Edinburgh Research Explorer

Rapid loss of motor nerve terminals following hypoxia-reperfusion injury occurs via mechanisms distinct from classic Wallerian degeneration

Citation for published version:

Digital Object Identifier (DOI):
10.1111/j.1469-7580.2008.00909.x

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Anatomy

Publisher Rights Statement:
Available under Open Access
Copyright © 1999–2013 John Wiley & Sons, Inc. All Rights Reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Rapid loss of motor nerve terminals following hypoxia–reperfusion injury occurs via mechanisms distinct from classic Wallerian degeneration

Becki Baxter,1 Thomas H. Gillingwater1,2 and Simon H. Parson1

1Centre for Integrative Physiology and 2Centre for Neuroscience Research, School of Biomedical Sciences, University of Edinburgh, Old Medical School, Edinburgh, UK

Abstract

Motor nerve terminals are known to be vulnerable to a wide range of pathological stimuli. To further characterize this vulnerability, we have developed a novel model system to examine the response of mouse motor nerve terminals in ex vivo nerve/muscle preparations to 2 h hypoxia followed by 2 h reperfusion. This insult induced a rapid loss of neurofilament and synaptic vesicle protein immunoreactivity at pre-synaptic motor nerve terminals but did not appear to affect post-synaptic endplates or muscle fibres. The severity of nerve terminal loss was dependent on the age of the mouse and muscle type: in 8–12-week-old mice the predominantly fast-twitch lumbrical muscles showed an 82.5% loss, whereas the predominantly slow-twitch muscles transversus abdominis and triangularis sterni showed a 57.8% and 27.2% loss, respectively. This was contrasted with a > 97% loss in the predominantly slow-twitch muscles from 5–6-week-old mice. We have also demonstrated that nerve terminal loss occurs by a mechanism distinct from Wallerian degeneration, as the slow Wallerian degeneration (Wlds) gene did not modify the extent of nerve terminal pathology. Together, these data show that our new model of hypoxia–reperfusion injury is robust and repeatable, that it induces rapid, quantitative changes in motor nerve terminals and that it can be used to further examine the mechanisms regulating nerve terminal vulnerability in response to hypoxia–reperfusion injury.

Key words ischaemia; neuromuscular junction; selective vulnerability; synapse, Wlds.

Introduction

There is a growing body of evidence showing that nerve terminals throughout the nervous system are vulnerable to a range of traumatic, toxic and disease-related neurodegenerative stimuli (reviewed in Wishart et al. 2006). One such pathological stimulus is ischaemia/hypoxia and whereas this has been extensively studied in the central nervous system (CNS), surprisingly few studies have addressed its effects in the peripheral nervous system (PNS). This is despite the fact that the peripheral nervous system can be highly susceptible to reductions in blood supply, and therefore oxygen levels, during surgical and pathological conditions. For example, approximately 1 million procedures annually in the USA utilize surgical and non-surgical tourniquets (McEwen, 1981). These are most commonly used to create bloodless surgical fields, particularly in orthopaedic and plastic surgery but also for the administration of intravenous regional anaesthesia and for manipulation of blood pressure. Without proper consideration of tourniquet design, pressure, application time and local anatomy, tourniquet use can cause long-term injury (for reviews see McEwen, 1981; McGraw & McEwen, 1987; Kam et al. 2001). The most common complications, affecting more than 60% of surgical patients (Saunders et al. 1979), are neurological and range from mild functional loss through to complete limb paralysis and permanent functional deficits (Rorabeck, 1980). It is far from clear what aspect of tourniquet application leads to these observed neurological deficits, as it is well accepted that tourniquets not only restrict blood flow but also cause mechanical trauma to underlying peripheral nerves (Ohara et al. 1996; Kam et al. 2001). Several groups have suggested that tourniquets cause injury to distal motor nerve terminals (Makitie & Teravainen, 1977; Hatzipantelis et al. 2001; Tombol et al. 2002; Eastlack et al. 2004; David et al. 2007), whereas skeletal muscle appears structurally and functionally spared (Makitie & Teravainen, 1977; Hatzipantelis et al. 2001; Tombol et al. 2002; Eastlack et al. 2004; David et al. 2007). Hypoxia is considered to be the key pathological
stimulus in CNS ischaemia (Bickler & Donohoe, 2002) and other groups have shown that hypoxia can induce functional changes at the neuromuscular junction (Nishimura, 1986; Bukharaeva et al. 2005).

The mechanisms underlying nerve terminal vulnerability to hypoxia–reperfusion injury in situations such as tourniquet-induced ischaemia–reperfusion remain unclear (David et al. 2007). The development of robust, experimentally accessible models for quantitative study is therefore required. Most current in vivo animal models of hypoxia–reperfusion rely on the experimental application of elasticated rubber bands as high-pressure tourniquets. Such approaches may induce considerable mechanical stress and potential crush injury to underlying nerves, making it difficult to conclusively distinguish the effects of ischaemia–reperfusion injury from the effects of mechanical trauma. Only one study has suggested that peripheral nerve injury occurs independently of the mechanical trauma associated with tourniquets (Hatzipanayil et al. 2001).

Here we report the development of a novel, quantitative ex vivo model of hypoxia–reperfusion injury that allows us to model hypoxic injury independent of confounding factors such as glucose depletion, biochemical changes, mechanical trauma and others. We use this experimental model to show that motor nerve terminals in different skeletal muscles are vulnerable to 2 h hypoxia followed by 2 h reperfusion. We show age-related differences in synaptic vulnerability and also demonstrate that motor nerve terminal pathology occurs via a mechanism distinct from classic Wallerian degeneration.

Methods

Animals

Tissue was obtained from 5–12-week-old female C57Bl/6 mice or 6-week-old female C57Bl/6WId mice (all obtained from Harlan-Olac, UK) culled by cervical dislocation in accordance with the Animal (Scientific Procedures) Act 1986. Skeletal muscles with distal nerve stumps were quickly dissected in a silicone (Sylgard 184: Dow Corning, Germany) lined Petri dish and maintained in HEPES buffered Krebs’ solution (144 mM Na+, 5 mM K+, 2 mM Ca2+, 1 mM Mg2+, 131.2 mM Cl–, 23.8 mM HCO3–, 0.4 mM H2PO4–, 5 mM D-glucose, 5.5 mM HEPES: pH 7.2–7.4) and sparged with 95% : 5% O2 : CO2 gas. Skeletal muscles were selected because their anatomy minimized diffusion distances. Preparations consisted of the four deep lumbrical muscles (attached to the tendon of flexor digitorum longus) with a long sciatic/bibial nerve stump, transversus abdominis (TA) or triangularis sterni (TS), with intact intercostal nerve stumps, from the deep surface of the abdominal and thoracic walls, respectively. Care was taken to ensure that all muscles were free of dissection damage and that their nerve supply remained intact to protect against injury-induced Wallerian degeneration (Waller, 1850; Miledi & Slater, 1970). As the lumbrical muscles and their long nerve stumps are particularly vulnerable to dissection damage, we verified their integrity before use in experiments by stimulation with a suction electrode. Where tested, all muscles produced a twitch response at 0.5 V or below.

Hypoxia–reperfusion

HEPES buffered saline 250 mL was vigorously sparged with 95% : 5% N2 : CO2 for a minimum of 1.5 h in a 250-mL conical flask prior to the start of experimentation. The long setup period was required to ensure maximum displacement of already dissolved O2 and the use of a conical flask created a high nitrogen, low oxygen micro-environment coupled with a small surface to reduce atmospheric oxygen exchange. Muscles dissected from the right-hand side, with their respective nerve stumps, were subject to 2 h of hypoxia (immersion in the hypoxic HEPES buffered saline) followed by 2 h reperfusion in 95% : 5% O2 : CO2 sparged Krebs’ solution. Control muscles from the left-hand side of the same animals were maintained as experimental specimens but in 95% : 5% O2 : CO2 sparged Krebs’ solution for the duration of the experiment (4 h). All muscles were left free floating in the conical flask with sufficient flux so as not to become stagnant but to remain below the surface during the course of the experiment.

Measurement of O2, pH and temperature

A micro-oxygen electrode (MLT1120, AD Instruments) underwent two-point (0% and 21%) calibration in ~40 mL of distilled water placed on a magnetic stirring platform prior to each experiment. As for 21%, the distilled water was left on the stirring platform for > 15 min to ensure it was fully equilibrated with atmospheric oxygen levels while 0% O2 solution was saturated with an excess of sodium sulphite. Temperature was monitored via a probe and a temperature controller unit (TC-202A, Harvard Apparatus). Both O2 and temperature measurements were recorded using a MacLab and Chart 4 system (AD Instruments). pH was monitored with a combination pH meter (Thermo Russel).

Immunohistochemistry

At the end of the experiment, post-synaptic acetylcholine receptors were labelled by incubation in TRITC-conjugated α-bungarotoxin (α-BTX) for 10 min (5 μg mL–1 in oxygenated Krebs’ solution: Invitrogen), prior to immersion in absolute methanol at –20 °C for 15 min. Tissues were washed in phosphate-buffered saline (PBS, Sigma) and immersed in a blocking solution [0.1% TX-100, 0.2% sodium azide in PBS] for a minimum of 1 h. This was followed by at least 16 h incubation with monoclonal anti-neurofilament (NF) 165 kDa primary antibodies (1 : 250) made up in blocking solution (Developmental Studies Hybridoma Bank, IA, USA) at 4 °C. This was followed by 3 × 10 min washes in PBS and a subsequent 1 h incubation in Cyanine2 (Cy2) donkey anti-mouse secondary antibodies (1 : 500, Jackson ImmunoResearch) made up in blocking solution (Developmental Studies Hybridoma Bank, IA, USA) at 4 °C. This was followed by 3 × 10 min washes in PBS, the process as above was repeated but with anti-synaptic vesicle protein 2 (SV2) primary antibodies (1 : 250: Developmental Studies Hybridoma Bank, IA, USA). Following the final wash in PBS, muscles were mounted on to glass slides in 4% n-propylgallate in glycerol and stored in the dark at 4 °C.

Functional studies with FM-143FX

To assess the functional state of motor nerve terminals after hypoxia–reperfusion injury, fresh transversus abdominis (TA) and triangularis sterni (TS) muscle preparations were exposed to the
Developing a robust ex vivo model of hypoxia–reperfusion

To develop a robust ex vivo model of hypoxia–reperfusion, we generated a system in which ex vivo nerve/muscle preparations could be monitored and maintained in a consistent hypoxic environment with oxygen concentration below the normoxic in vivo values of skeletal muscle [estimated to be 0.5–5% (4–35 mmHg); Gorczynski & Duling, 1978; Honig & Gayeski, 1993; Eu et al. 2003; Matsumoto et al. 2005]. By reducing the surface area to volume ratio of the perfusate via use of a conical flask and vigorously sparging with 95% : 5% N₂ : CO₂ gas we increased displacement of already dissolved O₂ in the perfusate and created a low O₂ environment at the surface to reduce atmospheric oxygen exchange. This consistently produced an O₂ concentration below 0.25%, which is significantly below in vivo normoxia (Fig. 1) and similar to levels induced by tourniquet (Matsumoto et al. 2005). While hypoxic conditions were often reached within 15–30 min after sparging began, it would occasionally take up to 1.25 h for the O₂ levels to fall to a steady state. To ensure that all experiments were carried out at a consistent O₂ level, the system was allowed to equilibrate for a minimum of 1.5 h prior to being used to induce hypoxia in ex vivo muscle preparations. This system also allowed us to ensure that no significant changes in pH or temperature occurred during the course of the experiments.

Rapid loss of motor nerve terminals following hypoxia–reperfusion injury

First, we examined the effects of 2 h hypoxia followed by 2 h reperfusion (2H-2R) on the morphology of pre-
post-synaptic components of the mouse neuromuscular junction in the four deep lumbrical muscles \((N = 28, n = 4974)\). 2H-2R caused \(82.51 \pm 4.16\%\) of motor nerve terminals to appear ‘vacant’ due to the loss of 165-kDa neurofilament and synaptic vesicle protein immunoreactivity from motor nerve terminal arborizations and pre-terminal axons (Fig. 2). The remaining endplates either appeared to have ‘full’ \((16.14 \pm 0.31\%\) or ‘partial’ \((1.35 \pm 0.02\%\) innervation by nerve terminal boutons (Figs 2 and 3). This dramatic and rapid change of protein immunoreactivity strongly indicates loss of integral nerve terminal morphology. This loss of morphology was in stark contrast to nerve terminals from control lumbrical muscles where \(99.3 \pm 0.11\%\) of endplates were fully occupied and only a small number of endplates appeared vacant \((0.57 \pm 0.15\%\) or partially \((0.1 \pm 0.06\%\) occupied \((N = 28, n = 5090)\) (see methods). No changes were noted in the muscle fibres or their motor endplates (determined by the presence of striations, autofluorescence and endplate integrity/morphology), in agreement with previous in vivo studies (Tombol et al. 2002).

Ongoing nerve terminal disassembly following hypoxia–reperfusion injury

Partially occupied neuromuscular junctions were very rarely observed in control preparations but were readily identified in 2H-2R preparations (see above), offering an ideal opportunity to examine synapses at ‘intermediate’ stages of breakdown, providing possible insights into the cellular pathways responsible for nerve terminal loss (Fig. 3). Examination of this subpopulation of neuromuscular junctions revealed a heterogeneous set of morphological responses. Some partially occupied endplates had lost part of their overlying nerve terminal but their incoming pre-terminal axon remained intact, indicative of a withdrawal or retraction process (Fig. 3B; Gillingwater et al. 2002; Gillingwater & Ribchester, 2003; Walsh & Lichtman, 2003; Bettini et al. 2007). Other partially occupied endplates had isolated fragments disconnected from each other and/or their pre-terminal axon (Fig. 3A,C).

Inter-muscular differences in the synaptic response to hypoxia–reperfusion injury

To investigate whether there were muscle-specific differences in hypoxia–reperfusion injury, we repeated the above experiments using TA (transversus abdominis) and TS (triangularis sterni) from the deep surface of the abdominal and thoracic walls, respectively, and compared the response with data from lumbrical muscles (L: Fig. 4). TA muscles showed a noticeable but non-significant decrease in numbers of vacant endplates \((57.8 \pm 11.44\%)\), whereas TS showed a very significant decrease in the number of vacant endplates \((27.7 \pm 7.77\%\) compared with lumbrical muscles \((82.51 \pm 4.16\%: P < 0.01\) Kruskal-Wallis test with Dunn’s Post-hoc test). The nerve terminals from \(37.3 \pm 11.93\%\)
and 69 ± 8.64% of TA and TS muscles, respectively, retained a full terminal morphology compared with only 16.1% from lumbrical muscles. Interestingly, there was also an increase in the number of partially occupied endplates in the TA and TS muscles, 4.8 ± 0.76% and 3.2 ± 1.21%, respectively (TA: N = 4, n = 1753, TS: N = 4, n = 1765). Again, this is in stark contrast to control preparations, where 100% and 99.8 ± 0.02% of endplates in TA and TS, respectively, appeared fully occupied (TA: N = 3, n = 2123, TS: N = 3, n = 2069). Thus, TS, and to a lesser extent TA, muscles (both predominantly slow-twitch muscle fibre type) were either more resistant to and/or slower to respond to 2H-2R treatment when compared to the predominantly fast-twitch lumbrical muscles.

Reduced vesicle recycling at the NMJ following hypoxia/reperfusion injury

Our immunocytochemical data suggested disruption of proteins related to synaptic vesicles (SV2). We therefore examined the functional consequences of 2H-2R in nerve terminals from TA and TS muscles using the vital dye FM143FX. This styryl dye becomes incorporated into synaptic vesicle membranes as they are recycled following a depolarizing stimulus (Betz & Bewick, 1992; Adalbert et al. 2005). We stimulated TA (n = 2) and TS (n = 2) muscles following 2H-2R in high K⁺ Krebs’ solution to load synaptic terminals with the dye (Adalbert et al. 2005: Fig. 5). No nerve terminals from 2H-2R treated muscles with clear FM1-43FX fluorescence were identified. By contrast, in control preparations > 95% of terminals examined showed clear FM1-43FX fluorescence. This suggests that 2H-2R treated terminals have a significantly reduced ability to recycle synaptic vesicles. Compared with the immunohistochemical data where TA and TS showed 57.8% and 27.7% loss in immunoreactivity, respectively, these data suggest that functional disruption may occur prior to the morphological changes shown by NF/SV2 staining.

Age-dependent changes in hypoxia–reperfusion injury

Next, we used our model to explore potential age-related differences in nerve terminal response to 2H-2R injury. Using lumbrical, TA and TS muscles, we compared nerve terminal pathology following 2H-2R in tissue from juvenile mice aged 5–6 weeks compared with adult mice aged 8–12 weeks. Nerve terminal loss in the TA and TS muscles was significantly increased in the younger mice, with 99.45 ± 0.23% and 97.29 ± 1.41% of endplates appearing vacant, respectively (Fig. 6). Perhaps due to the marked increase in vacant endplates, only 0.4 ± 0.1% and 1.3 ± 0.66% of endplates in TA and TS muscles appeared partially occupied, respectively.
(N = 4, TA: n = 2104, TS: n = 2220). Surprisingly, these age-related differences in vulnerability were not present in lumbrical muscles (Fig. 6), where 82.8 ± 4.34% of endplates appeared vacant in younger mice (N = 16, n = 3697). Again this was in contrast to control preparations from younger mice, where less than 1% of endplates from lumbrical (N = 12, n = 2558), TA and TS (N = 3, TA: n = 1381, TS: n = 1921), respectively, showed either a partial or vacant nerve terminal morphology. This suggests significant age-dependent changes in nerve terminal vulnerability to hypoxia–reperfusion injury and supports the finding of significant levels of inter-muscular variability.

Nerve terminal disassembly following hypoxia–reperfusion injury does not occur via Wallerian degeneration

Finally, we carried out experiments to determine whether motor nerve terminals were being lost by Wallerian degeneration pathways, which was suggested by the presence of fragmented nerve terminals in previous experiments. We quantified the nerve terminal response to 2H-2R in lumbrical, TA and TS muscles from mice carrying the naturally occurring Wlds mutation. The Wlds mutation significantly delays Wallerian degeneration of axons and nerve terminals in both the CNS and the PNS (Lunn et al. 1989; Ribchester et al. 1995; Gillingwater et al. 2003, 2006a,b; Wishart et al. 2007). As protection of nerve terminals after injury has previously been shown to weaken in Wlds mice from 4 months of age onwards (Gillingwater et al. 2002), we ensured strong synaptic protection by...
using muscles from animals at 5–6 weeks of age. Compared to wild-type animals of a similar age (as detailed above), the Wldε mutation conveyed no significant (P > 0.05) neuroprotective effect on motor nerve terminals in lumbrical, TA or TS muscles in response to 2H-2R (Fig. 7). For Wldε muscles, values for vacant endplates appearing with no NF/SV2 immunoreactivity were as follows: lumbral muscles 82.4 ± 2.88% (N = 24, n = 5468), TA 98 ± 0.71% (N = 5, n = 2568) TS 96.64 ± 1.15% (N = 5, n = 2290). This contrasts with control preparations from Wldε mice (not shown), where less than 1.5% of endplates from lumbral (N = 12, n = 2718), TA (N = 3, n = 1934) and TS (N = 3, n = 1894) showed either a partial or vacant nerve terminal morphology. The failure of Wldε to protect motor nerve terminals against 2H-2R injury suggests that nerve terminal disassembly is occurring via mechanisms distinct from classic Wallerian degeneration.

Discussion

We present morphological and functional evidence showing that mouse motor nerve terminals are vulnerable to hypoxia–reperfusion injury. Using a novel ex vivo model system where O2 concentration was maintained consistently below in vivo normoxic values and at a level similar to that induced by tourniquet (Gorczynski & Duling, 1978; Honig & Gayeski, 1993; Eu et al. 2003; Matsumoto et al. 2005), we have shown that in response to 2 h hypoxia–2 h reperfusion (2H-2R) neurofilament and synaptic vesicle immunoreactivity was rapidly lost from the majority of motor nerve terminals and pre-terminal axons. The severity of synaptic pathology was dependent on the age of the mouse and muscle type. Our study demonstrates that hypoxia–reperfusion injury is a major pathological stimulus at motor nerve terminals and therefore is likely to contribute significantly towards the neurological damage routinely induced by tourniquets.

Loss of neurofilament and synaptic vesicle proteins was preceded by functional disruption, manifested as a failure to release and recycle synaptic vesicles. Similar functional responses have been observed in CNS ischaemia (for reviews see e.g. Lipton, 1999, White et al. 2000), including reduced synaptic transmission, reduced synaptic vesicle density (Kovalenko et al. 2006) and a loss of pre-synaptic proteins critical for regulating synaptic vesicle turnover (Ishimaru et al. 2001). Similar temporal changes in function and morphology are known to occur in other neurodegenerative processes, including Wallerian degeneration and motor neuron disease (Miura et al. 1993; Ferri et al. 2003; Gillingwater & Ribchester, 2003; Pun et al. 2006; Wishart et al. 2006; Murray et al. 2008). Despite some morphological similarities, the data show that nerve terminal loss following hypoxia–reperfusion injury does not occur via Wallerian degeneration, as the Wallerian degeneration slow (Wldε) gene failed to protect nerve terminals from 2H-2R. Further investigations of the mechanisms responsible for disassembling motor nerve terminals following hypoxia–reperfusion injury are therefore required and will benefit from using the experimentally accessible ex vivo methodology developed in the current study.

Recent in vivo studies documenting the morphological vulnerability of motor nerve terminals to ischaemia–reperfusion injury have utilized elasticated rubber bands as tourniquets (Tombol et al. 2002; David et al. 2007), which undoubtedly cause mechanical stress alongside hypoxia/ischaemia. As a result, they have been unable conclusively to distinguish between the contribution of mechanically induced degeneration, known to occur in response to nerve crush, (Ochoa et al. 1972; Beirowski et al. 2005) and the effects of ischaemia–reperfusion. Furthermore, these studies have been unable to distinguish between the relative importance of inflammation, acidosis or gross biochemical/ionic changes that may occur when using tourniquet and their contribution to injury (see e.g. Rorabeck, 1980 or for review Kam et al. 2001). In our ex vivo model of hypoxia–reperfusion injury we are able to show clearly that changes in oxygen tension alone are a major pathological stimulus for motor nerve terminals, which is capable of inducing rapid changes in nerve terminal form and function.

The data presented here demonstrate that the extent of motor nerve terminal injury in response to hypoxia–reperfusion injury depends on the age of the animal and muscle location/type. When we compared the effects of 2H-2R on predominantly slow-fibre type muscles (TA and TS) with that on predominantly fast-fibre type muscles (lumbrical) we identified significant differences in vulnerability, with the lumbricals more affected than TA or TS. Similarly, when we compared the response of muscles from 5–6 week and 8–12-week-old mice, TA and TS muscles from older animals were significantly less vulnerable to 2H-2R than muscles from younger animals. These findings
suggest that different populations of neuromuscular nerve terminals, with characteristics determined by their level of maturity, muscle fibre type and/or location within the body, have distinct levels of vulnerability/resistance to hypoxia–reperfusion injury. David et al. (2007) and Tombol et al. (2002) have recently reported that nerve terminals from slow-twitch muscles are more resistant to ischaemia–reperfusion injury, whereas Chervu et al. (1989) report that slow-twitch muscles are more susceptible. Our experiments suggest that nerve terminals on slow-twitch muscle fibres are more resistant to hypoxia–reperfusion injury than those on fast-twitch fibres, at least in more mature animals. Selective vulnerability within populations of neurons have also been reported following cerebral ischemia in the CNS (Lipton, 1999) and there is a growing body of evidence suggesting that certain motor unit characteristics confer selective vulnerability/resistance in a range of neurodegenerative conditions, such as motor neuron disease (Frey et al. 2000; Schaefer et al. 2005; Pun et al. 2006; Murray et al. 2008). However, the reasons underlying such a rapid age-dependent switch in synaptic vulnerability remain unclear. These mechanisms are likely to be important to understand the cellular pathways that regulate synaptic vulnerability. Our model system may provide an ideal tool with which to examine these mechanisms and pathways.

The failure of the WldS gene to protect against nerve terminal loss following hypoxia–reperfusion injury suggests that mechanisms distinct from classic Wallerian degeneration are being activated. The heterogeneous range of morphological responses observed at nerve terminals following hypoxia–reperfusion injury (Fig. 3) suggests that multiple mechanisms may be involved. These observations are supported by previous studies from the CNS where up to four simultaneous morphological phenotypes of ischaemic neuronal loss have been identified (for review see Lipton, 1999). We identified nerve terminal morphologies indicative of Wallerian-like fragmentation processes as well as asynchronous nerve terminal retraction. Although nerve terminal retraction is normally a mechanism of loss associated with developmental synapse elimination (Sanes & Lichtman, 1999; Keller-Peck et al. 2001; Gillingwater et al. 2002; Gillingwater & Ribchester, 2003; Walsh & Lichtman, 2003; Parson et al. 2004), there are increasing numbers of reports showing that withdrawal can occur in response to injury and disease in adult motor nerve terminals (Gillingwater et al. 2002; Fischer et al. 2004; Bettini et al. 2007; Murray et al. 2008). The finding that nerve terminal function may be disrupted in advance of disassembly suggests that future experiments are required to define accurately the spatio-temporal characteristics of hypoxia–reperfusion injury. The combination of a broader spectrum of immunocytochemical markers (labelling a range of different membranous, cytoskeletal and vesicular proteins) combined with functional analyses (e.g. electrophysiology) and ultrastructural analyses would be required.

In summary, we have shown that motor nerve terminals are vulnerable to hypoxia–reperfusion injury. This is of important clinical significance as hypoxia is induced during application of tourniquets and during a range of disease processes. We have developed a novel, robust, experimentally accessible ex vivo model of hypoxia–reperfusion injury which we have used to identify differences in nerve terminal vulnerability between individual muscles and in mice of different ages. We have also used the model to demonstrate that nerve terminal loss following hypoxia–reperfusion injury occurs via mechanisms distinct from Wallerian degeneration.

Acknowledgements
Grant numbers/sources of support: The authors gratefully acknowledge financial support from the Anatomical Society of Great Britain and Ireland (B.B.; T.H.G., S.H.P.), Medical Research Scotland (T.H.G.) and the BBSRC (T.H.G.).

References
Honig CR, Gayeski TE
Gorczynski RJ, Duling BR
Gillingwater TH, Ingham CA, Parry KE, Coleman MP, Ribchester RR
Kam PCA, Kavanaugh R, Yoong FFY
Ishimaru H, Casamenti F, Ueda K, Maruyama Y, Pepeu G
Miledi R, Slater CR
Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S
Matsumoto A, Matsumoto S, Sowers AL
McEwen JA

© 2008 The Authors
Journal compilation © 2008 Anatomical Society of Great Britain and Ireland