FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae

Citation for published version:

Digital Object Identifier (DOI):
10.1371/journal.pgen.1000201

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
PLoS Genetics

Publisher Rights Statement:
RoMEO green

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
FtsK-Dependent Dimer Resolution on Multiple Chromosomes in the Pathogen Vibrio cholerae

Marie-Eve Val1,2,3, Sean P. Kennedy1,2,3, Meriem El Karoui1, Laetitia Bonné1,2,3, Fabien Chevalier1,2,3, François-Xavier Barre1,2,3*

1 CNRS, Centre de Génétique Moléculaire, UPR 2167, Gif-sur-Yvette, France, 2 Université Paris-Sud, Orsay, France, 3 Université Pierre et Marie Curie, Paris 6, Paris, France, 4 INRA, Unité des Bactéries Lactiques et Pathogènes Opportunistes, UR888, Jouy en Josas, France

Abstract

Unlike most bacteria, Vibrio cholerae harbors two distinct, nonhomologous circular chromosomes (chromosome I and II). Many features of chromosome II are plasmid-like, which raised questions concerning its chromosomal nature. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle, further calling into question the mechanisms ensuring the synchronous management of chromosome I and II. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In Escherichia coli, chromosome dimers are resolved by the addition of a crossover at a specific site, dif, by two tyrosine recombinases, XerC and XerD. The process is coordinated with cell division through the activity of a DNA translocase, FtsK. Many E. coli plasmids also use XerCD for dimer resolution. However, the process is FtsK-independent. The two chromosomes of the V. cholerae N16961 strain carry divergent dimer resolution sites, dif1 and dif2. Here, we show that V. cholerae FtsK controls the addition of a crossover at dif1 and dif2 by a common pair of Xer recombinases. In addition, we show that specific DNA motifs dictate its orientation of translocation, the distribution of these motifs on chromosome I and chromosome II supporting the idea that FtsK translocation serves to bring together the resolution sites carried by a dimer at the time of cell division. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution with cell division for each of the two V. cholerae chromosomes. Chromosome II dimer resolution thus stands as a bona fide chromosomal process.

Introduction

Vibrio cholerae, the causative agent of cholera, harbors two nonhomologous circular chromosomes [1]. The majority of genes believed to be necessary for the basic life processes of V. cholerae are carried on the 2.96 Mbp chromosome I, whereas the 1.07 Mbp chromosome II only harbors a few essential genes [1]. The preferential transcription of genes from chromosome II during colon colonization [2] suggests that this genomic organization is important for pathogenicity. Likewise, other bacteria with multiple chromosomes can adopt several different life cycles [3], which led to the idea that multipartite genomes offer a selective advantage for the adaptation to very different environmental conditions.

Nevertheless, most bacteria harbor a single chromosome. In contrast, there is no apparent limit to the size and numbers of chromosomes harbored by eukaryotic cells. An important difference between bacteria and eukaryotes is that specific machineries appear to exist for the coordinated maintenance of each chromosome of a given bacterium, whereas eukaryotic cells possess a single global system for all chromosomes [4–12]. For instance, the two V. cholerae chromosomes harbor different partition systems [4,7] and initiation of their replication is governed by different mechanisms [6,8,9]. In addition, many features of V. cholerae chromosome II, such as its partition system, are plasmid-like, which raised questions concerning its chromosomal nature [1,10,13]. Plasmid replication and segregation are generally not coordinated with the bacterial cell cycle [14], further raising questions on the mechanisms ensuring the synchronous management of chromosome I and II.

A second major difference between bacteria and eukaryotes is intrinsic to the structure of chromosomes: in bacteria, chromosomes are generally covalently closed circular DNA molecules while they are linear in eukaryotes. DNA circularity can result in the formation of chromosome dimers by homologous recombination [15], which poses a barrier to the segregation of genetic information if they are not resolved before cell division (Figure 1A). Indeed, inactivation of chromosome dimer resolution (CDR) in Escherichia coli results in ~15% cell death per generation under laboratory growth conditions [16], which corresponds to the estimated rate of chromosome dimers formed at each cell generation [17]. This prompted us to study how dimer resolution is achieved on each of the two V. cholerae chromosomes.

The mechanism of CDR was originally elucidated in E. coli. In this organism, it depends on the addition of a crossover at dif, a 28bp site located at the opposite of the origin of replication on the chromosome, by two related tyrosine recombinases, XerC and XerD (Figure 1A; see [18] for a review). In addition, CDR depends on two activities of a cell division protein, FtsK. First,

* E-mail: barre@cgm.cnrs-gif.fr

Editor: Dhruba K. Chattoraj, National Cancer Institute, United States of America

Received April 29, 2008; Accepted August 18, 2008; Published September 26, 2008

Copyright: © 2008 Val et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Work in the Barre lab is supported by the 2007 FRM laboratory program, the 2006 EMBO YI program, the CNRS ATIP program and the 2005 ANR BLANC programs. Work in the El Karoui lab is supported by ACI IMPBio and ANR BLANC programs. M-EV and LB were the recipients of FRM and Région Ile de France fellowships, respectively.

Competing Interests: The authors have declared that no competing interests exist.
Author Summary

During proliferation, DNA synthesis, chromosome segregation, and cell division must be coordinated to ensure the stable inheritance of the genetic material. In eukaryotes, this is achieved by checkpoint mechanisms that delay certain steps until others are completed. No such temporal separation exists in bacteria, which can undergo overlapping replication cycles. The eukaryotic cell cycle is particularly well suited to the management of multiple chromosomes, with the same replication initiation and segregation machineries operating on all the chromosomes, while the bacterial cell cycle is linked to genomes of less complexity, most bacteria harboring a single chromosome. The discovery of bacteria harboring multiple circular chromosomes, such as V. cholerae, raised therefore a considerable interest for the mechanisms ensuring the synchronous management of different replicons. Here, we took advantage of our knowledge of chromosome dimer resolution, the only bacterial segregation process for which coordination with cell division is well understood, to investigate one of the mechanisms ensuring the synchronous management of the smaller, plasmid-like, and larger, chromosome-like, replicons of V. cholerae.

FtsK functions as a DNA pump anchored in the septum [19,20]. It loads on DNA trapped within the division septum due to dimer formation (Figure 1A). FtsK loading is oriented by specific DNA motifs, the KOPS, which dictates the orientation of translocation (Figure 1A; [21]). KOPS are skewed on the two replicohers of the chromosome with dif located at the junction of their polarity [22,23]. Thus, dif sites carried by a dimer are brought together by FtsK translocation (Figure 1A). Second, FtsK serves to activate recombination at dif via a direct interaction with XerD [24,25]. dif contains two 11bp binding sites for XerC and XerD, separated by a central region at the outer boundary of which recombination occurs. The interaction between XerD and FtsK allows XerD to perform a first pair of strand exchanges [20], resulting in the formation of a Holliday junction (HJ). This HJ is converted to a central region (Figure 1B). Such a divergence is only found on plasmid sites, which, coupled with the other plasmid-like features of chromosome II, suggested that chromosome II dimer resolution might follow a plasmid pathway. Second, it was reported that the position of cleavage of XerDVc on dif might differ from the one of its E. coli orthologue on dif [32], even if dif differs from the dif consensus of γ-Proteobacteria by only 2 bases (Figure 1B). Further raising questions on the exact mechanisms coordinating CDR of chromosome I and II with the cell cycle.

Here, we present the first formal study of CDR in V. cholerae and measure the rate of chromosome dimer formation on its two chromosomes under laboratory growth conditions. We show that the cell division protein FtsKVc is required for recombination by XerCVc and XerDVc at dif and dif2. In addition, we show that the activity of FtsKVc is directed by specific DNA motifs, which display the same skewed distribution on the two chromosomes, dif and dif2 being located at the junction of their polarity. Taken together, these results suggest that the same FtsK-dependent mechanism coordinates dimer resolution on each of the two V. cholerae chromosomes with cell division. Chromosome II dimer resolution thus stands as a bona fide chromosomal process.

Results

Chromosome Dimer Formation in V. cholerae

The growth of V. cholerae strains deficient in CDR was directly compared to the growth of their parental strain in competition experiments in rich media (Figure 2). These experiments revealed a defect of 5.8% and 3% per cell per generation for Δdif1 and Δdif2 cells, respectively, compared to their wild type counterparts. Since these growth defects were entirely suppressed in a recA background (Figure 2), they directly reflect the rates of dimer formation on chromosome I and II, f_dimer_Chr1 and f_dimer_Chr2 (See Material and Methods). The 8.6% growth defect of xerCVc cells, which was also suppressed in a recA background, reflects the total rate of chromosome dimer formation in V. cholerae, f_dimer_Chr1+2 (Figure 2). Interestingly, f_dimer_Chr1+2 equals 1−[(1−f_dimer_Chr1)(1−f_dimer_Chr2)], indicating that dimer formation on the two V. cholerae chromosomes is independent.

In Vitro Cleavage by the V. cholerae recombinases on dif1 and dif2

Recombinase-mediated strand cleavage can be assayed in vitro using suicide substrates that contain a nick opposite of the position of cleavage (Figure 3A). Cleavage of the continuous strand of a suicide substrate generates a double strand break that prevents re-ligation (Figure 3B). This leads to (i) the accumulation of covalent protein/DNA complexes between the attacking recombinase and the 5’-end fragment of the continuous strand and (ii) the accumulation of free 3’-end fragments of the continuous strand (Figure 3B). XerCVc and XerDVc each cleave a specific strand on difβ. The strand cleaved by XerDVc is termed Top strand. The strand cleaved by XerCVc is termed Bottom strand. Following this convention, suicide substrates in which the continuous strand is expected to be cleaved by XerCVc are called Top strand suicide substrates and suicide substrates in which the continuous strand is expected to be cleaved by XerDVc are called Bottom strand suicide substrates (Figure 3A).

Labeling the 5’-end of the continuous strand of suicide substrates allows the detection of covalent recombinase/DNA complexes.
complexes (Figure 3C). The molecular weight of XerCVc and XerDVc being very similar, we used a maltose binding protein fusion of XerCVc (MBPXerCVc) in conjunction with XerDVc to avoid any confusion between the two possible covalent complexes. For both dif1 and dif2, MBPXerCVc-DNA covalent complexes accumulated when Top strand suicide substrates were used (Figure 3C, T1 and T2, respectively), indicating that XerC Vc cleaves the Top strands of dif1 and dif2. Furthermore, XerDVc-DNA covalent complexes accumulated when Bottom strand suicide substrates were used (Figure 3C, B1 and B2), indicating that XerD cleaves the bottom strands of dif1 and dif2.

The position of cleavage of XerCVc and XerDVc were then determined by comparing of the length of the free DNA fragments liberated by recombinase cleavage to a ladder obtained by chemical cleavage at purine bases of the suicide substrates (Figure 3D). To this aim, the continuous strands of the suicide substrates were labeled on their 3′ end. Cleavage by tyrosine recombinases generates a 5′OH DNA extremity whereas chemical cleavage leaves a 5′ phosphate. As a consequence, the free DNA fragments had to be first phosphorylated by kinase treatment (Figure 3D, PNK) in order to be compared with the chemical cleavage ladder (Figure 3D, G+A). We thus found that XerCVc and XerDVc cleave DNA at the junction between their respective binding site and the central region of difEc (Figure 3D, black arrows).

FtsK-Dependent Recombination at dif1 and dif2
Analysis of the DNA sequence immediately upstream and downstream of dif1 and dif2 in different Vibrio species did not reveal any conserved motifs that could serve to bind accessory proteins (data not shown). FtsKVc was thus left as the most likely candidate for activation of Xer recombination at both sites. To test this possibility, we reconstituted the V. cholerae Xer system in E. coli cells deleted for their natural FtsK/XerCD system. We used a xerC and xerD E. coli strain, which was also ftsK−. This strain produces...
only the N-terminal domain of FtsKVc, essential for viability [33], but lacks production of the C-terminal domain of FtsKVc, which is necessary for recombination at difF [34]. XerCVc was expressed in conjunction with XerDVc from the chromosomal \textit{E. coli} xerC promoter. The production of FtsKVc was controlled by placing the XerDVc or the XerCYF mediates the first pair of strand exchanges during both XerDVc cells (Figure 4B, lane 3 and 7), indicating that Xer recombination at difF and dif2 depends on FtsKVc (Figure 4A).

To determine the order of the strand exchanges in the recombination reactions, we monitored plasmid recombination in a set of four strains encoding either wild-type XerCVc and XerDVc or the XerCCYF and XerDVF mutants, in which the catalytic tyrosine is replaced by a phenylalanine (Figure 4B). For both difF and dif2, no resolution product or H\textsubscript{F} intermediate were detected in XerDVF cells (Figure 4B, lane 2, 4, 6 and 8). In contrast, we could detect the accumulation of a H\textsubscript{F} intermediate in XerCVF XerDVc cells (Figure 4B, lane 3 and 7), indicating that XerDVc mediates the first pair of strand exchanges during both difF and dif2-recombination. Recombination products were likely still observed in XerCVF XerDVc cells since other cellular processes than Xer recombination are capable of resolving H\textsubscript{F}s [18]. However, the amount of product was considerably decreased, indicating that intermediate H\textsubscript{F}s are preferentially resolved to crossovers by the action of XerCVc.

All together, these results indicate that FtsKVc activates recombination at difF and dif2 by promoting the exchange of a first pair of strands by XerDVc.

Species-Specificity in Xer Recombination Activation

Several residues implicated in the interaction between \textit{E. coli} XerD and FtsK have been mapped [24,25]. These residues are not entirely conserved between the \textit{V. cholerae} and \textit{E. coli} proteins (Figure 5A), suggesting that the interactions between the translocase and the recombinases might be specific in these two species. Nevertheless, both FtsKEc and FtsKVc could activate recombination by XerCDEc and XerCDVc at difEc, difF and dif2 (Figure 5B). However, the efficiency of recombination varied for each site and for each pairing of translocase/recombinases. XerCDEc-recombination at difEc and difF reached 80% of efficiency whether FtsKEc or FtsKVc were produced (Figure 5B, XerCDEc, difF and dif2). In contrast, XerCDEc-recombination at dif2 was more efficient when activated by FtsKEc than FtsKVc (Figure 5B, XerCDEc, dif2). In addition, it did not reach 80% efficiency, even in the presence of the cognate partner translocase, FtsKEc. XerCDVc-recombination at dif10, difF and dif2 reached 80% of efficiency (Figure 5B, XerCDVc). However, this required the presence of FtsKVc. XerCDVc-recombination at dif2 even fell below 20% when activated by FtsKEc. Thus, the effect of species-specificity is more pronounced on dif2 than on difF.

Importance of the Sequence of the Resolution Sites for the Stringent Control of Xer Recombination

We noticed that the \textit{V. cholerae} recombinases could promote recombination between difF sites in the absence of FtsK production, albeit to a very low level (Figure 5B, XerCDEc, difF, No FtsK). This was further exemplified on dif2 substrates, in which 53% of recombination was observed without FtsK expression (Figure 5B, XerCDEc, dif2, No FtsK). Resolution products were detected in the absence of XerC catalysis (Figure 5C, XerCVF strains) but not in the absence of XerD catalysis (Figure 5C, XerDVF strains), signifying that XerDVc catalysis initiated recombination. difF differs from the \gamma-Proteobacteria consensus by only 2 bp, the substitution of A17 by G and the substitution of A10 by T (Figure 5D). We therefore analyzed FtsK-independent XerCDEc recombination at hybrid sites between difF and dif2 to identify residues important for the above observation (Figure 5D). A site carrying the G-A17 substitution promoted a much higher level of FtsK-independent recombination (difF, T10), while recombination at sites carrying the T-A17 substitution was not altered (difF, A10). However, the cumulative substitutions of G-A17 and T-A10 increased FtsK-independent recombination to a level equivalent to difEc-recombination (difF). In addition, when T-A10 was altered to A in difF, we observed a faint recombination product (difFA). This was significant since FtsK-independent recombination was never observed at difF. Thus, G-A17 in the central region of difF and T-A10 in the XerC-binding site of difF and dif2 appear to have an important role in maintaining Xer recombination under the tight control of FtsK in \textit{V. cholerae}.

![Figure 2](image-url)
Figure 3. In vitro cleavage of dif1 and dif2 by the V. cholerae recombinases. A. Putative XerC^{VC} and XerD^{VC} cleavage sites on dif1 and dif2 are depicted as black and grey strands. Their equivalents in dif^{Ec} are cleaved by XerC^{EC} and XerD^{EC}, respectively. Grey triangles further indicate the positions equivalent to these where XerC^{VC} and XerD^{VC} cleave dif^{Ec}. A white triangle indicates the XerD^{VC}-cleavage position reported for dif1 [32]. Top and bottom strand suicide substrates contain a nick opposite the position expected to be cleaved by XerC^{VC} and XerD^{VC} if the E. coli paradigm is followed, respectively. T1, B1, T2, B2: suicide substrates on dif1 and dif2, respectively. B. Scheme of a XerC-suicide cleavage reaction. C. Covalent complex formation by MBPXerC^{VC} and XerD^{VC} on suicide substrates. Schemes of substrates and products are shown on the top and right of the gel, respectively. Suicide substrates were labeled on the 5' side of the continuous strand, as indicated (5' *). D. Cleavage sites of XerC^{VC} and XerD^{VC} on dif1 and dif2. Schemes of substrates are shown on the top of the gels. Suicide substrates were labeled on the 3' side of the continuous strand, as indicated (3' *). PNK: phosphorylation with T4 polynucleotide kinase; G+A: chemical cleavage ladder. Sequences resulting from the chemical cleavage are indicated beside the gels. Bases of the central region and of the XerC-binding sites are indicated in black and grey, respectively. The deduced cleavage points are indicated by black triangles.

doi:10.1371/journal.pgen.1000201.g003
V. cholerae FtsK Orienting Polar Sequences

We next investigated if FtsKVs could serve to bring together the CDR sites carried by dimers of chromosome I or by dimers of chromosome II. Several key residues implicated in KOPS recognition have been identified in the γ domain of FtsKEc (Figure 5A; N1296; R1300; E1303 [35]). The conservation of these residues in FtsKVs suggested that it could recognize the same motifs (Figure 5A; N926; R930; E933). If this was indeed the case, replacing the C-terminal domain of FtsKEc with the one of FtsKVs should completely rescue CDR in E. coli cells since FtsKVs fully activates recombination by XerCDEc at difEc (Figure 5B, XerCDEc, difEc). Indeed, the fitness of such cells was sufficient by itself to provide polar orientation of FtsKVs. We therefore analyzed the distribution of all octamers motif families with one degenerated position on both chromosomes. We ranked potential candidates according to their skew significance keeping only families that had a skew of at least %80% and a frequency of at least once every 30 kb. Only one family (GGGNAGGG) was among the 10 best candidates of both chromosomes. This family is highly skewed, frequent (Figure 6C) and contains the experimentally active GGGCAGGG motif. Taken together, these results suggest that the GGGNAGGG motifs might function as KOPS in V. cholerae.

Discussion

A Common Cell Division-Coordination Mechanism for Dimer Resolution of the Two V. cholerae Chromosomes

The strand exchanges catalyzed by XerCVEc and XerDVc occur at the junction between their respective binding site and the central region of dif1 and dif2, as previously reported for the E. coli recombinases on dif (Figure 3). FtsKVs promotes recombination at both sites by activating a first pair of strand exchanges mediated by XerDVc (Figure 4), thanks to a species-specific interaction with the recombinases (Figure 5). In addition, GGNNAGGG motifs seem to function as FtsKVs-Orienting Polar Sequences, their frequency and distribution on the two V. cholerae chromosomes suggesting that the FtsKVs-translocase activity helps bring CDR sites together when dimers are formed on chromosome I or on chromosome II (Figure 6). We conclude that the same FtsK-dependent mechanism controls dimer resolution on each of the two V. cholerae chromosomes. We have previously shown in E. coli that the requirement for FtsK to activate Xer recombination delays CDR to the time of septum closure [26], which is likely to also hold true in V. cholerae. Thus, the study of CDR provides the first example of a cell cycle coordination mechanism shared by the two V. cholerae chromosomes, which is similar to the way chromosomal maintenance processes are coordinated within the cell cycle of eukaryotes.

Dimer Formation Is Linked to Replicon Size

Many bacteria harbor multiple chromosomes, which seems an important determinant of their individual life styles. A few bacterial
species harbor linear replicons in addition to circular, such as Agrobacterium tumefaciens and the Borrelia species [3]. In the vast majority of cases, however, the multiple chromosomes harbored within a bacterium are circular. Maintenance of circular replicons requires the resolution of dimers created by homologous recombination events. In V. cholerae, 5.8% of dimers per cell per generation are formed on the 2.96 Mbp chromosome I and 3% of dimers are created on the 1.07 Mbp chromosome II (Figure 2). Under similar growth conditions, 15.6% of dimers are generated on the 4.6 Mbp E. coli chromosome (Figure 6). These results suggest that dimer formation increases with replicon size, possibly reaching a theoretical upper limit of 50% for very large replicons. In addition, the rate of dimer formation seems to vary exponentially with replicon size for small replicons. Based on this hypothesis, the frequency of chromosome dimer formation in V. cholerae would be 11% per cell generation if it carried a single circular chromosome of 4.03 Mbp. Instead, we measured a total rate of 8.6% for the two chromosomes (Figure 2). Thus, the particular genomic organization of the Vibrios seems to minimize chances for chromosome dimer formation, which is theoretically beneficial.

Generalization to Other Bacteria with Multiple Chromosomes

Putative dF sites were readily identified on each of the two chromosomes harbored by 7 additional γ-Proteobacteria (Figure 7 and Figure S2). To determine dF sites in β- and α-Proteobacteria, we generated a profile Hidden Markov Model (HMM) based on the alignment of the putative CDR sites found in the larger chromosome of 27 γ-Proteobacteria using the program HHMER. We then compared each sequence by hand to ensure the proper 6 bp spacing between the putative XerC and XerD binding sites. Putative dF sites were thus identified on each of the multiple chromosomes harbored by 10 β-Proteobacteria species and 5 α-Proteobacteria species (Figure 7 and Figure S3 and S4). A single pair of recombinases orthologous to XerC and XerD was found in each of the 22 additional γ-, β- and α-Proteobacteria harboring multiple chromosomes, suggesting that a single pair of recombinases ensures dimer resolution of each of their non-homologous chromosomes. FtsK orthologues were also found. In addition, putative dF sites fell within 10 kb of the GC-skew inflection point (data not shown), suggesting that dimer resolution is under the
Figure 6. *V. cholerae* FtsK Orienting Polar Sequences. A. Growth competition of *E. coli* cells encoding FtsK hybrids. N: cells carrying a complete deletion of the C-terminal domain and linker region of FtsKEc; NLCEc: cells carrying full length FtsKEc; NLCVc and NLCHi: cells in which the C-terminal domain FtsKEc was replaced by the one of FtsKVc and FtsKHi, respectively. f: frequency of cells that the parental N strain fails to produce at each generation compared to the FtsK hybrids. B. 5′-GGGCAGGG-3′ inhibits recombination activation by FtsKVc. Plasmid recombination at *E. coli* dif by XerCDEc was induced with 0.5% arabinose. Ec[NRE]: FtsK50C Ec[NRE]; Vc[NRE]: FtsKVc[NRE]. KOPS-0: substrate without GGGCAGGG sequences; KOPS-2: substrate with GGGCAGGG sequences.
control of an FtsK-like homologue in all these species. Thus, the adoption of an FtsK-dependent dimer resolution system could be a key evolutionary step in the maintenance of large circular replicons.

Tuning of V. cholerae CDR to Achieve Efficient Recombination on Divergent dif Sites

The sequence of Xer target sites, and especially of their central region, is a crucial determinant in the outcome of recombination [36,37]. Indeed, the central region of dif sites found in Proteobacteria with a single chromosome showed a high degree of conservation, most β- and γ-Proteobacteria harboring a ‘canonical’ 5’-TGTATA-3’ motif (Figure 7 and Figure S2 and S3), suggesting that there is a selective pressure on the sequence of the dif central region. This is further illustrated by the lower recombination efficiency of the E. coli system on dif2 compared to dif1 (Figure 5). In this regard, the V. cholerae Xer recombination system is remarkable since identical recombination efficiencies were obtained with the same pair of recombinases on dif1 and dif2 (Figure 4 and 5). However, XerCDVc-mediated recombination at dif2 required a tighter interaction between the recombinases and their partner translocase than at dif1, since FtsKEc promoted 50% of recombination at dif1 but less than 20% at dif2 (Figure 5B, XerCDVc, FtsKEc). In addition, a few alterations in the sequence of dif1 and dif2 decreased the stringency of the control exerted by FtsK (Figure 5D), highlighting the extremely fine tuning of the different components of the V. cholerae CDR system.

Non-Homologous Chromosomes Carry dif Sites with Divergent Central Regions

We observed that in Proteobacteria with multiple chromosomes, the central regions of dif sites from non-homologous chromosomes are divergent, as in V. cholerae (Figure 7 and Figure S2, S3, S4). A single exception was found in Burkholderia xenovarans, in which two of the three chromosomes of the bacterium harbor a resolution site with an identical central region. We reasoned therefore that some selective pressure imposes the divergence of the central regions of CDR sites carried by different, non-homologous chromosomes of bacteria with multipartite genomes, which competes with the selective pressure for dif central regions to adopt the preferential 5’-TGTATA-3’ motif. Indeed, the presence of dif sites with identical central regions on two non-homologous chromosomes could lead to the formation of chromosome fusions by Xer recombination, which would disrupt the selective advantage brought by the multipartite genomic organization. In support of this hypothesis, preliminary experiments indicate that harmonization of the two V. cholerae dif sites leads to chromosomal fusions (Val and Barre, unpublished observations). We are currently investigating how these fusions are formed and the consequences of harboring identical dif sites on separate chromosomes.

Materials and Methods

Strains, Plasmids, and Media

All growth experiments were done in LB-Lennox. Strains and plasmids are listed in Text S1. Briefly, V. cholerae strains were derived from N16961 [1] by allele exchange using pDS132 derivatives [38] and E. coli [2163 as a donor strain [39]. E. coli strains used for in vivo plasmid resolution assays and for growth competition were engineered as previously described in [25,40]. Mutations were confirmed by PCR and sequencing.

Growth Competition Assay

For growth competitions, E. coli cells were grown at 37°C with a 1000 x dilution in fresh media every 12h [40]. Because of their higher growth rate, V. cholerae cells were grown at 30°C with a 10000 x dilution every 12h. The numbers of CFU of mutated and parental cells in the cultures were determined by plating on cognate antibiotic plates every 12 or 24h, depending on the mutant growth defect. These numbers were used to calculate the number of generation of the parent cells between each time points.
and the CFU ratio of mutated versus parent cells at each time point. This ratio varies exponentially with the number of generations. The proportion of cells that the mutant strain fails to produce at each doubling time of its parent is deduced from the coefficient of this exponential. This ratio is a good estimation of the rate of dimer formation (Text S1).

In Vitro Xer Assays

V. cholerae MBP-XerD and MBP-XerC recombinases were purified using nickel, amylase and heparin columns. The MBP tag was removed by thrombin digestion. *dp1* and *dp2* synthetic suicide substrates (Text S1), were obtained by annealing of synthetic oligonucleotides purified by PAGE. 5'-end labeling of oligonucleotides was performed using T4 DNA polynucleotide kinase and [32P] γ-ATP and 3' end labeling using terminal transferase and [32P] α-3dATP. Reactions were performed in 20 mM Tris-HCl (pH 7.5), 50 mM NaCl, 0.1mM EDTA, 1 μg/ml of BSA, 40% glycerol and 0.2 pmol of radiolabeled probe for 2 hours at 37°C. Covalent complexes were analyzed by 12% SDS-PAGE and cleavage sites by 12% urea-PAGE. Radioactivity was detected on a STORM (GE Healthcare).

In Vivo Plasmid Resolution Assays

E. coli cells were transformed with the FtsK expression vector and then with the Xer recombination reporter plasmid, as described in [25]. 10 transformant colonies were pooled in 1 ml of LB, diluted 100× in LB and grown to 0.6 OD at 37°C. Cells were then grown for an extra 2 hours at 37°C in the presence of 0.5% arabinose to induce FtsK production, unless otherwise indicated. Plasmid DNA was hydrolyzed with *A. nidulans* (single cutter). Recombination efficiency was computed as the amount of replicative product over the sum of the amount of substrate and of replicative product, which were separated by agarose gel electrophoresis and detected with SybrGreen staining using a LAS-3000 (Fuji Life Science).

Bioinformatics Analysis of Motifs Distribution

Leading strands were defined as the DNA strand reported in Genbank files downstream of the replication origin up to the terminus and the reverse complement strand from the terminus to the origin. The terminus position was chosen as the first nucleotide of the CDR site. Skew statistical significance was assessed by calculating the probability that the observed skew occurred by chance taking into account the fact that G-rich motifs are likely to be more frequent on the leading strand because of GC skew, as previously described [41]. Analysis on chromosome II was performed on a chimeric chromosome where the superintegron has been removed because this element carries more than 100 repetitions of the attC integration site, which hides the signal provided by octamer motifs.

Supporting Information

Figure S1 XerCD and FtsK tree.

Found at: doi:10.1371/journal.pgen.1000201.s001 (2.80 MB TIF)

Figure S2 dif sites in gamma-Proteobacteria.

Found at: doi:10.1371/journal.pgen.1000201.s002 (6.03 MB TIF)

Figure S3 dif sites in beta-Proteobacteria.

Found at: doi:10.1371/journal.pgen.1000201.s003 (5.50 MB TIF)

Figure S4 dif sites in alpha-Proteobacteria.

Found at: doi:10.1371/journal.pgen.1000201.s004 (3.18 MB TIF)

Text S1 Supplementary methods.

Found at: doi:10.1371/journal.pgen.1000201.s005 (0.12 MB DOC)

Acknowledgments

We thank D. Chattoraj, D. Mazel, V. Sivanathan and D. Sherratt for the kind gift of plasmids and strains, G. Balavoine, N. Dubarry, B. Michel and C. Pousoz for helpful comments. We are grateful to the MIGALE bioinformatics platform (INRA) for providing technical support and computational resources.

Author Contributions

Conceived and designed the experiments: FXB. Performed the experiments: MEV SPK MEK LB FC. Analyzed the data: MEV SPK MEK FCX. Contributed reagents/materials/analysis tools: C. Possoz for helpful comments. We are grateful to the MIGALE bioinformatics platform (INRA) for providing technical support and computational resources.

