pathways for allergic diseases (meeting co-organized by POLLAR, a member of EIT Health, EIP on AHA and GARD (WHO alliance): 3-12-2018 and proposed a change management strategy [5].

MASK is involved in an EIT Health project (POLLAR) which assesses the interactions between air pollution, asthma and rhinitis [4].

With the EIP on AHA, MASK is involved in 3 EU projects on the digital transformation of health and care (DigiHealthEurope, Euriphi and Vigour).

MASK is also involved in a large project on Planetary Health in a side event which will take place during the Presidency of the EU council (Finland). This event will gather researchers, academic leaders and other experts from European institutions as well as other stakeholders and will discuss Planetary Health global challenges and their scientific solutions. Experts on human health as well as on effects of climate change, urbanization and food production will be invited to prepare a European initiative to promote effective and sustainable research on planetary health issues. The event similarly aims at raising political awareness about the need for multidisciplinary and systemic approaches to Planetary Health issues globally and in the EU. The multimorbid App developed by MASK may be used in the project.

Contextual relevance
The practice addresses a public health priority
Chronic respiratory diseases (CRDs) are major non-communicable diseases (NCDs) [18]. Rhinitis and asthma multimorbidity is common and the two diseases should be considered jointly [19]. Asthma is the most common NCD in children and rhinitis is the most common chronic disease in Europe. They often start early in life, persist across the life cycle and cause a high disease burden in all age groups [19]. By 2020, rhinitis will affect at least 20% of the old age population [52–56]. These diseases represent an enormous burden associated to medical and social costs and they impact health and social inequalities.

The practice is based on a local/regional/national strategic action plan
The Polish Presidency of the EU Council (3051st Council Conclusions) made the prevention, early diagnosis and treatment of asthma and allergic diseases a priority to reduce health inequalities [57, 58]. The 3206th Cyprus Council Conclusions [59] recommended that the diagnosis and treatment of chronic diseases should be initiated as early as possible to improve AHA. Debates at the European Parliament recommended the early diagnosis and management of CRDs in order to promote active and healthy ageing (AHA) [60–62].

The practice is also a WHO-associated project: Initial workshop (1999), WHO Collaborating Center for rhinitis and asthma (2004–2014), Global Alliance against Chronic Respiratory Diseases (GARD) [63, 64] demonstration project (2015–).

Unmet needs
Several unmet needs have been identified in allergic diseases. They include (1) suboptimal rhinitis and asthma control due to medical, cultural and social barriers [65, 66], (2) better understanding of endotypes [67], phenotypes and multimorbidities, (3) assessment of allergen and pollutants as risk factors to promote sentinel networks in care pathways, (4) stratification of patients for optimized care pathways [68] and (5) promotion of multidisciplinary teams within integrated care pathways, endorsing innovation in clinical trials and encouraging patient empowerment [17, 69].

Overall goal
The general objective of AIRWAYS-ICPs [6–8] is to develop multi-sectoral ICPs for CRDs used across European countries and regions in order to (1) reduce the burden of the diseases in a patient-centred approach, (2) promote AHA, (3) create a care pathways simulator tool which can be applied across the life cycle and in older adults, (4) reduce health and social inequalities, (5) reduce gender inequalities, (6) use the lessons learned in CRDs for chronic diseases and (7) promote SDG3 (more specifically 3.4) (https://www.who.int/sdg/targets/en/). In September 2015, the UN General Assembly established the Sustainable Development Goals (SDGs), a set of global goals for fair and sustainable health at every level from planetary biosphere to
local community [70, 71], essential for sustainable
development. SDG 3 prioritizes health and well-being
for all ages.

The aim of AIRWAYS-ICPs is also to generalise the
approach of the uniform definition of severity, con-
trol and risk of severe asthma presented to WHO [66]
and allergic diseases [72] in order to develop a uniform
risk stratification usable for chronic diseases in most
situations.

MASK further refined AIRWAYS ICPs using mobile
technology to promote the digital transformation of
health and care in developed and developing countries
for all age groups.

Target population
In the initial phase, the target population included all
patients with allergic rhinitis and asthma multimorbi-
dity. Rhinitis and asthma are considered as a model for
all chronic diseases and the project is being extended to
chronic diseases.

All patients able to use a smartphone (≥ 12 years)
represent the target population. A special effort is being
placed in underserved populations from developing
countries as the practice is a GARD (Global Alliance
against Chronic Respiratory Diseases, WHO alliance)
demonstration project.

Stakeholders involved
Involvement in the design, implementation (including
the creation of ownership), evaluation, continuity/
sustainability
As from the very first workshop in 1999, the ARIA ini-
tiative has included all stakeholders required to develop
a WHO programme on CRDs (GARD). In particular,
patient’s organizations were involved. All health care prof-
essionals were also involved (physicians, primary care,
pharmacists, other health care professionals). Another
important component of ARIA was the deployment to
developing countries [73]. Moreover, policy makers were
also actively involved.

ARIA has grown regularly over the past 20 years and
an ARIA chapter is ongoing in over 70 countries in all
continents with a very active scaling up strategy [26].
MASK has used the ARIA working group to scale up the
practice.

All stakeholders were highly receptive
The ARIA and now the MASK community is very cohe-
sive and all members are extremely reactive. They have
been particularly active in deploying MASK in the 23
countries and we have received requests from many
other countries in which MASK-air is not yet available.

Resistance or conflict of interest: None

Implementation methodology/strategy
We used the scaling up strategy of the European Innova-
tion Partnership on Active and Healthy Ageing and pro-
posed a 5-step framework for developing an individual:
(1) what to scale up: (1-a) databases of good practices,
(1-b) assessment of viability of the scaling up of good
practices, (1-c) classification of good practices for local
replication and (2) how to scale up: (2-a) facilitating
partnerships for scaling up, (2-b) implementation of key
success factors and lessons learnt, including emerging
technologies for individualized and predictive medicine.
This strategy has already been applied to the chronic res-
piratory disease action plan of the European Innovation
Partnership on Active and Healthy Ageing [26].

Consistency in the pace of delivery
For the past 20 years, ARIA has been a success story in
over 72 countries [3, 8, 19, 24, 25, 27, 28, 30–32, 38, 46,
74–100]. A Pocket Guide has been translated into 52 lan-
guages. MASK is following ARIA with the same group
and the same strategy.

Main outcomes and evaluation of the practice
The ARIA strategy was to change management in the
treatment of asthma and rhinitis since nasal symp-
toms—often the most troublesome—were not con-
considered in most asthmatics. Over 85% of asthma in
children and adolescents is associated with rhinitis,
suggesting common pathways, whereas only 20–30%
of rhinitis patients have asthma, suggesting rhinitis-
specific genes. There is a link between asthma sever-
ity and rhinitis multimorbidity. Asthma is more severe
in patients with rhinitis [101]. The strategy at all levels
of care indicates that it is essential to consider multi-
morbidity in the management of asthma for the ben-
fit of the patient and the satisfaction of the treatment
as shown in many surveys (Fig. 3). Some studies have
found that the ARIA strategy is more effective than
free treatment choice [102]. Moreover, EMA has used
the ARIA recommendations for the approval of a house
dust mite immunotherapy tablet including asthma and
rhinitis multimorbidity [103].

The change management strategy of MASK has
not yet been evaluated. However, the results of the
first studies indicate that the vast majority of patients
are not adherent to treatment [45] and that next-
generation care pathways are needed (Figs. 4 and 5).
Next-generation care pathways were initiated in Paris, December 3, 2018, as part of POLLAR, MASK and GARD.

Additional (secondary) outcomes assessed
Work productivity and school performance are measured. When rhinitis and/or asthma are not well controlled, work productivity is impaired [1, 41, 43].

Sustainability of the practice
The MASK App, The Allergy Diary, was used to demonstrate the scientific value of the project [1]. It has been replaced by the commercial App, MASK-air, which is version 3.0 and which includes questionnaires (e.g. tobacco and allergens) and sleep (VAS and Epworth questionnaire [104]) (Fig. 6). A business plan is in place for the sustainability of the practice.
Communication about the practice and dissemination of results

A communication strategy has been set up [1] and includes a website (mask-air.com), media coverage, leaflets and newsletters, publications in scientific journals and lay press, partners’ networks and events. The MASK community includes over 300 members in all countries in which MASK is deployed.

Budget required to implement the practice

The budget required to implement the MASK strategy is around 1.5 M€. It will be provided by the private sector (1 M€) and from EU grants, in particular a Structural and Development Fund. POLLAR has an additive budget of 2 M€ to embed outdoor air pollution and aerobiology data in the ICP using artificial intelligence.

It is difficult to estimate human resources since many physicians worked in the 23 countries for the translation,
adaptation of the practice and its implementation. It can be proposed that 50–100 h have been spent working in each country.

The practice has been presented to multiple national and international meetings.

Sustainability has been carefully evaluated and a business plan is in place.

Main lessons learned

- Adherence to treatment is the major problem of allergic disease.
- Self-management strategies should be considerably expanded (behavioural).
- Change management is essential in allergic diseases.
- Education strategies should be reconsidered using a patient-centred approach.
- Lessons learned for allergic diseases can be expanded to chronic diseases.

Improvement and expansion of the practice

An expert meeting took place at the Pasteur Institute in Paris, December 3, 2018, to discuss next-generation care pathways and lessons learnt (Fig. 7, Annex 1): (1) patient participation, health literacy and self-care through technology-assisted “patient activation”, (2) implementation of care pathways by pharmacists and (3) next-generation guidelines assessing the recommendations of GRADE guidelines in rhinitis and asthma using real-world evidence (RWE) assessed by mobile technology. The meeting was organized by POLLAR and MASK in collaboration with GARD, patient’s organizations and all European scientific societies in the field.

Abbreviations

AHA: active and healthy ageing; AIRWAYS ICPs: integrated care pathways for airway diseases; AR: allergic rhinitis; ARIA: allergic rhinitis and its impact on asthma; CDSS: clinical decision support system; CRD: chronic respiratory disease; DG CONNECT: directorate general for communications networks, content and technology; DG Santé: directorate general for health and food safety; EIP on AHA: European innovation partnership on AHA; EIP: European innovation partnership; EQ-5D: euroquol; Euforea: European forum for research and education in allergy and airways diseases; GARD: Global Alliance against Chronic Respiratory Diseases (WHO Alliance); GINA: Global Initiative for Asthma; MACVIA: Fondation VIA-LR; SPLF: Société de Pneumologie de Langue Française; SFA: Société française d’Allergologie; WAO: World Allergy Organization.

Authors’ contributions

All authors are MASK members and have contributed to the design of the project. Many authors also included users and disseminated the project in their own country. All authors read and approved the final manuscript.

Author details

1 MACVIA-France, Fondation Parternalielle FMC VIA-LR, CHU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France. 2 INSERM U 1168, VIMA: Ageing and Chronic Diseases Epidemiological
and Public Health Approaches, Villejuif, Université Versailles St-Quentin-en-Yvelines, UMR-S 1168, Montigny Le Bretonneux, France. 1 Eufora, Brussels, Belgium. 2 Humboldt-Universität zu Berlin, Berlin Institute of Health, Comprehensive Allergy Center, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany. 3 Medical Consulting Czarlewski, Levallois, France. 4 Klyomed INNOV, Montpellier, France. 5 Center for Research in Health Technology and Information Systems, Faculdade de Medicina da Universidade do Porto, Medida, Lda Porto, Portugal. 6 UICIBIO, REQUITE, Faculty of Pharmacy and Competence Center on Active and Healthy Ageing, University of Porto (Porto4Ageing), Porto, Portugal. 7 France. 8 EA 2991, Euromov, University of Manchester, Manchester, UK. 9 Allergy and Immunology, University Hospital of Liège, Liège, Belgium. 10 Allergy Centre, CUF Descobertos Hospital, Lisbon, Portugal. 11 Immunology, Centro Hospitalar Universitário de Coimbra and Faculty of Medicine, University of Coimbra, Coimbra, Portugal. 12 Division for Health Innovation, Campania Region and Federico II University Hospital Naples (R&D and DISMET), Naples, Italy. 13 CReP, Federico II University, Naples, Italy. 14 Personalized Medicine Clinic Asthma and Allergy, Humanitas Research Hospital, Humanitas University, Rozzano, Milan, Italy. 15 SOS Allergology and Clinical Immunology, ULS Toscana Centro, Prato, Italy. 16 Department of Medical Sciences, Allergy and Clinical Immunology Unit, University of Torino & Mauriziano Hospital, Turin, Italy. 17 Consortium of Pharmacies and Services COSAFER, Salerno, Italy. 18 Unit of Geniatric Immunallergology, University of Bari Medical School, Bari, Italy. 19 Department of Internal Medicine and Allergic Clinic of Professor Polydoro Emarni de Sao, Thio, University Hospital, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil. 20 Asthma Reference Center, Escola Superior de Ciências da Santa Casa de Mieirocida de Vitoria, Vitoria, Esperto Santo, Brazil. 21 Center of Excellence in Allergy and Asthma, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico. 22 Hospital General Regional 1 "Dr Carlos Mc Gregor Sanchez Navarro" IMSS, Mexico City, Mexico. 23 WHO GARD Planning Group, Salvador, Brazil. 24 Department of Internal Medicine and Allergic Clinic of Professor Polydoro Emarni de Sao, Thio, University Hospital, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil. 25 EA 2991, Euromov, University of Manchester, Manchester, UK. 26 Department of Dermatology, University Hospital of Liège, Liège, Belgium. 27 Department of Otorhinolaryngology, University Hospital Cochin, Paris, France. 28 Asthma and Allergy Centre, Odense University Hospital, Odense Research Center and Allergy Centre, Odense University Hospital, Odense, Denmark. 29 Clinic of Children’s Diseases, Faculty of Medicine, University of Crete, Crete, Greece. 30 Allergy Unit, Division of Immunology and Respiratory Medicine, Royal Manchester Children’s Hospital, University of Manchester, Manchester, UK. 31 Allergy Department, 2nd Pediatric Clinic, Athens General Children’s Hospital “P&A Kynäkou”, University of Athens, Athens, Greece. 32 Department of Orthopneologie, University of Crete School of Medicine, Heraklion, Greece. 33 Health Planning Unit, Department of Social Medicine, Faculty of Medicine, University of Crete, Crete, Greece. 34 University of Sydney and Woolcock Emphysema Centre and Local Health District, Woolcock Institute of Medical Research, Glebe, NSW, Australia. 35 Allergy Department, Immunology and Respiratory Medicine, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia. 36 Department of Immunology, Monash University, Melbourne, VIC, Australia. 37 Servicio de Alergia e Immunología, Clinica Santa Isabel, Buenos Aires, Argentina. 38 Director of Centre of Allergy, Immunology and Respiratory Diseases, Santa Fe, Argentina Center for Allergy and Immunology, Santa Fe, Argentina. 39 Universidad Católica de Córdoba, Córdoba, Argentina. 40 Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden. 41 Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 42 Centre for Clinical Research Sørmland, Uppsala University, Eskilstuna, Sweden. 43 Upper Airways Research Laboratory, ENT Dept, Ghent University Hospital, Ghent, Belgium. 44 Department of Otorhinolaryngology, Univ Hospitals Leuven, Louvain, Belgium. 45 Academic Medical Center, Univ of Amsterdam, Amsterdam, The Netherlands. 46 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium. 47 EFA European Federation of Allergy and Airways Diseases Patients’ Associations, Brussels, Belgium. 48 Department of Dermatology and Allergy Centre, Odense University Hospital, Odense Research Center for Anaphylaxis (ORCA), Odense, Denmark. 49 Department of Medicine, Clinical Immunology and Allergy, McMaster University, Hamilton, ON, Canada. 50 Quebec Heart and Lung Institute, Laval University, Québec City, QC, Canada. 51 Clinical Medicine, Laval’s University, Quebec City, Canada. 52 Medicine Department, Hôpital de la Malbaie, Quebec, Canada. 53 Department of Health Research Methods, Evidence and Impact, Division of Immunology and Allergy, McMaster University, Hamilton, ON, Canada. 54 Department of Respiratory Medicine, University Hospital Olomouc, Olomouc, Czech Republic. 55 Peer-code BV, Geldermalsen, The Netherlands. 56 Faculty of Medicine, Transylvania University, Brasov, Romania. 57 IRC, Department of Allergy and Immunology, Hospital Quirón Bizkaia, Erandio, Spain. 58 IQHu Consultants Ltd, London, UK. 59 Division of Allergy/Immunology, University of South Florida, Tampa, USA. 60 Section of Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, USA. 61 Clinical Research Centre for Allergy and Rheumatology, Sagamihara National Hospital, Sagamihara, Japan. 62 Medical Communications Consultant, MedScript Ltd (Ireland & New Zealand).
Universidade do Porto, Porto, Portugal and MEDIDA, Lda, Porto, Portugal. 143Allergist, Reims, France. 144Hospital General Regional I “Dr Carlos Mc Gregor Sanchez Navarro” IMSS, Mexico City, Mexico. 145Regional hospital of ISSSTE, Puebla, Mexico. 146National Center for Disease Control and Public Health of Georgia, Tbilisi, Georgia. 147Allergologist, Guadalajara, Mexico. 148Allergy Clinic, National Institute of Respiratory Diseases, Mexico City, Mexico. 149Department of Pulmonary Diseases, Istanbul University-Cerrahpaşa, Cerrahpaşa Faculty of Medicine, Istanbul, Turkey. 150Allergy unit, UHATEM “Nipirogov”, Sofia, Bulgaria. 151Medical University, Faculty of Public Health, Sofia, Bulgaria. 152Allergy and Immunology Division, Clinica Ricardo Palma, Lima, Peru. 153Department of Pediatrics and Pulmonology, University Hospital, Erasmus MC, Rotterdam, The Netherlands. 154Allergy & Asthma Unit, Hospital San Bernardo Salta, Argentina. 155Allergy Clinic, Hospital Regional del ISSSTE Líce López Mateos, Mexico City, Mexico. 156Head and Professor, Centro Regional de Excelencia CONACYT y WAO en Alergia, Asma e Inmunología, Hospital Universitario, Universidad Autónoma de Nuevo León, Monterrey NL, Mexico. 157Center of Allergy and Immunology, Georgian Association of Allergology, and Clinical Immunology, Tbilisi, Georgia. 158Lithuanian Association of Allergists, Center of Tuberculosis and Lung Diseases, Riga, Latvia. 159Federal District Base Hospital Institute, Brasilia, Brazil. 160Institute of Health Policy and Management, IBMG, Erasmus University, Rotterdam, The Netherlands. 161University Hospital Olomouc – National eHealth Centre, Czech Republic. 162Immunology and Allergy Division, Clinical Hospital, University of Chile, Santiago, Chile. 163Skin and Allergy Hospital, University of Helsinki, Helsinki, Finland. 164Center: centre d’expertise national des technologies de l’information et de la communication pour l’autonomie, Gérontopôle Centre d’expertise Partenariat Européen d’Innovation pour un vieillissement actif et en bonne santé, Nantes, France. 165Autonomous University of Baja California, Ensenada, Baja California, Mexico. 166Department of Paediatrics and Child Health, University College Cork, Cork, Ireland. 167Hospital General Regional 1 “Dr. Carlos MacGregor Sánchez Navarro” IMSS, Mexico City, Mexico. 168Université Paris-Sud; Service de Pneumologie, Hôpital Bicêtre, Inserm UMR_S999, Le Kremlin Bicêtre, France. 169Dipartimento di medicina, chirurgia e odontoiatria, università di Salerno, Italy. 170Division for Health Innovation, Campania Region and Federico II University Hospital Naples (R&D and DISMET) Naples, Italy. 171Servizio di Alergia e Immunologia, Clinica Santa Isabel, Buenos Aires, Argentina. 172President, Libra Foundation, Buenos Aires, Argentina. 173Medical University of Gdańsk, Department of Allergology, Gdańsk, Poland. 174Airway Disease Infection Section, National Heart and Lung Institute, Imperial College, MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK. 175Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium. 176Haïmat University College of Medicine, Hadassah University Sacred Heart Hospital, Gyeonggi-do, South Korea. 177Department of Clinical Immunology, Wroclaw Medical University, Poland. 178Ukrainian Medical Stomatological Academy, Poltava, Ukraine. 179Pediatric Allergy and Asthma Unit, Hacettepe University School of Medicine, Ankara, Turkey. 180Hacettepe University, School of Medicine, Department of Chest Diseases, Immunology and Allergy Division, Ankara, Turkey. 181Allergy Centre, Tampere University Hospital, Tampere, Finland. 182First Department of Family Medicine, Medical University of Lodz, Poland. 183Institute of Social Medicine, Epidemiology and Health Economics, Chanté - Universitätsmedizin Berlin, Berlin, and Institute for Clinical Epidemiology and Biometry, University of Wuerzburg, Germany. 184Department of Medicine, McMaster University, Health Sciences Centre 3V47, West, Hamilton, Ontario, Canada. 185National Research Center, Institute of Immunology, Federal Medico Biological Agency, Laboratory of Molecular immunology, Moscow, Russian Federation. 186GARD Chairman, Geneva, Switzerland. 187Allergy & Asthma Center Westend, Berlin, Germany. 188Center for Rhinology and Allergology, Wiesbaden, Germany. 189Department of Immunology and Allergy, Healthy Ageing Research Center, Medical University of Lodz, Lodz, Poland. 190Children’s Hospital and University of Helsinki, Finland. 191Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm and Sah’s Children and Young Hospital, Södersjukhuset, Stockholm, Sweden. 192Faculty of Medicine, Vilnius University, Vilnius, Lithuania. 193Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland. 194Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, México City, Mexico. 195President, CMAC, Milano, Italy. 196Chairman of the Department of Pedro de Elizalde Children’s Hospital, Buenos Aires, Argentina. 197University of Medicine and Pharmacy, Hochiminh City, Vietnam. 198Federal University of Bahia, Brazil. 199Sfmed, Milano, Italy. 200State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. 201Departments of Internal Medicine and Pediatrics (Divisions of Allergy and Immunology), University of Tennessee College of Medicine, Germantown, TN, USA. 202Scotiia, for Respiratory Research, Cardiovascular & Diabetes Medicine, Medical Research Institute, Ninewells Hospital, University of Dundee, UK. 203Oslo University Hospital, Department of Paediatrics, Oslo, and University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway. 204Department of Pulmonary Medicine, CHU Sart-Tilman, and GIGA research group, Liege, Belgium. 205Faculty of Health Sciences and CICS – UBI, Health Sciences Research Centre, University Medicine, secteur I, Coimbra, Portugal. 206Department of Philosophical, Methodological and Instrumental Disciplines, CLUC, University of Guadalajara, Guadalajara, Mexico. 207Department of Pulmonary Medicine, Rashid Hospital, Dubai, UAE. 208Biomax Informatics AG, Munich, Germany. 209Director General for Health and Social Care, Scottish Government, Edinburgh, UK. 210Department of Respiratory Medicine, University of Bratislava, Bratislava, Slovakia. 211Coimbra Institute for Clinical and Biomedical Research (ICBRC), Faculty of Medicine, University of Coimbra, Portugal, Ageing@Coimbra EIP-AHA Reference Site, Coimbra, Portugal. 212Medical center Iskar Ltd Sofia, Bulgaria. 213Department of Medicine (RCSI), Bon Secours Hospital, Glasnevin, Dublin, Ireland. 214Kronikgene, International Centre of Excellence in Chronicity Research Barakaldo, Bizkaia, Spain. 215Division of Clinical Immunology and Allergy, Laboratory of Behavioral Immunology Research, The Rockefeller University, New York, USA. 216Department of Pulmonary Diseases, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul, Turkey. 217Argentine Association of Allergy and Clinical Immunology, Buenos Aires, Argentina. 218Department of Especialesidades, Centro Medico Nacional Siglo XXI, Mexico City, Mexico. 219University of Southeast Bahia, Brazil. 220Allergie-Centrum-Chanté at the Department of Dermatology and Allergy, Chanté - Universitätsmedizin Berlin, Germany. 221Maputo Central Hospital, Department of Paediatrics, Maputo, Mozambique. 222Allergologo, Veracruz, Mexico. 223Sachs’ Children and Youth Hospital, Södersjukhuset, Stockholm and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden. 224Allergy and Asthma Medical Group and Research Center, San Diego, California, USA. 225CIRFF, Federico II University, Naples, Italy. 226Division of Physiology, CNR, University Montpellier, Vice President for Research, PhyMedExp, INSERM U1046, CNRS UMR 9214, France. 227Croatian Pulmonary Society. 228National Institute of Pneumology M.Nasta, Bucharest, Romania. 229Clinical for Pulmonary Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Serbian Association for Asthma and COPD, Belgrade, Serbia. 230Regione Piemonte, Torino, Italy. 231Col Jardines de Sta Isabel, Buenos Aires, Argentina. 232President, Libra Foundation, Buenos Aires, Argentina. 233Medical University of Bratislava, Bratislava, Slovakia. 234Paris municipal Department of social action, childhood, and health, Paris, France. 235Paris municipal Department of social action, childhood, and health, Paris, France. 236Lead Respiratory Physician Mater Dei Hospital Malta, Academic Head of Dept and Professor of Medicine University of Malta, Deputy Dean Faculty of Medicine and Surgery University of Medicine, La Valette, Malta. 237Department of Medical Sciences, Allergy and Clinical Immunology University, University of Torino & Mauriziano Hospital, Torino, Italy. 238Instituto de Previsión Social IPS HC, Socia de la SPAI, Tenerora de la SLAAI, Asuncion, Paraguay. 239Allergy Center, CUF Descobertas Hospital, Lisbon, Portugal. 240Universidade de São Paulo, São Paulo, Brazil. 241Institute of Medical Statistics, and Computational Biology, Medical Faculty, University of Cologne, Germany and CR-Clinical Research International-Ltd, Hamburg, Germany. 242General Pathology Institute, Faculty of Medicine, University of Coimbra, Portugal, Ageing@Coimbra EIP-AHA Reference Site, Coimbra, Portugal. 243University of Bahia, Brazil. 244Pharmacy Unit & Smell Clinic, ENT Department, Hospital Clinic, Clinical & Experimental Respiratory Immunology, IDIBAPS, CIBERES, University of Barcelona, Spain. 245Danish Committee for Health Education, Copenhagen East, Denmark. 246Food Allergy Reference Centre Veneto Region, Department of Women and Child Health, Padua General University Hospital, Padua, Italy. 247Director, Medical Communications Consultant, MedScript Ltd, Dundalk, Co Louth, Ireland and New Zealand, and Honorary Research Fellow, OPC, Cambridge, UK. 248Johns Hopkins School of Medicine, Baltimore, Maryland, USA. 249Head of the Allergy Service Klinikk, Kolos Hospital, Sarpsborg, Norway. 249Scientific Centre of Children’s Health under the MoH, Moscow, Russia. 250Director of Center of Allergy, Immunology and Respiratory Diseases, Santa
Fe, Argentina Center for Allergy and Immunology, Santa Fe, Argentina. 215Department of Otorhinolaryngology, Medical University of Vienna, AKH, Vienna, Austria. 215Hospital of the Hospitalier Brothers in Buda, Budapest, Hungary. 215Die Hautambulanz und Röntgenarzt, Berlin, Germany. 216Neuromyology y Alergología Infantil, Hospital La Fe, Valencia, Spain. 216Center for Health Technology and Services Research - CINTESIS and Department of Internal Medicine, Centro Hospitalar Sao Joao, Porto, Portugal. 216Caisse d'assurance retraite et de la santé au travail du Languedoc-Roussillon (CARSAT-LR), Montpellier, France. 216Director of Department of Pharmacy of University of Naples Federico II, Naples, Italy. 216ENT Department, University Hospital of King Hussein, Amman, Jordan. 216Department of Respiratory Medicine, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia. 216Department of Immunology, Monash University, Melbourne, Victoria, Australia. 216Medical center "Research expert", Varna, Bulgaria. 216National Hospital Organization, Tokyo National Hospital, Tokyo, Japan. 216Dept of Otorhinolaryngology, Chiba University Hospital, Chiba, Japan. 216Dept of Otorhinolaryngology, Nickon Medical School, Tokyo, Japan. 216Allergologo, Jalisco, Guadalajara, Mexico. 216Centre Hospitalier Universitaire Pédiatrique Charles de Gaulle, Ouagadougou, Burkina Faso. 216Dept of Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine and Medical University, Vienna, Austria. 216Department of Immunology and Allergology, Faculty of Medicine and Faculty Hospital in Pilsen, Charles University in Prague, Pilsen, Czech Republic. 216Division of Infectious, Immunology, Respiratory Medicine and Critical Care, University of Manchester's Hospital, University of Manchester, Manchester, UK, and Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou," University of Athens, Athens, Greece. 216Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea. 216Respiratory Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy. 216Allergy and Respiratory Diseases, Ospedale Policlinico San Martino - University of Genoa, Italy. 216Farmacías Holon, Lisbon, Portugal. 216Department of Pediatrics, Nickon Medical School, Tokyo, Japan. 216Université de Southern Denmark, Kolding, Denmark. 216Université Grenoble Alpes, Laboratoire HP2, Grenoble, INSERM, U1042 and CHU de Grenoble, France. 216Allergy Unit, CUF-Porto Hospital and Institute; Center for Research in Health Technologies and information systems CINTEGIS, Universidade do Porto, Porto, Portugal. 216Sociologist, municipality area n33, Sorrento, Italy. 216Center for Rhinology and Allergology, Wiesbaden, Germany. 216Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. 216Centre for empowering people and communities, Dublin, UK. 216Conseil Général de l’Economie Ministère de l'Économie, de l'Industrie et du Numérique, Paris, France. 216Société de Pneumologie de Langue Française, Espace francophone de Pneumologie, Paris, France. 216Département de pédiatrie, CHU de Grenoble, Grenoble France. 216Medical School, University of Cyprus, Nicosia, Cyprus. 216Children's Hospital Sabrnbajn, Zagreb, School of Medicine, University J.J. Strossmayer, Osijek, Croatia. 216Kari Landsteiner Hospital, Portugal. 216Honorary Clinical Research Fellow, Allergy and Respiratory Research Group, Department of Pulmonary Medicine, Tokyo, Japan. 216Association of Finnish Pharmacies, Helsinki, Finland. 216Allergy and Clinical Immunology Department, Centro Médico-Docente la, Trinidad and Clinica El Avila, Caracas, Venezuela. 216Faculty of Medicine, Autonomous University of Madrid, Spain. 216The Royal National TNE Hospital, University College London, UK. 216DIBIMIS, University of Palermo, Italy. 216Allergy Unit, Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland. 216Asthma Reference Center, Escuela Superior de Ciencias de la Casa de Misericordia de Vitoria – Esperito Santo, Brazil. 216The Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK. 216Department of Pediatrics & Child Health, Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada. 216INSERM, Université Grenoble Alpes, IUB, U1042, Team of Environmental epidemiology applied to air pollution and Respiratory Health, Université Joseph Fourier, Grenoble, France. 216Société Paraguay de Alérgia Arma e Imunologia, Paraguay. 216Division of Allergy, Clinical Immunology and Rheumatology, Department of Pediatrics, Federal University of São Paulo, São Paulo, Brazil. 216European Health Futures Forum (EHFF), Dromahair, Ireland. 216ENT, Aachen, Germany. 216Kyrgyzstan National Centre of Cardiology and Internal medicine, Euro-Asian respiratory Society, Bishkek, Kyrgyzstan. 216University Hospital Olomouc, Czech Republic. 216Department of Paediatric and Adolescent medicine, University Hospital of North Norway, Tromsø, Paediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway. 216President, IML (Lombarde Medical Initiative), Bergamo, Italy. 216Pulmonary Division, Heart Institute (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil. 216Public Health Institute of Vilnius University, Vilnius, Lithuania. 216Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil. 216ERNSeA (Réseau National de Surveillance Aérobiologique), Brussel, France. 216The Hospital for Sick Children, Dalla Lana School of Public Health, University of Toronto, Canada. 216Immunology, Centro Hospitalar Universitário de Coimbra and Faculty of Medicine, University of Coimbra, Portugal. 216Department of ENT, Medical University of Graz, Austria. 216Campania Region, Division on Pharmacy and devices policy, Naples, Italy. 216Department of Respiratory Medicine, Hvidovre Hospital & University of Copenhagen, Denmark. 216Universidade Federal dos Pampas, Uruguaiana, Brazil. 216Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria. 216Pneumology and Allergy Department CIBERES and Clinical & Experimental Respiratory Immunology, IDIBAPS, University of Barcelona, Spain. 216Vilnius University Institute of Clinical Medicine, Clinic of Children’s Diseases, and Institute of Health Sciences, Department of Public Health, Vilnius, Lithuania, European Academy of Paediatrics (EAP/UEMS-SP), Brussels, Belgium. 216Department of Lung Diseases and Clinical Immunology Allergology, University of Turku and Terveystalo allergy clinic, Turku, Finland. 216PELyon; HESPER 7425, Health Services and Performance Research - Université Claude Bernard Lyon, France. 216Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet and University Hospital, Stockholm. 216Department of Chest Medicine, Centre Hospitalier Universitaire UCL Namur, Université Catholique de Louvain, Yvoir, Belgium. 216Universiteit van Limburg, Maastricht, The Netherlands. 216Allergologie, Department of Immunology, National Hospital Organization, Tokyo National Hospital, Tokyo, Japan. 216Primary Care Respiratory Research Unit Institutte Investigación Sanitaria de Palma Idisspa, Palma de Mallorca, Spain. 216Allergy Unit, Presidio Columbus, Rome, Catholic University of Sacred Heart, Rome and IRCCS Oasi Maria SS, Trona, Italy. 216Hospital La Fe, Mexico City, Mexico. 216Regione Piemonte, Torino, Italy. 216Medical University of Graz, Department of Internal Medicine, Graz, Austria. 216Servicio de Imunologia Respiratoria Hospital de la Luz, Lisboa, Portugal. 216Hospital de Clinicas, University of Parana, Brazil. 216Division of Allergy Asthma and Clinical Immunology, Emek Medical Center, Afula, Israel. 216Honorary Clinical Research Fellow, Allergy and Respiratory Research Group, Department of Internal Medicine, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia. 216Association Asthme et Allergie, Paris, France.
Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. 362Department of Medicine, Clinical Immunology and Allergy, McMaster University, Hamilton, Ontario, Canada. 363Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany. 364Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet and Department of ENT diseases, Karolinska University Hospital, Stockholm, Sweden. 365Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA. 366International Primary Care Respiratory Group IPCRG, Aberdeen, Scotland. 367Bradford Institute for Health Research, Bradford Royal Infirmary, Bradford, UK. 368Allergologyst - Medical College of Medical Faculty, Thracian University, Stara Zagora, Bulgaria. 369Department of Research, Olmsted Medical Center, Rochester, Minnesota, USA. 370Cyprus International Institute for Environmental & Public Health in Association with Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus; Department of Pediatrics, Hospital ‘Archbishop Makarios III’, Nicosia, Cyprus. 371Celal Bayar University Department of Pulmonology, Manisa, Turkey. 372The Allergy and Asthma Institute, Islamabad, Pakistan. 373Department of Paediatrics and Child Health, Red Cross Children’s Hospital, and MRC Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa. 374Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital and Beijing Institute of Otolaryngology, Beijing, China. 375Universidad Católica de Córdoba, Córdoba, Argentina. 376University Clinic of Respiratory and Allergic Diseases, Gelnčik, Slovenia. 377Department of Otorhinolaryngology, Akerhus University Hospital, Norway. 378Chief of Staff, the Northern and Allergic Diseases, Golnik, Slovenia. 379Chief of Staff, the Northern and Allergic Diseases, Golnik, Slovenia. 380President of Kazakhstan Association of Allergology and Clinical Immunology, Department of Allergology and Clinical Immunology of the Karaz National Medical University, Kazakhstan. 381Division of Respiratory and Allergic Diseases, Hospital A Cardarelli, University of Naples Federico II, Naples, Italy.

Competing interests
Dr. Ansotegui reports personal fees from Mundipharma, Roval, Sanofi, MSD, Faes Farma, Ikima, UCB, AstraZeneca, outside the submitted work. Dr. Bosnic-Anticevich reports grants from TEVA, personal fees from TEVA, Boehringer Ingelheim, AstraZeneca, Sanofi, Mylan, outside the submitted work. Dr. Bousquet reports personal fees and others from Chiesi, Cipla, Hikma, Menarini, Mundipharma, Mylan, Novartis, Sanofi-Aventis, Takeda, Teva, Urich, others from Kyomede, outside the submitted work. Dr. Boulet reports and Disclosure of potential conflicts of interest—last 3 years research grants for participation to multicentre studies, AstraZeneca, Boston Scientific, GlaxoSmithKline, Hoffman La Roche, Novartis, Ono Pharma, Sanofi, Takeda. Support for research projects introduced by the investigator AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck, Takeda. Consulting and advisory boards AstraZeneca, Novartis, Methapharm. Royalties Co-author of “Up-To-Date” (occupational asthma). Nonprofit grants for production of educational materials AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline, Merck Frosst, Novartis. Conference fees AstraZeneca, GlaxoSmithKline, Merck, Novartis. Support for participation in conferences and meetings Novartis, Takeda. Other participations Past president and Member of the Canadian Thoracic Society Respiratory Guidelines Committee; Chair of the Board of Directors of the Global Initiative for Asthma (GINA). Chair of Global Initiative for Asthma (GINA) Guidelines Dissemination and Implementation Committee; Laval University Chair on Knowledge Transfer, Prevention and Education in Respiratory and Cardiovascular Health; Member of scientific committees for the American College of Chest Physicians, American Thoracic Society, European Respiratory Society and the World Allergy Organization; 1st Vice-President of the Global Asthma Organization ‘InterAsma’. Dr. Casale reports grants and non-financial support from Stallergenes, outside the submitted work. Dr. Cruz reports grants and personal fees from GlaxoSmithKline, personal fees from Boehringer Ingelheim, AstraZeneca, Novartis, Merck, Sharp & Dohme, MEDA Pharma, EUROFARMA, Sanofi Aventis, outside the submitted work. Dr. Ebisawa reports personal fees from DBV Technologies, Mylan EPD maruho, Shionogi & CO, LTD, Kyorin Pharmaceutical Co., Ltd., Thermofisher Diagnostik, Pfizer, Beyer, Nippon Chemiria, Takeda Pharmaceutical Co., LTD, MSD, outside the submitted work. Dr. Ivanov reports personal fees from Euro Farma Argentina, Faes Farma, non-financial support from Laboratorios Casasco, outside the submitted work. Dr. Haahrkela reports personal fees from Mundipharma, Novartis, and Orion Pharma, outside the submitted work. Dr. Klimek reports grants and personal fees from ALK Abelló, Denmark, Novartis, Switzerland, Allergopharma, Germany, Bionorica, Germany, GSK, Great Britain, Lofarma, Italy, personal fees from MEDA, Sweden, Boehringer Ingelheim, Germany, grants from Boevoir, Austria, HAL, Netherlands, LETI, Spain, Roval, Germany, Bencard, Great Britain, outside the submitted work. VKV has received payment for consultancy from GSK and for lectures from StallergensGreet, Berlin-Chemie and sponsorship from MYLAN for in the following professional training: ARIA masterclass in allergic rhinitis participation. Dr. Larenas Linnemann reports personal fees from GSK, AstraZeneca, MEDA, Boehringer Ingelheim, Novartis, Grunenthal, UCB, Amstrong, S chirled, DBIV Technologies, MSD, Pfizer, grants from Sanofi, AstraZeneca, Novartis, UCB, GSK, TEVA, Chiesi, Boehringer Ingelheim, outside the submitted work. Dr. Møiseg reports personal fees from ALK, grants from ASIT biotech, Leti, BiotapAG, Huuka, Ursapharm, Optima, personal fees from allergopharma, Nuvo, Meda, Friluchem, Hexal, Servier, Bayer, Johnson&Johnson, Klasterfau, GSK, MSD, FAES, Stada, UCB, Allergy Therapeutics; grants and personal fees from Bencard, Stallergenes; grants, personal fees and non-financial support from Lofarma; non-financial support from Roval, Atmos, Bionorica, Otorony, Fertero; personal fees and non-financial support from Novartis; Dr. Okamoto reports personal fees from Esaiz Co., Ltd, Shionogi Co., Ltd, Tonic Co., Ltd, GSK, MSD, Kyowa Co., Ltd, grants and personal fees from Kyorin Co., Ltd, Ticho Co., Ltd, grants from Yakuruto Co., Ltd, Yamada Bee Farm, outside the submitted work. Dr. Papadopoulos reports grants from Gerolymatos, personal fees from Hal Allergy B.V., Novartis Pharma AG, Menarini, Hal Allergy B.V., outside the submitted work. Dr. Pépin reports grants from AIR LIQUIDE FOUNDATION, AGIR à dom, ASTRA ZENeca, FISHER & PAYKEL, MUTUALIA, PHILIPS, RESMED, VITALAIRE, other from AGIR à dom, ASTRA ZENeca, BOEHRINGER INGE‑ HEIM, JAZZ PHARMACEUTICAL, NIGHT BALANCE, PHILIPS, RESMED, SEFAM, outside the submitted work. Dr. Pfarr reports grants and personal fees from ALK-Abelló, Allergopharma Stallergenes Greer, HAL, Allergy Holding B.V./HAL Allergie Gmbh, Bencard Allergie GmbH/Allergy Therapeutics, Lofarma, grants from Bovay, ASIT Biotech Tools S.A, Laboratorios LETI/LETI Pharma, Anergis S.A., grants from Novo, Circassia, Glaxo Smith Kline, personal fees from Novartis Pharma, MEDA Pharma, Mobile Chamber Experts (a GA2LEN Partner), Pohl-Boskamp, Indoor Biotechnologies, grants from, outside the submitted work. Dr. Todo-Bom reports grants and personal fees from Novartis, Mundipharma, GSK Teva Pharma, personal fees from AstraZeneca, grants from Leti, outside the submitted work. Dr. Tsiligianni reports advisory boards from Boehringer Ingelheim and Novartis and a grant from GSK, outside the submitted work. Dr. Wallace reports and Indicates that she is the co-chair of the Joint Task Force on Practice Parameters, a task force composed of 12 members of the American Academy of Allergy, Asthma, and Immunology and the American College of Allergy, Asthma, and Immunology. Dr. Waserman reports other from CSL Behring, Shire, AstraZeneca, Teva, Meda, Merck, outside the submitted work. Dr. Zuberbier reports and Organizational affiliations: Committee member: WHO-Initiative “Allergic Rhinitis and Its Impact on Asthma” (ARIA). Member of the Board: German Society for Allergy and Clinical Immunology (DGAKI). Head: European Centre for Allergy Research Foundation (ECARF) Secretary General. Global Allergy and Asthma European Network (GA²LEN). Member. Committee on Allergy Diagnosis and Molecular Allergology, World Allergy Organization (WAO).

Availability of data and materials
Not applicable.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
FMC VIA LR.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 January 2019 Accepted: 4 February 2019
Published online: 11 March 2019
References

