Unemployment Dynamics in the OECD

Citation for published version:

Digital Object Identifier (DOI):
10.1162/REST_a_00277

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Review of Economics and Statistics

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Abstract—We provide a set of comparable estimates for the rates of inflow to and outflow from unemployment using publicly available data for fourteen OECD economies. Using a novel decomposition that allows for deviations of unemployment from its flow steady state, we find that fluctuations in both inflow and outflow rates contribute substantially to unemployment variation within countries. Anglo-Saxon economies exhibit approximately a 15:85 inflow-outflow split to unemployment variation, while continental European and Nordic countries display closer to a 45:55 split. In all economies, increases in inflows lead increases in unemployment, whereas outflows lag a ramp-up in unemployment.

I. Introduction

UNEMPLOYMENT rates among developed economies have varied substantially across both time and countries over the past forty years. This variation in unemployment may occur as a result of variation in the rate at which workers flow into the unemployment pool, variation in the rate at which unemployed workers exit the unemployment pool, or a combination of the two. The relative contributions of changes in inflow and outflow rates to changes in unemployment have been abundantly documented for the United States. 1 Less is known, however, about the driving forces of unemployment variation in other countries. This topic is of interest because of the considerable variation in unemployment that has been observed in developed economies in recent decades, notably in continental Europe. In this paper, we provide a detailed analysis of unemployment flows for fourteen developed economies using publicly available data.

In the first part of our analysis, we describe how it is possible to derive measures of the rates of inflow to and outflow from the unemployment pool using annual data from the OECD.2 To do this, we generalize the method developed by Shimer (2007), which makes use of time series for the number employed, the number unemployed, and the number unemployed less than five weeks to infer flow hazard rates for the United States. A limitation that arises when applying this methodology outside the United States is that series on short-duration unemployment can be noisy for countries in which short durations account for a small proportion of overall unemployment, such as in continental Europe. To address this, we develop a method that exploits additional data on unemployment at higher durations to construct a set of comparable time series for the unemployment inflow and outflow rates across countries.

Our measures allow us to document a set of stylized facts on unemployment flows among developed economies. First, the average level of unemployment inflow and outflow rates varies substantially across countries. Interestingly, the results suggest a natural partitioning of economies into Anglo-Saxon, Nordic, and continental European. Anglo-Saxon and Nordic economies display high exit rates from unemployment, with monthly hazards that exceed 20%. In stark contrast, outflow rates among continental European economies are much lower—typically less than 10% at a monthly frequency. Symmetrically, unemployment inflow rates also vary considerably across countries. Anglo-Saxon and Nordic countries exhibit inflow hazards that exceed 1.5% at a monthly frequency. However, as with the observed levels of outflow rates, monthly inflow rates among continental European economies are again much lower, at around 0.5% to 1%. These observations confirm the diagnosis that European labor markets are sclerotic in the sense that they display much lower rates of reallocation of labor, as documented in Blanchard and Summers (1986), Bertola and Rogerson (1997), Blanchard and Wolfers (2000), and Blanchard and Portugal (2001).

In the second part of our analysis, we pose the question of how much of the observed variation in unemployment within each country can be accounted for by variation in the inflow rate into unemployment and variation in the outflow rate from unemployment, respectively. To answer this, we provide a method for decomposing changes in the unemployment rate into contributions due to changes in the flow hazards that can be applied in countries with very different unemployment dynamics. The literature (Elsby, Michaels, & Solon, 2009; Fujita & Ramey, 2009; Petrongolo & Pissarides, 2008) has evaluated these contributions under the assumption

1 Some recent literature on unemployment flows has referred to the rate of inflow into unemployment as the “separation rate” (Shimer, 2005, 2007; Fujita & Ramey, 2009). We refer to it as the inflow rate for two reasons. First, a separation is typically taken to mean a quit or a layoff from an employer. In the presence of job-to-job transitions, such separations need not lead to an unemployment spell. Second, some unemployment spells originate from nonparticipation rather than a separation from employment.
that the unemployment rate is closely approximated by its flow steady-state value. Under this assumption, contemporaneous unemployment variation may be decomposed into contributions related to contemporaneous logarithmic variation in inflow and outflow hazards. While this steady-state assumption holds as a reasonable approximation in the United States, we show that it can be inaccurate in other developed economies, notably those of continental Europe.

Reacting to this, we show that in cases where unemployment deviates from steady state, current variation in unemployment can be decomposed recursively into contributions due to current and past logarithmic changes in the inflow and outflow hazards. Intuitively, when unemployment is out of steady state, it can vary as a result of contemporaneous changes in the inflow and outflow rates or as a result of dynamics driven by past changes in these flow hazards.

Using our alternative decomposition, we obtain a much more accurate characterization of changes in unemployment rates across countries.

Application of our decomposition to our estimated time series for the flow hazard rates provides us with a second stylized fact on unemployment flows. Among all countries that we consider, fluctuations in both inflow and outflow rates contribute substantially to unemployment variations within countries. The relative contribution of each differs across countries, however. Among Anglo-Saxon economies, we find approximately a 15:85 inflow-outflow split of unemployment variation, a result that echoes recent findings for the United States, over the same sample period. For continental European and Nordic countries, however, we observe much closer to a 45:55 inflow-outflow split. Thus, a complete understanding of unemployment variation among our large sample of developed economies requires an understanding of the determinants of both the inflow rate and the outflow rate.

The final part of our empirical analysis uses the estimated flow hazard rates to compute measures of the number of workers flowing in and out of the unemployment pool (as opposed to the hazard rates for these flows). A third stylized fact that emerges from these results is that a geographical partitioning also applies to average worker flows across countries. Anglo-Saxon and Nordic countries exhibit annual worker flows in and out of unemployment that comprise more than 15% of the labor force. Among continental European economies, on the other hand, worker flows typically involve less than 10% of the labor force, echoing the findings of Blanchard and Portugal (2001) and Bertola and Rogerson (1997).

We then analyze the dynamic relationship between these worker flows and unemployment within each country. Using a simple correlation analysis, we document a fourth stylized fact on unemployment flows among developed economies: the timing of the contributions of inflows and outflows to unemployment variation displays a remarkable uniformity across countries. In all economies, we observe that increases in inflows lead increases in unemployment, whereas outflows lag a ramp-up in unemployment, an observation that has been highlighted for the United States in earlier studies.

Our findings that variation in unemployment inflows accounts for a substantial fraction of unemployment variation and is an important leading indicator for changes in unemployment dovetails with a recent literature on U.S. unemployment flows. A growing trend in modern macroeconomic models of the aggregate labor market has been to assume that the inflow rate into unemployment is acyclical (Hall, 2005a, 2005b; Shimer, 2005; among others). Reacting to this, a number of recent studies have cautioned against this trend by documenting evidence for systematic countercyclical movements in unemployment inflows in U.S. data. Our findings show that this caution resonates all the more if we wish to understand the considerable variation in unemployment rates observed outside the United States.

The remainder of the paper is organized as follows. In section II, we summarize the OECD data that we use throughout our analysis. In section III, we describe our methodology for inferring the rates of inflow to and outflow from the unemployment pool using the OECD data. Application of this methodology provides individual time series for the unemployment flow hazards for each of the fourteen countries in our sample. In section IV, we pose the question of how much of the variation in unemployment within countries can be accounted for by changes in the inflow and outflow rates, respectively. To answer this question, we derive a decomposition of unemployment variation that allows for unemployment to deviate from steady state. We show that allowing for such deviations is critical for understanding unemployment fluctuations outside the United States. Section V presents evidence on the number of workers flowing in and out of unemployment and documents stylized facts on the timing of the impact of worker flows on unemployment changes. Section VI summarizes and offers conclusions.

II. Data

Since a large part of our analysis is informed by the available data, we start by discussing the OECD samples that we use. These are taken from two different sources. First, we

3 Our analysis is not the first to estimate worker flows across countries. Other studies that examine worker flows for a subset of European countries include Albaek and Sørensen (1998) for Denmark; Bauer and Bender (2004) and Bachmann (2005) for Germany; Bertola and Rogerson (1997) for Canada, Germany, Italy, the United Kingdom, and the United States; Burda and Wyplosz (1994) for France, Germany, Spain, and the United Kingdom; Petrongolo and Pissarides (2008) for France, Spain, and the United Kingdom; and Pissarides (1986), Bell and Smith (2002), and Gomes (2008) for the United Kingdom. Reichling (2005) reports estimates of the separation rate for a set of countries (see his table 5) and also emphasizes that the separation rate is lower in European countries than in the United States.

4 See Darby, Haltiwanger, and Plant (1985, 1986), Blanchard and Diamond (1990), Davis (2006), and Fujita and Ramey (2009). Recent studies that have emphasized this fact include Braun, De Bock, and DiCecio (2006); Davis (2006); Elsby et al. (2009); Fujita and Ramey (2009); Kennan (2006); and Yashiv (2007). Older studies that have documented this include Perry (1972), Marston (1976), Blanchard and Diamond (1990), and Baker (1992).
III. The Ins and Outs of Unemployment in the OECD

At the heart of our analysis is a set of estimated annual time series of flow hazard rates into and out of unemployment for fourteen OECD countries. These time series are estimated using an extension of the method that Shimer (2007) developed for the United States. Shimer’s method cannot be applied directly to other OECD countries because the required data are not available. The extension that we introduce allows us to overcome this limitation and produce annual time series for the rates of inflow to and outflow from the unemployment pool for a large subset of OECD countries.

A. Analytical Framework

The evolution over time of the unemployment rate, which we denote by u_t, can be written as

$$\frac{du_t}{dt} = s_t(1 - u_t) - f_t u_t$$

(1)

workers who define themselves as out of the labor force in, say, the United States might define themselves as unemployed in Europe. Addressing these important issues of standardization is beyond the scope of this paper.

10 It is important to note that equation (1) abstracts from inflows into unemployment from nonparticipation, as well as labor force growth. We have calculated a set of results taking these considerations into account. Allowing for inflows from nonparticipation yields results that are very similar to those we present here, except that the level of the inflow rate is scaled down. Allowing for labor force also changes the results very little. If the labor force grows at monthly rate g_t, then $u_t^{\ast} = s_t/(s_t + f_t + g_t)$ and $\lambda_t = 1 - e^{-12(s_t + f_t + g_t)}$ in equations (3) and (4). In our sample, g_t averages around 0.001 on a monthly basis. In contrast, the average value of $(s_t + f_t)$ in our sample is on the order of 0.2. This point also extends to specific countries and periods in which labor force growth accelerates. For example, g_t rose in the 2000s in Spain up to 0.003 on a monthly basis. However, over the same period, we observe that $(s_t + f_t)$ averages around 0.1 in Spain. Consequently, allowing for labor force growth does not affect our results in a quantitatively important way.
where \(s_t \) is the monthly rate of inflow into unemployment, \(f_t \) is the monthly outflow rate from unemployment, and \(t \) indexes months.\(^{11}\) As mentioned above, the data that we use in the remainder of the paper allow us to infer unemployment flows at an annual frequency. Thus, we would like to relate the continuous time evolution of unemployment in equation (1) to the unemployment rates that we observe at discrete annual intervals. Assuming that the flow hazards are constant within years\(^ {12}\) and solving equation (1) forward one year allow us to do this:

\[
 u_t = \lambda_s u_t^* + (1 - \lambda_s) u_{t-12},
\]

where

\[
 u_t^* = \frac{s_t}{s_t + f_t}
\]
denotes the flow steady-state unemployment rate, and

\[
 \lambda_s = 1 - e^{-12(s_t+f_t)}
\]
is the annual rate of convergence to steady state. In this way we can relate variation in the unemployment stock \(u_t \) in a given country over the course of a year to variation in the underlying flow hazards, \(s_t \) and \(f_t \). To implement this, however, we need to obtain estimates of these flow hazards, to which we now turn.

Our method for estimating the outflow rate \(f_t \) is an extension of the method popularized by Shimer (2007). In his study of U.S. unemployment flows, he infers the monthly outflow probability \(F_t \) using the identity that the monthly change in the unemployment stock is given by

\[
 u_{t+1} - u_t = u^{<1}_{t+1} - F_t u_t.
\]

Here \(u^{<1}_{t+1} \) denotes the stock of unemployed workers with duration less than one month and hence reflects the flows into unemployment; \(F_t u_t \) reflects the flows out of unemployment. Solving for the monthly outflow probability, one obtains\(^ {13}\)

\[
 F_t = 1 - \frac{u_{t+1} - u^{<1}_{t+1}}{u_t}.
\]

The monthly outflow probability is then related to the associated monthly outflow hazard rate, \(f_t^{<1} \), through

\[
 f_t^{<1} = -\ln (1 - F_t).
\]

\(^{11}\) We define the flow hazards \(s_t \) and \(f_t \) in monthly terms to aid comparison with estimates reported in U.S. studies of unemployment flows.

\(^{12}\) This assumption does lead to some smoothing out of high-frequency variation in the flow hazards that we estimate. As many U.S. studies of unemployment flows have shown and as we will confirm in our cross-country estimates, it is predominantly the inflow rate \(s_t \) that displays such high-frequency variation. It follows that annual smoothing is likely to lead to an overstatement of the contribution of changes in the outflow rate \(f_t \) to unemployment variation. This works against a key finding of this paper that variation in the inflow rate \(s_t \) accounts for a substantial fraction of unemployment variation.

\(^{13}\) Since the OECD database reports only quarterly data on the aggregate unemployment rate, we compute \(u_t \) by interpolating quarterly data.

\section*{B. Estimation of Flow Hazard Rates}

\begin{center}
\textbf{Duration dependence and estimation of the outflow rate.}
\end{center}

In what follows, we will see that the estimate of the outflow rate implied by equation (6) works well for countries in which the outflow rate from unemployment is relatively high, such as the United States. However, in countries that exhibit low exit rates, such as those of continental Europe, estimates based on equation (6) can be substantially noisy. The simple reason is that low outflow rates imply that very few unemployed workers at a point in time are in their first month of unemployment, which increases the sampling variance of the estimate of \(u^{<1}_{t+1} \), and in turn leads to noisy estimates of \(f_t \).\(^ {14}\)

Our approach to this problem is to use the additional unemployment duration data available from the OECD to increase the precision of our estimate of \(f_t \) in countries where the outflow rate is low. To see how this may be done, recall that the OECD data also report the unemployment stock at durations higher than one month. It follows that, analogous to the method detailed above, it is possible to write the probability that an unemployed worker exits unemployment within \(d \) months as

\[
 F_t^{<d} = 1 - \frac{u_{t+d} - u^{d}_{t+d}}{u_t}.
\]

As before, this can be mapped into an outflow rate estimate given by

\[
 f_t^{<d} = -\ln (1 - F_t^{<d})/d.
\]

Given the available data, we can estimate \(f_t^{<d} \) for \(d = 1, 3, 6, 12, \)\(^ {15}\)

It is important to clarify the interpretation of the outflow rate measures \(f_t^{<d} \). It is tempting to interpret \(f_t^{<d} \) as the outflow rate for unemployed workers of duration \(d \). However, that is not an accurate interpretation. Rather, it is the hazard rate associated with the probability that an unemployed worker at time \(t \) completes her spell within the subsequent \(d \) months.

\(^{14}\) For example, the OECD data for the United States are based on the Current Population Survey, which surveys around 130,000 individuals each month. In the United States, the labor force participation rate averaged 47.9\%, 6.1\% of whom were unemployed and 43.3\% of whom were unemployed for less than one month. This suggests that around 130,000 \(\times 0.479 \times 0.061 \times 0.433 \approx 1,645 \) respondents have been unemployed less than one month in each month’s survey. In contrast, each survey for Germany includes around 165,000 respondents, with an average participation rate of 48.5\%, 8.3\% of whom were unemployed, but only 6.9\% of whom were unemployed for less than one month. This implies that only around 458 respondents have been unemployed for less than one month in each survey for Germany. This simple comparison would suggest that the sampling variance of the estimate of short-term unemployment in each survey in Germany will be 3.6 times its United States equivalent. In addition, this calculation becomes much more extreme when one accounts for the fact that the OECD data for the United States are annual averages of monthly data, while those for Germany correspond to just one month, April. Similar calculations for other European countries yield similar conclusions.

\(^{15}\) The online appendix that accompanies this paper contains a detailed description on how we estimate these rates by combining the annual and quarterly data available.
These four measures, \(f_{t}^{1}, f_{t}^{<3}, f_{t}^{<6}, \) and \(f_{t}^{<12} \), are not necessarily estimates of the same outflow rate. Only in the case where the outflow hazard is unrelated to the duration of an unemployment spell, that is, if there is no duration dependence in outflow rates, are all four measures consistent estimates of the aggregate outflow rate from unemployment, defined as the average outflow rate among the entire unemployed population. However, if there is duration dependence in unemployment outflow rates in a given country, then estimates based on durations of unemployment greater than one month, \(f_{t}^{<3}, f_{t}^{<6}, \) and \(f_{t}^{<12} \), will not yield consistent estimates of the average outflow rate among the unemployed.

For example, imagine that there exists negative duration dependence whereby the outflow rate declines with duration.\(^{16}\) In such an environment, we would expect to observe \(f_{t}^{<1} > f_{t}^{<3} > f_{t}^{<6} > f_{t}^{<12} \). To see why, consider the version of equation (8) that expresses the fraction of the unemployment stock in month \(r \) that exits within the next three months. The remaining unemployed workers who do not exit over these subsequent three months increasingly will be unemployed workers with low outflow rates, that is, the high-duration unemployed. This process of dynamic selection will imply that excessive weight will be placed on the low outflow rates of high-duration unemployed workers in the estimate of \(f_{t}^{<3} \), generating a downward bias in its estimate of \(f_{t} \). This argument applies even more strongly to the estimates of \(f_{t}^{<6} \) and \(f_{t}^{<12} \).\(^{17}\)

In light of this, we formally test for the presence of duration dependence in outflow rates by testing the hypothesis that \(f_{t}^{<1} = f_{t}^{<3} = f_{t}^{<6} = f_{t}^{<12} \). The formal details are described in the online appendix that accompanies this paper, but our general approach is as follows. First, we derive the asymptotic distribution of the unemployment rates by duration as well as for the unemployment rates themselves. We then apply the delta method to compute the joint asymptotic distribution of the outflow rate estimates \(f_{t}^{<d} \) with \(d = 1, 3, 6, 12 \). This allows us to formulate a simple chi-squared test of the null hypothesis of no duration dependence.

We test for a very broad definition of duration dependence. As has been emphasized since Kaitz (1970), duration dependence can arise through two channels. “True” duration dependence refers to the case where unemployment duration has a causal effect on the outflow rates of individual workers. In contrast, “spurious” duration dependence refers to the process of dynamic selection whereby workers with high exit rates leave unemployment faster than those with low exit rates, thereby generating a negative correlation between duration and outflow rates (Salant, 1977). Our hypothesis test is not intended to distinguish between these two sources of duration dependence but rather to test for whether the alternative measures of the outflow rate derived above are significantly different from one another. Thus, the duration dependence we test for can arise due to either dynamic selection or true duration dependence, or both.

For countries for which we reject the hypothesis of no-duration dependence, we follow the recent U.S. literature in using \(f_{t}^{<1} \) as our estimate of the unemployment outflow rate, as this measure provides the least biased estimate of the average outflow rate in the presence of duration dependence. For countries with weak evidence for duration dependence for which we do not reject the null, we make use of all the additional information on the outflow rate contained in \(f_{t}^{<3}, f_{t}^{<6}, \) and \(f_{t}^{<12} \) in order to obtain a more precise estimate of \(f_{t} \). Specifically, we use our estimates of the asymptotic distribution of the outflow rate estimates, \(f_{t}^{<1}, f_{t}^{<3}, f_{t}^{<6}, \) and \(f_{t}^{<12} \), to compute an optimally weighted estimate of the outflow rate that minimizes the mean squared error of the estimate.\(^{18}\)

The results of the hypothesis test are reported in table 2. While we find significant evidence of duration dependence in Anglo-Saxon and Nordic countries and Japan, we do not observe significant evidence among the continental European countries in our sample.\(^{19}\) It is natural to ask whether this conclusion is supported by the results of microeconomic studies that estimate duration dependence for specific European economies. A particularly useful summary of this literature is reported by Machin and Manning (1999, table 6). They show that the evidence for duration dependence among European economies is quite inconclusive. Estimates of duration dependence in Germany and Spain, for example, differ across studies, with evidence found for negative, positive, and negligible duration dependence. Our conclusion of limited evidence for duration dependence lies at the midpoint of this array. A clearer consensus emerges for France and the United Kingdom. For France, the literature finds very little evidence for duration dependence, at least within the first year of the unemployment spell. In contrast, for the United Kingdom, the literature in general finds evidence for negative duration dependence. Our estimates are in line with these conclusions.

Our results are also consistent with other work that has estimated duration dependence across countries. In their own analysis, Machin and Manning (1999) fit a Weibull duration model to the duration structure of unemployment across countries. They report weak negative-duration dependence in France and Spain in the 1990s but strong negative-duration dependence in Australia, the United Kingdom, and the United States in the 1980s and 1990s. Using a similar approach on

\(^{16}\) In the United States, for example, the finding of substantial negative duration dependence in unemployment exit rates has been widely documented since Kaitz (1970). Most recently, Shimer (2008) has emphasized this stylized fact for the United States.

\(^{17}\) By the same token, the estimate of \(f_{t}^{<3} \) that has been widely used in recent literature is also subject to this drawback, just to a lesser degree than the other three measures.

\(^{18}\) The construction of these optimal weights is detailed in the accompanying online appendix.

\(^{19}\) While our hypothesis test provides a natural rule of thumb, we implicitly rule in favor of the null when the hypothesis of no duration dependence cannot be rejected. This raises the question of the power of the test. In results that can be replicated in the spreadsheet in the online appendix, we observe that the test does indeed have high power among the continental European economies for which we fail to reject the null, in the sense that the estimates of \(f_{t}^{<d} \) are similar for all durations \(d \).
OECD data, Hobijn and Şahin (2009) also find little evidence of duration dependence among continental European economies, but substantial evidence among economies with high unemployment outflow rates.

The result of our hypothesis test is that we use $f^{<1}$ as our estimate of the outflow rate for the Anglo-Saxon countries in our sample and the optimally weighted average of $f_{t}^{<1} \cdot f_{t}^{<3} \cdot f_{t}^{<6}$, and $f_{t}^{<12}$ for the remaining countries.

Temporal aggregation bias and estimation of the inflow rate. Given our estimate of the outflow rate, we compute the inflow rate s_{t} using the method pioneered by Shimer (2007). In particular, note that the expression for the annual unemployment rate in equation (2) is simply a nonlinear equation in the unemployment rates, u_{t+12} and u_{t}, and the flow hazard rates, s_{t} and f_{t}. We can thus solve equation (2) for the inflow rate.

As Shimer (2007) and subsequent work based on his method emphasized, this estimate of the inflow rate is robust to temporal aggregation bias in the measurement of unemployment inflows. In particular, since equation (2) is inferred from solving forward the continuous-time differential equation for the evolution of the unemployment rate, it accounts for the fact that workers who flow into unemployment after one period’s survey may exit prior to the next period’s survey, flows that would be missed in discrete-time data. Correcting for temporal aggregation bias in the inflow rate is particularly important in the context of the OECD data, since the data are available at an annual frequency, in contrast to the monthly data that are available for the United States.20

Interestingly, estimation of the outflow rate from unemployment is not subject to a symmetric time aggregation problem. To see why, consider the measure of the outflow probability in equation (6). This is just the complement of the probability that those unemployed at time t remain unemployed by time $t+1$. If there were a time aggregation problem, a concern would be that the data fail to pick up on workers who exit unemployment after one period’s survey but reenter prior to the next period’s survey. However, the measure of the outflow probability in equation (6) does not miss such transitions: any worker who followed this path would be identified as short-term unemployed in the second survey and therefore correctly counted as an outflow.

Nevertheless, it still could be the case that the measure of the outflow probability in equation (6) misses multiple exits from unemployment within the period (e.g., out after the first survey, in again, out again, in again prior to the next survey). We will see that the inflow rate in practice is very small in comparison to the outflow rate for most countries in our sample, so that the probability of such multiple transitions for these countries is likely to be small.21

It is important to note, however, that our approach estimates average flow rates taken over potentially very heterogeneous populations. This point is especially apparent in economies that have made widespread use of temporary, or fixed-term, contracts, such as Spain.22 The existence of these contracts can give rise to a fraction of workers who experience very high rates of turnover and for whom time aggregation is a

20 The magnitude of the correction for time aggregation bias in inflow rates also will vary across countries. In European economies with sclerotic unemployment flows, we will see that the outflow rate from unemployment f_{t} is low. As a result, the correction for time aggregation bias is smaller for these countries, as a lower proportion of inflows into unemployment after one survey will exit unemployment prior to the next survey.

21 Shimer (2007) makes a similar point. In his words, “Because the probability of losing a job during the month that it is found is comparatively small, time aggregation causes relatively little bias in the job finding rate.”

more acute problem. These important sources of heterogeneity cannot be gleaned from data on the duration structure of unemployment that we use throughout the paper. Uncovering the differential role of time aggregation across different subgroups of the labor market is therefore an important avenue for future research.

C. Evidence from OECD Data

The average unemployment inflow and outflow hazards over the sample periods for the whole sample of countries are reported in table 2. A striking observation from these results is the substantial cross-country variation in both s_t and f_t. A particularly useful illustration of this point is in figure 1, which displays the average values of s_t and f_t from table 2 in graph form. Interestingly, one can discern a natural partition of developed economies between Anglo-Saxon, Nordic, and continental European economies.

Figure 1 reveals very high outflow rates among the Anglo-Saxon and Nordic economies. Among these countries, the average monthly unemployment outflow hazard exceeds 20%. The economies of continental Europe stand in stark contrast. Unemployment outflow rates in these economies lie below 10% at a monthly frequency. A similar picture develops for the estimates of the inflow rates in figure 1. We observe high unemployment inflow hazards among the Anglo-Saxon and Nordic economies, which typically lie above 1.5% on a monthly basis. Likewise, inflow rates among the European economies are again much lower, at around 0.5% to 1% per month.23

Figure 1 also shows that there are both extremes and intermediate cases that are understated in this Anglo-Saxon/Nordic/continental Europe taxonomy. For Japan, while the average unemployment outflow rate of 19% is similar to those in Anglo-Saxon and Nordic economies, its inflow rate is more comparable to those of continental Europe. Another intermediate case is the United Kingdom, which displays unemployment flows that lie halfway between the Anglo-Saxon and the continental European models. Perhaps the most striking observation is the outlier status of the United States. With an average monthly unemployment outflow rate of nearly 60% and an average inflow rate of 3.5%, it exhibits transition rates at least 50% larger than the remainder of our sample of countries.

Figures 2 and 3 display the time series for the inflow and outflow hazards for each country in our sample. The transition rates are plotted on log scales since, as emphasized in the literature on unemployment flows and as we will confirm in what follows, it is the logarithmic variation in s_t and f_t that places them on an equal footing with respect to fluctuations in the unemployment rate.

Figures 2 and 3 reveal that in addition to significant cross-country variation in unemployment flows, also substantial variation in unemployment flow hazards over time within countries. Although a great deal of information is contained in these figures, a number of observations come to

23 It is important to remember that while estimates of average flow rates in continental Europe are very low in comparison to their Anglo-Saxon counterparts, there is likely to be a great deal of underlying heterogeneity in worker flows among some European economies. For example, the use of temporary, or fixed-term, contracts in France and Spain is widely thought to have given rise to a subgroup of the labor force within each country that experiences very high rates of turnover. See Bentolila et al. (2008) and Blanchard and Landier (2002).
light. First, there are important differences in the frequency of fluctuations in unemployment flows across economies. Among the Anglo-Saxon economies, a clear cyclical pattern is present, suggesting a substantial high-frequency component to unemployment fluctuations in these countries. Among other economies, however, the variation in s_i and f_t occurs at a much lower frequency, and it is hard to differentiate cycle from trend.

Figures 2 and 3 are also indicative of how the relative contributions of variation in the inflow and outflow rates differ across countries. Specifically, the Anglo-Saxon economies appear to display relatively more variation in the outflow rate from unemployment, a point that has been emphasized in recent literature for the United States. However, inspection of the time series for the Nordic and European economies reveals greater variation in the inflow rate, suggesting about...
an equal contribution of the ins and the outs to unemployment variation in these countries.

Figures 2 and 3 also provide a sense of the degree to which these stylized facts have held true in the recent recession. In many respects, historical differences in unemployment dynamics between Anglo-Saxon and continental European economies have been echoed in recent data. Inspection of the time series for the flow hazards after 2007 reveals that as in the past, the recent rise in unemployment has been associated more with rises in unemployment inflows in continental European economies and with declines in rates of outflow in Anglo-Saxon countries. Figures 2 and 3 do point to one stark feature of the recession, however: the outflow rate from unemployment in the United States fell precipitously to reach a historic low, a point noted by many observers of the Great Recession in the United States (for example, see Elsby, Hobijn, & Şahin, 2010). An advantage of the cross-country estimates in figures 2 and 3 is that they provide a useful perspective on this phenomenon. Despite the record decline in rates of exit from unemployment in the United States, the level of the outflow rate witnessed recently in the United States still dwarfs rates observed in continental Europe.

Of course, this visual impression is only suggestive of the relative contributions of the inflow and outflow hazards to unemployment variation; we address this issue more formally in section IV. Before we do so, we first compare our estimates of unemployment transition rates with those reported in related literature.

D. Relation to Existing Evidence

Unemployment flows for the United States have been extensively studied in the literature. Almost all of these studies, including Elsby et al. (2009), Fujita and Ramey (2009), and Shimer (2007), are based on data from the Current Population Survey. Since the OECD data that we use are also based on the same survey data, the levels of
our estimated flow hazards are in line with these previous estimates.24

The cross-country analysis of flow rates that is most closely related to the results in this paper is Hobijn and Şahin (2009). They use GMM to estimate average job-finding and separation rates for a broader sample of countries. Since they focus on average flow hazards, their analysis does not address the dynamic properties of the evolution of unemployment in these countries. The average flow transition rates that they obtain using their estimation method are almost identical to those documented in table 2.

The time series plotted in figures 2 and 3 for countries other than the United States also are qualitatively similar to previous results based on microdata for individual countries. Our estimates for the United Kingdom are consistent with the declining employment to unemployment (E–U) and rising unemployment to employment (U–E) transition rates estimated using U.K. Labour Force Survey data from the early 1990s on (Bell & Smith, 2002; Gomes, 2008; Petrongolo & Pissarides, 2008). The trends we find for Germany are consistent with Bachmann (2005), who uses German social security data to estimate a sharp rise in the E–U transition rate and a decline in the U–E hazard in the early 1990s. In addition, the estimated time series for Spain correspond very closely to those reported in Petrongolo and Pissarides (2008) using Spanish Labor Force Survey data. Reichling (2005) reports estimates of the separation rate for a set of countries (see his table 5) and also emphasizes that the separation rate is lower in European countries than in the United States.

Several cross-country studies also provide structural estimates of search models that include estimated flow hazards. Two examples of these are Ridder and van den Berg (2003) and Jolivet, Postel-Vinay, and Robin (2006). Because they are based on structural models, the estimated transition rates in these papers do not correspond exactly to the flow rate concept we use here. However, the qualitative ranking of countries in terms of the levels of inflow and outflow rates is very similar to ours. For example, Italy is estimated to have the smallest outflow rate, the United States the highest, with the United Kingdom lying between the United States and the continental European countries.

IV. Decomposing Unemployment Fluctuations

In this section, we formulate and apply a formal decomposition of changes in unemployment into parts due to changes in the inflow and outflow rates for each country. Our decomposition allows deviations of the actual unemployment rate from its flow steady-state value. We show that allowing such deviations is important for understanding unemployment fluctuations in many, especially European, countries. We use the annual time series on inflow and outflow rates, presented above, to conduct this decomposition. Because we use annual data in what follows, time, \(t \), is denoted in years rather than months in the remainder of this paper.

A. Analytical Framework

An important aim of this paper is to understand the proximate driving forces behind variation in unemployment rates across countries. As previous literature has shown, such a task is relatively straightforward for the United States.25 The reason is that unemployment dynamics are uncommonly rapid in the United States—that is, \(s_t + f_t \) is a relatively large number in the United States. The formal implication of this is that the rate of convergence of the unemployment rate to its flow steady-state value in equation (2), \(\lambda_t = 1 - e^{-12(s_t + f_t)} \), is very close to 1 in the United States. In this case, the unemployment rate can be approximated very closely by its flow steady-state value,

\[
 u_t \approx u^*_t = \frac{s_t}{s_t + f_t}, \text{ and } \lambda_t \approx 1. \tag{10}
\]

As emphasized in Elsby et al. (2009), log differentiation of the latter implies

\[
 d \ln u_t \approx (1 - u_t)[d \ln s_t - d \ln f_t]. \tag{11}
\]

Thus, in countries with labor markets characterized by fast unemployment dynamics, a simple decomposition of unemployment variation presents itself. The relative contributions of the inflow and outflow rates to unemployment variation can be gleaned from comparing the contemporaneous logarithmic variation in the two flow hazard rates.

Based on the evidence we found, one might anticipate that the approximations that underlie the decomposition of unemployment variation based on equation (11) work well among the Anglo-Saxon and Nordic economies, which display relatively high rates of inflow and outflow. However, the evidence also suggests that there is good reason to hesitate in applying equation (11) as a decomposition of unemployment variation in continental Europe. The reason is that the unemployment flow hazards in these economies are very low, especially relative to the United States. Inspection of equation (2) reveals that for continental Europe, the flow steady-state unemployment rate is likely to be a poor approximation to the actual unemployment rate.

Reacting to this, we devise a decomposition of unemployment changes that holds even when unemployment is out of steady state. Our approach uses equation (2) as its starting point. We show in the online appendix that accompanies this paper that a log-linear approximation to equation (2) allows us to express the log change in the unemployment rate recursively as

\[
 u_t \approx u^*_t = \frac{s_t}{s_t + f_t}, \text{ and } \lambda_t \approx 1. \tag{10}
\]

As emphasized in Elsby et al. (2009), log differentiation of the latter implies

\[
 d \ln u_t \approx (1 - u_t)[d \ln s_t - d \ln f_t]. \tag{11}
\]

Thus, in countries with labor markets characterized by fast unemployment dynamics, a simple decomposition of unemployment variation presents itself. The relative contributions of the inflow and outflow rates to unemployment variation can be gleaned from comparing the contemporaneous logarithmic variation in the two flow hazard rates.

Based on the evidence we found, one might anticipate that the approximations that underlie the decomposition of unemployment variation based on equation (11) work well among the Anglo-Saxon and Nordic economies, which display relatively high rates of inflow and outflow. However, the evidence also suggests that there is good reason to hesitate in applying equation (11) as a decomposition of unemployment variation in continental Europe. The reason is that the unemployment flow hazards in these economies are very low, especially relative to the United States. Inspection of equation (2) reveals that for continental Europe, the flow steady-state unemployment rate is likely to be a poor approximation to the actual unemployment rate.

Reacting to this, we devise a decomposition of unemployment changes that holds even when unemployment is out of steady state. Our approach uses equation (2) as its starting point. We show in the online appendix that accompanies this paper that a log-linear approximation to equation (2) allows us to express the log change in the unemployment rate recursively as

\[
 u_t \approx u^*_t = \frac{s_t}{s_t + f_t}, \text{ and } \lambda_t \approx 1. \tag{10}
\]

As emphasized in Elsby et al. (2009), log differentiation of the latter implies

\[
 d \ln u_t \approx (1 - u_t)[d \ln s_t - d \ln f_t]. \tag{11}
\]

Thus, in countries with labor markets characterized by fast unemployment dynamics, a simple decomposition of unemployment variation presents itself. The relative contributions of the inflow and outflow rates to unemployment variation can be gleaned from comparing the contemporaneous logarithmic variation in the two flow hazard rates.

Based on the evidence we found, one might anticipate that the approximations that underlie the decomposition of unemployment variation based on equation (11) work well among the Anglo-Saxon and Nordic economies, which display relatively high rates of inflow and outflow. However, the evidence also suggests that there is good reason to hesitate in applying equation (11) as a decomposition of unemployment variation in continental Europe. The reason is that the unemployment flow hazards in these economies are very low, especially relative to the United States. Inspection of equation (2) reveals that for continental Europe, the flow steady-state unemployment rate is likely to be a poor approximation to the actual unemployment rate.

Reacting to this, we devise a decomposition of unemployment changes that holds even when unemployment is out of steady state. Our approach uses equation (2) as its starting point. We show in the online appendix that accompanies this paper that a log-linear approximation to equation (2) allows us to express the log change in the unemployment rate recursively as

\[
 u_t \approx u^*_t = \frac{s_t}{s_t + f_t}, \text{ and } \lambda_t \approx 1. \tag{10}
\]

As emphasized in Elsby et al. (2009), log differentiation of the latter implies

\[
 d \ln u_t \approx (1 - u_t)[d \ln s_t - d \ln f_t]. \tag{11}
\]

Thus, in countries with labor markets characterized by fast unemployment dynamics, a simple decomposition of unemployment variation presents itself. The relative contributions of the inflow and outflow rates to unemployment variation can be gleaned from comparing the contemporaneous logarithmic variation in the two flow hazard rates.

Based on the evidence we found, one might anticipate that the approximations that underlie the decomposition of unemployment variation based on equation (11) work well among the Anglo-Saxon and Nordic economies, which display relatively high rates of inflow and outflow. However, the evidence also suggests that there is good reason to hesitate in applying equation (11) as a decomposition of unemployment variation in continental Europe. The reason is that the unemployment flow hazards in these economies are very low, especially relative to the United States. Inspection of equation (2) reveals that for continental Europe, the flow steady-state unemployment rate is likely to be a poor approximation to the actual unemployment rate.

Reacting to this, we devise a decomposition of unemployment changes that holds even when unemployment is out of steady state. Our approach uses equation (2) as its starting point. We show in the online appendix that accompanies this paper that a log-linear approximation to equation (2) allows us to express the log change in the unemployment rate recursively as

\[
 u_t \approx u^*_t = \frac{s_t}{s_t + f_t}, \text{ and } \lambda_t \approx 1. \tag{10}
\]

As emphasized in Elsby et al. (2009), log differentiation of the latter implies

\[
 d \ln u_t \approx (1 - u_t)[d \ln s_t - d \ln f_t]. \tag{11}
\]

Thus, in countries with labor markets characterized by fast unemployment dynamics, a simple decomposition of unemployment variation presents itself. The relative contributions of the inflow and outflow rates to unemployment variation can be gleaned from comparing the contemporaneous logarithmic variation in the two flow hazard rates.

Based on the evidence we found, one might anticipate that the approximations that underlie the decomposition of unemployment variation based on equation (11) work well among the Anglo-Saxon and Nordic economies, which display relatively high rates of inflow and outflow. However, the evidence also suggests that there is good reason to hesitate in applying equation (11) as a decomposition of unemployment variation in continental Europe. The reason is that the unemployment flow hazards in these economies are very low, especially relative to the United States. Inspection of equation (2) reveals that for continental Europe, the flow steady-state unemployment rate is likely to be a poor approximation to the actual unemployment rate.
\[\Delta \ln u_t \approx \lambda_{t-1} \left\{ (1 - u^*_t - 1) \left[\Delta \ln s_t - \Delta \ln f_t \right] + \frac{1 - \lambda_{t-2}}{\lambda_{t-2}} \Delta \ln u_{t-1} \right\} \]. \quad (12)\]

This decomposition distinguishes between changes in the steady state due to current changes in the inflow and outflow rates and changes in the unemployment rate due to deviations from the steady state caused by past changes in the flow rates.

A number of aspects are worth noting about equation (12). First, if unemployment dynamics are very fast, so that \(s_t + f_t \) is high and \(\lambda_t \) is close to 1 for all \(t \), then equation (12) reduces to the steady-state decomposition implied by equation (11). In addition, a particularly intuitive way of understanding equation (12) is to consider the case where \(\lambda_t = \lambda \) for all \(t \). In that case, the log change in the unemployment rate in equation (12) is a distributed lag of contemporaneous and past log changes in the inflow rate \(s_t \) and \(f_t \). This highlights a potential pitfall of applying the steady-state decomposition in equation (11) to unemployment flows in economies, such as those of continental Europe, with slow unemployment dynamics.

Out of steady state, contemporaneous variation in the unemployment rate is driven by both contemporaneous and lagged variation in the flow hazards. We will see that by ignoring these lag effects, the steady-state decomposition can lead to misleading conclusions on the relative contributions of the inflow and outflow rate to changes in unemployment.

In principle, the non-steady-state decomposition in equation (12) can be used to assess the relative contributions of inflow and outflow rates for any given change in the unemployment rate at any time for any given country. Clearly, however, given the wealth of information in our data set, performing such a decomposition for every unemployment episode in every country would be excessive. Thus, we need a method of summarizing the relative contributions of the ins and outs of unemployment.

Fujita and Ramey (2009) formulate such a summary method for the United States using a steady-state decomposition. Specifically, they compute the following \(\beta \) values:

\[\beta^*_{s} = \frac{\text{cov}(\Delta \ln u_t, (1 - u^*_t) \Delta \ln f_t)}{\text{var}(\Delta \ln u_t)} \] and \[\beta^*_{s} = \frac{\text{cov}(\Delta \ln u_t, (1 - u^*_t) \Delta \ln s_t)}{\text{var}(\Delta \ln u_t)} \]. \quad (13)
where a superscript * indicates that these are based on the assumption that observed unemployment is closely approximated by its steady-state value. If this assumption holds, β_f^* and β_s^* should approximately sum to 1.

We extend Fujita and Ramey’s βs to the decomposition of unemployment changes out of steady state based on equation (12). In particular, for each country in our sample, we compute

$$\beta_f = \frac{\text{cov}(\Delta \ln u_t, C_f)}{\text{var}(\Delta \ln u_t)}, \quad \beta_s = \frac{\text{cov}(\Delta \ln u_t, C_s)}{\text{var}(\Delta \ln u_t)}, \quad \beta_0 = \frac{\text{cov}(\Delta \ln u_t, C_0)}{\text{var}(\Delta \ln u_t)},$$

(14)

where C_f, C_s, and C_0 denote the respective cumulative contributions of contemporaneous and past variation in the inflow rate, the outflow rate, and the initial deviation from steady state at time $t = 0$. Consistent with equation (12), they are defined recursively by

$$C_f = \lambda_{t-1} \left[-(1 - u_{s-1}^*) \Delta \ln f_t + \frac{1 - \lambda_{t-2}}{\lambda_{t-2}} C_{f-1} \right],$$

with $C_{f0} = 0$,

$$C_s = \lambda_{t-1} \left[(1 - u_{s-1}^*) \Delta \ln s_t + \frac{1 - \lambda_{t-2}}{\lambda_{t-2}} C_{st-1} \right],$$

with $C_{s0} = 0$,

(15)

and

$$C_0 = \frac{\lambda_{t-1} (1 - \lambda_{t-2})}{\lambda_{t-2}} C_{0t-1} \quad \text{with} \quad C_{00} = \Delta \ln u_0.$$

(16)

If the decomposition fully captures fluctuations in the unemployment rate, then $\beta_s + \beta_f + \beta_0 = 1$.

B. Accounting for Unemployment Fluctuations in the OECD

In order to illustrate why it is important to take into account deviations from steady state for many countries, consider figure 4. This plots the actual unemployment rate, u_t, as well as the flow steady-state unemployment rate, u_t^*, for the four countries that Petrongolo and Pissarides (2008) study: France, Spain, the United Kingdom, and the United States. As has been emphasized in recent literature for the United States, the actual unemployment rate is virtually identical to the steady-state unemployment rate. However, we observe that this is not the case for the other three countries.

Another way of seeing this is to look at the second column of table 3. This lists the standard deviation of the logarithmic deviation of unemployment from steady state for each of the countries in our sample. Table 3 reveals that these deviations tend to be small among Anglo-Saxon economies, which have high inflow and outflow rates, with the exception of the United Kingdom. All other countries exhibit substantial deviations of unemployment from its flow steady-state value.

To see what happens when one applies the decomposition based on the steady-state assumption to a country that substantially deviates from steady state, consider the top panel of figure 5. It depicts the steady-state decomposition of $\Delta \ln u_t$ into parts due to changes in the inflow rate, the outflow rate, and a residual part that is due to approximation error for France. As can be seen from this figure, the residuals from the steady-state decomposition are very large. In fact, in this case, we observe that $\beta_s^* + \beta_f^* = 1.37$ rather than 1. Thus, the approximation error induced by deviations from steady state is sufficiently large that it renders the steady-state decomposition uninformative.\(^{26}\)

The bottom panel of figure 5 depicts the non-steady-state decomposition for France. As this figure shows, the residuals are very small and the magnitudes of the parts due to the flow rates decrease relative to the steady-state decomposition. In the first five years of the sample, a nontrivial part of unemployment fluctuations in France was due to the labor market not being in steady state in 1976. This is reflected

\(^{26}\)In their analysis, Petrongolo and Pissarides (2008) implicitly acknowledge this drawback by eliminating the periods for which the deviation of the unemployment rate from its flow steady state value is large.
by the contribution of the initial value to the changes in the unemployment rate.

The results of our non-steady-state decomposition based on equations (12), (14), and (15) for each country are presented in table 3. For purposes of comparison, we also include the results from applying the steady-state decomposition. The results in table 3 are notable from a number of perspectives. First, as we anticipated, we observe that the steady-state decomposition in equation (13) works quite well for economies with fast unemployment dynamics, such as the Anglo-Saxon and Nordic economies, in the sense that β_s^* and β_f^* approximately sum to 1 for these economies. In contrast, the steady-state decomposition performs very poorly among economies with slow unemployment dynamics. The sum of the estimated β_s^* and β_f^* consistently lies above 1 for these countries, rendering the steady-state decomposition uninformative in determining the driving forces of unemployment variation.\(^{27}\)

As anticipated by the results for France in figure 5, the results of our non-steady-state decomposition reveal that this problem is substantially reduced when we take into account the lag structure of the effects of changes in inflow and inflow rate.

\(^{27}\)The main reason that the steady-state decomposition consistently explains more than 100% of unemployment variation is that contemporaneous changes in log flow hazards in reality have only a partial contemporaneous effect on current unemployment, determined by $\lambda_{t-1} < 1$; see equation (12). The steady-state decomposition erroneously attributes their full effect contemporaneously.
outflow rates on unemployment: the residual variance of log changes in unemployment is closer to zero for all countries, especially among economies with slow unemployment dynamics. Thus, taking account of the dynamic effects of changes in the unemployment flow hazards on the unemployment rate is important for inferring the proximate driving forces of unemployment fluctuations. In this way, the non-steady-state decomposition summarized in equations (12), (14), and (15) is a useful contribution to the analysis of unemployment flows across countries.

The formal results of the non-steady-state decomposition in Table 3 in many ways confirm the suggestive picture that one can discern from the time series in Figures 2 and 3. Among the Anglo-Saxon economies of Australia, Canada, New Zealand, the United Kingdom, and the United States, we observe that variation in the outflow rate accounts for the majority (though not all) of the variation in the unemployment rate over the respective sample periods. In particular, we find something like a 15:85 inflow-outflow accounting for unemployment variation for these economies.

However, variation in the inflow rate plays a much larger role among other economies. In fact, we find much closer to a 45:55 inflow-outflow split for the continental European, Nordic, and Japanese economies. These observations are an interesting addition to the debate that has progressed for the United States. Recent studies have cautioned against the neglect of variation in unemployment inflows as an important driving force for changes in unemployment in the U.S. context. The results summarized in Table 3 show that this caution resonates all the more if we wish to understand the considerable variation in unemployment rates outside of the United States.

The latter point is important for our understanding of the economics of unemployment. The relative abundance and ease of access to relevant data for the United States have led to a wealth of research that documents the proximate driving forces for variation in the U.S. unemployment rate. However, the variation in unemployment in the United States, though substantially cyclical, is dwarfed by the unemployment experiences among many European economies. A prominent example is Spain, which faced unemployment rates that varied from below 5% in the 1970s to 25% in the 1990s (see Figure 4). Our results suggest that in order to understand the substantial variation in unemployment rates among European economies, it is necessary to understand both the variation in the outflow rate from unemployment and the inflow rate.

C. Relation to Existing Evidence

A number of studies have documented the contributions of changes in inflow and outflow rates to unemployment variation in the United States (see Elsby et al., 2009; Shimer, 2007; Fujita & Ramey, 2009). A natural question is whether the results of our decomposition are similar to these related findings. Recall from Table 3 that we find approximately a 15:85 inflow-outflow contribution to unemployment variation in the United States over the period 1968 to 2009 covered by our data. At first blush, this finding can seem different from those reported in prior research. Fujita and Ramey (2009), for example, report a greater role for inflows, accounting for as much as 56% of unemployment fluctuations.

The most comparable previous estimates of inflow and outflow rates to the ones we present here are those derived by Elsby et al. (2009). Using their quarterly analogs of our annual estimates yields an estimated inflow contribution of 27% over the period 1968 to 2004, a little larger than our estimates based on annual data. This confirms the intuition foreshadowed in note 12 that the use of annual data leads to some smoothing of high-frequency fluctuations in the inflow rate, leading to an understatement of the inflow contribution to unemployment variation. However, the understatement is not nearly as severe as one might imagine from a simple comparison with Fujita and Ramey (2009).

Comparatively little research has studied the contributions of the changes in the inflow and outflow rates to the fluctuations in unemployment across countries. A notable exception is Petrongolo and Pissarides (2008), who study the dynamics of unemployment in three European countries: the United Kingdom, France, and Spain. They implement a different method for treating deviations of actual unemployment from its flow steady state by dropping observations for which that deviation is large. Despite this, our results line up well with their findings for the United Kingdom and Spain. Using U.K. Labor Force Survey microdata for the period 1993 to 2005, they report an inflow contribution of 0.48. Over the same period, we estimate a steady-state inflow contribution of 0.43 for the United Kingdom. Similarly, using Spanish labor force survey data for the period 1987 to 2006, Petrongolo and Pissarides (2008) report an average inflow contribution of 0.43. The corresponding value in our calculations is 0.40. It is reassuring that these two perspectives on the data yield similar answers: the OECD data for the United Kingdom and Spain are annual measures based on the respective quarterly labor force surveys that Petrongolo and Pissarides use. This suggests that there is little slippage in using annual data to

28 See Braun et al. (2006), Elsby et al. (2009), Fujita and Ramey (2009), and Yashiv (2007).

An exception is Shimer (2007) who reports an inflow contribution of 18% for the period 1967 to 2007 using a slightly different decomposition method (see his Table 1, column 2). Shimer’s method is analogous to ours, except that he uses the sample average flow hazards as the expansion point for his approximation. Specifically, he computes two counterfactual unemployment rates: the first fixes the inflow rate at its sample average and allows the outflow rate to vary as it did in the data; the second does the opposite. He then decomposes the variance of unemployment into components related to these two counterfactuals.

The relatively large inflow contributions Fujita and Ramey (2009) reported can be traced to a number of factors. First, their larger estimated inflow contributions are based on different data sources that use longitudinally linked monthly microdata from the Current Population Survey (the so-called gross flows data). Second, Fujita and Ramey decompose changes in steady-state unemployment rather than the realized unemployment series, which in practice accentuates the estimated inflow contribution. Third, the sample periods they reported do not coincide with ours. Relaxing all these differences yields an inflow contribution of 27%.
measure the flow contributions to unemployment fluctuations for these European countries.31

V. Worker Flows

So far, we have focused on the flow hazard rates for worker transitions in and out of unemployment. These flow rates in turn generate actual worker flows into and out of unemployment. In this final part of our analysis, we construct annual time series of worker flows for the fourteen OECD countries in our sample. We use these time series to uncover a robust stylized fact across countries: inflows lead changes in unemployment, while outflows lag.

A. Analytical Framework

The annual flow hazard rates that we presented before can be used to compute the total outflows out of unemployment and inflows into unemployment. Let F_t be the total number of workers who flow out of the unemployment pool in year t as a fraction of the labor force, and let S_t be the total inflows into unemployment.

Solving forward the differential equation for the unemployment rate (1), these flows can be written as

\[
F_t = f_t \int_{t-12}^{t} u(\tau) \, d\tau = 12f_t u_t^* + \lambda_t (1-u_t^*) (u_t - u_t^*),
\]

\[
S_t = s_t \int_{t-12}^{t} [1 - u(\tau)] \, d\tau = 12s_t (1-u_t^*) - \lambda_t u_t^* (u_t - u_t^*). \tag{18}
\]

31 Petrongolo and Pissarides’ results for France based on unemployment claims data do not line up as well with our estimates. They report an inflow contribution of 0.2 for the years 1991 to 2007, smaller than our analogous estimate of 0.5. We suspect that this discrepancy arises because the OECD data that underlie our estimates are based on French Labor Force Survey data rather than the claimant data that Petrongolo and Pissarides used. This is consistent with results they reported for the United Kingdom. Their measured inflow contribution based on U.K. unemployment claims data for the period 1993Q2 to 2005Q3 is 0.25, much less than their estimate of 0.48 based on the U.K. Labor Force Survey.

By construction, the flows are such that the increase in the unemployment rate is the difference between the inflows and the outflows, that is,

\[
\Delta u_t = S_t - F_t. \tag{19}
\]

A large number of studies (Darby, Haltiwanger, & Plant, 1986; Davis, 1987, 2006; Blanchard & Diamond, 1990; Merz, 1999; Fujita & Ramey, 2009) have noted two key stylized facts about worker flows in the United States: that gross flows increase when unemployment increases and that changes in inflows, ΔS_t, tend to lead the changes in outflows, ΔF_t, as well as changes in the unemployment rate, Δu_t. In what follows, we confirm that these stylized facts for the United States also hold for many other developed economies.

B. Evidence on Worker Flows in the OECD

Figures 6 and 7 depicts the time series for our estimates of the number of workers flowing into unemployment, S_t, and the number flowing out, F_t, together with the unemployment rate for each country in our sample. In line with the differences in the flow hazard rates s_t and f_t between Anglo-Saxon countries and continental Europe, we find very large differences in average worker flows between these groups of countries as well. The second column of table 4 contains the average worker flows for all countries in our sample. These echo the stark geographical partitioning of labor market flows that we detailed above for the flow hazard rates across countries. Anglo-Saxon countries exhibit annual worker flows in and out of unemployment that comprise more than 15% of the labor force. The United States is once more a conspicuous outlier with average annual worker flows of 40% of the labor force. At the opposite end of the spectrum again lie the economies of continental Europe with worker flows that typically account for less than 10% of the labor force.

In addition, a prominent visual pattern to the timing of changes in these flows emerges from figures 6 and 7. It can be seen that increases in the unemployment rate are often

Table 4.—Average Worker Flows and Correlations with Changes in the Unemployment Rate

<table>
<thead>
<tr>
<th>Country</th>
<th>$\frac{1}{12}(F + S)$</th>
<th>$\text{corr}(\Delta u_t, \Delta F_{t+1})$</th>
<th>$\text{corr}(\Delta u_t, \Delta S_{t+1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>18.4%</td>
<td>-0.6</td>
<td>-0.2</td>
</tr>
<tr>
<td>Canada</td>
<td>25.9%</td>
<td>-0.2</td>
<td>-0.7</td>
</tr>
<tr>
<td>France</td>
<td>7.3%</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>Germany</td>
<td>5.9%</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>Ireland</td>
<td>6.8%</td>
<td>-0.2</td>
<td>-0.5</td>
</tr>
<tr>
<td>Italy</td>
<td>4.8%</td>
<td>-0.4</td>
<td>-0.1</td>
</tr>
<tr>
<td>Japan</td>
<td>7.0%</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>New Zealand</td>
<td>19.5%</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Norway</td>
<td>17.9%</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>Portugal</td>
<td>4.6%</td>
<td>-0.3</td>
<td>-0.5</td>
</tr>
<tr>
<td>Spain</td>
<td>10.5%</td>
<td>-0.1</td>
<td>-0.6</td>
</tr>
<tr>
<td>Sweden</td>
<td>13.3%</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>11.7%</td>
<td>-0.4</td>
<td>-0.2</td>
</tr>
<tr>
<td>United States</td>
<td>40.0%</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

The column $\frac{1}{12}(F + S)$ lists the average inflow and outflow rates over the sample period.
preceded by rises in the number of workers flowing into the unemployment pool, followed by a commensurate rise in the outflow. Thus, in most countries, we observe that gross flows increase when unemployment rises and that inflows tend to lead outflows, just as observed in U.S. data.

This observation can be seen more formally using a simple correlation analysis. The last six columns of table 4 report the contemporaneous, lead, and lag correlations between the changes in the flows and changes in the unemployment rate. These correlations tell the following story. In the year prior to a rise in unemployment, inflows into the unemployment pool rise: the one-year lead correlation between changes in inflows and contemporaneous changes in unemployment is positive in almost all economies. Moreover, inflows remain high in the year that unemployment rises: the contemporaneous correlation between changes in inflows and changes
in unemployment is positive for all countries. In the year following an unemployment ramp-up, outflows begin to rise: the one-year lag correlation between changes in outflows and contemporaneous changes in unemployment is positive in almost all economies.

Thus, just like studies that use monthly data for the United States, we find that changes in inflows tend to lead changes in the unemployment rate in the annual data we use. What emerges from our results on worker flows is that even though the OECD economies have very different levels of flows, the cyclical behavior of worker flows across countries is very similar. Economic downturns, in which the unemployment rate increases, first see an increase in workers flowing into unemployment rather than a decline in the number of workers flowing out of it. Subsequently, the outflows increase as the economy recovers.

These results have stark implications for popular models of the aggregate labor market. An important recent trend in these models has been to assume that inflow rate s_t into unemployment is constant over the business cycle (Hall, 2005a, 2005b; Blanchard & Gali, 2006; Gertler & Trigari, 2009; Krusell, Mukoyama, & Şahin, 2010). In the context of these models, increases in unemployment during recessions are driven entirely by declines in the job finding hazard, f_t.

This assumption has important implications for the dynamic properties of worker flows over the cycle. A rich literature on unemployment flows in the United States has emphasized that such models imply that increases in the unemployment rate are preceded by reductions in the number of workers flowing out of the unemployment pool, F_t (Darby, Haltiwanger, & Plant, 1985; Darby et al., 1986; Blanchard & Diamond, 1990; Davis, 2006). Consequently, reductions in
outflows are predicted to lead increases in the unemployment rate in this class of models. In addition, because the inflow rate \(s_t \) is assumed constant, these models also imply that the number of workers flowing into the unemployment pool \(S_t \) will decline modestly in the wake of a recession as the employment rate \(1 - \mu_t \) falls, so that changes in \(S_t \) lag changes in the unemployment rate. Thus, models that assume a constant inflow rate have two important predictions with regard to worker flows: when unemployment goes up, gross worker flows decline, and outflows lead changes in unemployment while inflows lag.

The studies of worker flows in the United States cited above have established that neither of these theoretical implications is borne out by the data for the United States. This has led researchers to challenge the empirical relevance of such models in the U.S. context (Mortensen & Pissarides, 1994; Davis, 2006; Fujita & Ramey, 2009; Ramey, 2008). Our results reveal that the observation of increased inflows as a leading indicator of increased unemployment, far from being unique to U.S. data, is something close to a stylized fact for all modern developed labor markets.

These results confirm and reinforce earlier findings based on earlier periods for subsets of the European countries that we study. Using Portuguese microdata from the early 1990s, Blanchard and Portugal (2001) emphasize that the levels of worker flows are much lower in Portugal relative to the United States. Similar findings are reported by Bertola and Rogerson (1997, table 3), who document reduced worker flows in Italy and Germany relative to Anglo-Saxon counterparts using OECD data for 1988. Using data from France, Germany, Spain, and the United Kingdom up to the early 1990s, Balakrishnan and Michelacci (2001) and Burda and Wyplosz (1994) have highlighted that both inflows and outflows increased as European unemployment soared in the 1970s and 1980s, with increased inflows leading increased unemployment.

VI. Conclusion

Our analysis of publicly available data from the OECD provides four contributions to our understanding of unemployment flows. First, we present a method of estimating the flow hazard rates for entering and exiting unemployment across fourteen developed economies, building on the method pioneered by Shimer (2007) for the United States. An important benefit of this methodology is that it can be extended to estimate unemployment flows for additional economies over longer time periods as more data become available.

Application of this method to fourteen OECD countries uncovers a stark contrast in average flow hazard rates between Anglo-Saxon, Nordic, and continental European countries. Anglo-Saxon and Nordic labor markets are characterized by high unemployment inflow and outflow rates, while these flow hazard rates in continental European economies are generally less than half of those in their Anglo-Saxon counterparts. Notably, results for the United States, which have received much attention in recent literature, are a conspicuous outlier among developed economies, with inflow and outflow rates that are at least 50% larger than the remaining economies in our sample. These results strengthen and extend earlier work that has diagnosed European labor markets as sclerotic based on similar findings for subsets of the economies we study.

Our second contribution is to devise a decomposition of unemployment fluctuations into parts due to changes in inflow and outflow rates that can be applied to countries with very different unemployment dynamics. Conventional decompositions applied to U.S. data have exploited the fact that unemployment is closely approximated by its steady-state value in the United States (Elsby et al., 2009; Fujita & Ramey, 2009). For many OECD countries outside the United States, however, we demonstrate that unemployment deviates considerably from its steady-state level. Consequently, we show that conventional decompositions lead to misleading results on the relative importance of fluctuations in inflow and outflow rates for the dynamics of the unemployment rate. The results from applying our alternative decomposition reveal approximately a 15:85 inflow-outflow contribution to unemployment variation among Anglo-Saxon countries, whereas in most European countries, the split is much closer to 45:55.

Our third contribution is based on a simple correlation analysis of changes in worker flows and changes in the unemployment rate over time. For all countries in our sample, worker flows tend to increase when unemployment increases. Moreover, we find that in almost all countries in our sample, changes in inflows into unemployment lead changes in the unemployment rate, while changes in outflows tend to lag unemployment variation. This confirms and reinforces the conclusions of previous literature based on a smaller set of countries, suggesting that these findings for worker flows are a stylized fact of modern labor markets.

Stepping back, our empirical findings provide an important perspective on the theoretical literature on unemployment flows that have evolved in recent years. Much of this recent literature has assumed the inflow rate into unemployment to be an exogenous constant. As a reaction to this, a number of studies of U.S. unemployment flows have cautioned against this trend (Elsby et al., 2009; Fujita & Ramey, 2009; Yashiv, 2007). A fourth contribution of the results of this paper is that the same conclusion extends to the analysis of labor markets in a wide range of developed economies, and especially so if one is interested in understanding the substantial changes in unemployment rates in Europe.

REFERENCES

—— Main Economic Indicators (Paris: OECD, 2010b).

— “Reassessing the Ins and Outs of Unemployment,” mimeograph University of Chicago (2007).
