Earth-abundant mixed-metal catalysts for hydrocarbon oxygenation

James R. Pankhurst,a Massimiliano Curcio,a Stephen Sproules,*b Guy C. Lloyd-Jones,*a and Jason B. Love*a

a EaSiCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK. E-mail: jason.love@ed.ac.uk; guy.lloyd-jones@ed.ac.uk; stephen.sproules@glasgow.ac.uk.

b WestCHEM School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.

ABSTRACT: The oxygenation of aliphatic and aromatic hydrocarbons using earth-abundant iron and copper catalysts and ‘green’ oxidants such as hydrogen peroxide is becoming increasingly important to atom-economical chemical processing. In light of this, we describe that dinuclear CuII complexes of pyrrolic Schiff-base macrocycles, in combination with FeCl3, catalyze the oxygenation of π-activated benzylic substrates with hydroperoxide oxidants at room temperature and low loadings, representing a novel design in oxidation catalysis. Mass spectrometry and EXAFS analysis indicate that a cooperative action between CuII and FeIII occurs, most likely due to the interaction of FeCl3 or FeCl4 with the dinuclear CuII macrocycle. Voltammetric measurements highlight a modulation of both CuII and FeIII redox potentials in this adduct, but EPR spectroscopy indicates that any Cu-Fe intermetallic interaction is weak. High ketone/alcohol product ratios, a small reaction constant (Hammett analysis) and small KIE for H-atom abstraction point towards a free-radical reaction. However, lack of reactivity with cyclohexane, oxidation of 9,10-dihydroanthracene, oxygenation by the hydroperoxide MPPH (radical mechanistic probe), and oxygenation in N2-purge experiments indicate a metal-based reaction. Through detailed reaction monitoring and associated kinetic modelling, a network of oxidation pathways is proposed that includes “well-disguised” radical chemistry via the formation of metal-associated radical intermediates.

Introduction

The combination of earth-abundant metals such as Fe or Cu, with oxidants such as O2 or H2O2 offers “green” alternatives to more traditional, toxic, stoichiometric or catalytic chromium and manganese reagents for the oxygenation of alkanes. The process has a strong foundation in understanding enzymatic oxygenation of hydrocarbons.1–17 Cytochrome P450 and peroxidase enzymes react aerobically through high-oxidation-state iron oxo (FeIV=O, “ferryl heme”) complexes.8–10 Tyrosinase enzymes feature bimetallic Cu active sites that oxidize catechol to ortho-quinone.11–12 Methane monoxygenase (MMO) enzymes contain either copper or iron13–14 and oxidize the strong C–H bonds of methane (ΔHdeg = 439 kJ mol−1).15–16 This has led to the development of oxygenation catalysts based on copper and iron complexes17 that incorporate the M(μ-O2)M diamond motif,18–21 reactive iron-oxo and -peroxo porphyrins,22–27 and non-heme FeIV=O28–32 or FeV=O33 functionalities.

Simple transition metal salts of copper and iron have also been used in non-biomimetic approaches to oxygenation catalysis, mainly in combination with hydrogen peroxide (H2O2) or tert-butyl hydroperoxide (tBuOOH, TBHP) as the oxidant. The reaction between CuBr and TBHP forms mixtures of tBuO’ (alkoxy) and tBuOO’ (peroxy) radicals that carry out hydrogen-atom abstraction (HAA) from hydrocarbons.24 CuCl2, CuCl and copper metal catalyze oxygenation of π-activated benzylic substrates using TBHP.25–36 Furthermore, copper acetate catalyzes the oxidation of aromatic C–H bonds using O2 as an oxidant.15 The related Kharasch-Sosnovsky reaction of dialkyl-peroxides leads to etherification of hydrocarbon substrates and is typically catalyzed by Cu salts,38–41 and coordination complexes of Cu4 have also been implemented in radical reactions.42 Simple iron salts (most commonly FeCl3) and their complexes catalyze oxygenation reactions of hydrocarbon substrates with high bond-dissociation energies (BDEs), including cyclohexane,43–56 The bulk of these reactions are described by Fenton mechanisms,57–58 in which the role of iron is to generate highly reactive hydroxy radicals,59 tert-butoxy radicals60 and tert-butyl peroxy radicals61 from the hydroperoxide.

Mixtures of metal compounds can act as tandem catalysts for oxygenation reactions.62–65 Combinations of FeIII and CuIII diketonates carry out tandem oxygenation and epoxidation catalysis of cyclohexene.66–67 Additionally, copper acetate and FeCl3 mixtures act as catalysts for a complex series of C–C and C–O bond forming reactions, although these reactions require high catalyst loadings.68 A mixture of Fe2SO4 and CuCl catalyzes oxidation and isomerization of alkene-containing organo-peroxides, yielding ketone products, with the postulated mechanism showing the two metal ions participating in tandem.69 In terms of cooperative catalysis, mixtures of copper and iron (in the form of salts, complexes or nanoparticles) have been used to successfully promote cross-coupling reactions,70 including those that form new C–C bonds,71–74 C–O bonds,75–76 C–S bonds,77 and also N-arylation.78–80 In contrast, there is surprisingly little use of mixtures of metals and their complexes in cooperative catalysis for the direct functionalization of hydrocarbon C–H bonds. In one example, amination of an allylic C–H bond was achieved by a palladium acetate catalyst, but only when a CuIII catalyst was also present to aminate the palladium-allyl intermediate.81

Based on these precedents we sought to employ dinuclear CuII complexes of Schiff-base pyrrole macrocycles as catalysts for hydrocarbon oxygenation (Figure 1).82–83 Through variation of various components in these macrocycles, important parameters such as inter-nuclear separation and cavity size can be controlled.84–85 The macrocyclic clefts offered by these complexes are reminiscent of supramolecular flasks, where catalytic and stoichiometric reactions that are disfavored in the bulk phase,
can take place within the host structure due to the increased effective concentration and lowered entropy.86-89 Dinuclear FeII Paclman diporphyrin complexes activate O\textsubscript{2}, leading to reactive FeIV=O complexes (through photolysis) that oxidize hydrocarbon substrates to generate alcohols.22 We anticipated that reactions between complexes A, B, or C (Figure 1) and hydroperoxides might form reactive species akin to diamond MO\textsubscript{2}M complexes,21,90-93 as the structurally related Schiff-base Paclman complexes of CoIII catalyze the microscopic reverse dioxygen-reduction reaction.92,94 Electrochemical measurements have indicated that the CuII oxidation state is also accessible for these complexes, leading to the possibility of the formation of CuII–OH complexes which could take place in HAA reactions.95-98

We report here the use of dinuclear CuII complexes for the catalytic oxygenation of \(\pi\)-activated, benzyl hydrocarbon substrates, using hydroperoxide oxidants. We find that the activity, stability, and operating temperature of the catalyst improves substantially by the addition of FeCl\textsubscript{3}, and we report the attempted characterization of the catalytically active species through detailed spectroscopic and voltammetric methods, as well as the elucidation of a plausible reaction network through kinetics studies. To the best of our knowledge, there are no previous reports of mixtures of copper and iron compounds being used to catalyze the oxygenation of hydrocarbon bonds.

![Figure 1. Dinuclear CuII macrocycles used as pre-catalysts for benzyl hydrocarbon oxygenation and the proposed pre-catalyst arising from A + FeCl\textsubscript{3}. Complexes A and B adopt Paclman configurations and feature different spacer groups (Cu–Cu = 3.695 / 3.738 Å for A and 4.818(3) Å for B). Complex C adopts a bowl geometry (Cu–Cu = 6.493(6) Å).](image)

Results and Discussion

Catalysis with bimetallic CuII macrocycles

Initial oxygenation reactions using the bimetallic CuII complexes A – C (0.2 mol%) were carried out in \(d\textsubscript{7}\)-MeCN, using TBHP as the oxidant (Scheme 1). Xanthene was chosen as the substrate due to the low bond-dissociation energy (BDE) of its benzyl C–H bond (\(H_{\text{Diss}} = 75.5\) kcal mol\(^{-1}\)).99 All three complexes are catalytically inactive at room temperature, but on heating at 333 K the substrate is consumed, as evidenced by the loss of the benzyl proton resonance at 4.05 ppm in the \(^1\)H NMR spectrum.

![Scheme 1. Oxygenation of xanthene catalyzed by the dinuclear CuII complexes A – C at 333 K (yields determined by \(^1\)H NMR spectroscopy).](image)

The three products formed were identified by NMR/MS as the benzylic alcohol (xanthydrol, ROH), the organo-peroxide ((\textit{t}-butyl)xanthyl peroxy-ether, ROOtBu) and the benzyl ketone (xanthone, RO). We anticipated that reaction of the reaction is tert-butanol, identified by the singlet resonance at 1.17 ppm of the methyl protons. Importantly, no \(9,9^\prime\)-bixanthene is seen, a homo-coupling product which might be expected to form if an organic free-radical reaction mechanism operates through HAA from xanthene.100

The concentration profiles for xanthene and its three oxygenated products were determined by \(^1\)H NMR spectroscopy (Figure 2) with 93% conversion of the substrate seen within 30 min, giving a formal initial turnover frequency (TOF) of 930 h\(^{-1}\).

![Figure 2. Monitoring the oxygenation of xanthene by 2.2 eq. TBHP, catalyzed by 0.2 mol% of complex C at 333 K in \(d\textsubscript{7}\)-MeCN (concentrations determined by \(^1\)H NMR integration). Interpolation between the data-points is provided solely as an aid to the eye.](image)

After 2 h, the oxidation products ROOtBu and RO are formed in yields of 60% and 33%, respectively, with ROH in 7% yield. After this period, the concentrations of both ROOtBu and RO almost plateau for 10 h before the peroxy-ether slowly converts to the ketone through auto-oxidation at an approximate initial rate of \(2 \times 10^{-7}\) mol dm\(^{-3}\) s\(^{-1}\). At room temperature, the background (non-catalyzed) oxidation of isolated ROOtBu is found to be slow \((1 \times 10^{-8}\) mol dm\(^{-3}\) s\(^{-1}\)) but is accelerated in the presence of 0.2 mol% of C \((2 \times 10^{-4}\) mol dm\(^{-3}\) s\(^{-1}\)). The slow oxidation of ROOtBu during the first 10 hours (Figure 2) suggests that the active catalyst inhibits the auto-oxidation during this stage.
Variation of the ligand scaffold in the macrocyclic complexes A – C causes dramatic changes in terms of their geometric and electronic properties, evident from their solid-state structures and electrochemical behaviour.82,83 Despite these differences, varying the catalyst A – C did not change the activity or distribution of products, nor did it make the catalyst more or less susceptible to deactivation or inhibition. As the dipyrromethene groups containing meso-H substituents in complexes B and C could potentially undergo oxidation chemistry to dipyrrins,101–105 only complex A was used to study the catalytic reactions in detail.

Mixed-metal catalysis

Whilst the CuII complexes are highly active xanthene oxygenation catalysts, this activity quickly arrests. In order to address this issue, FeCl\textsubscript{3} was employed initially as a simple FeIII co-catalyst, as it has been demonstrated previously to catalyze the oxidation of benzylic alcohol substrates.46 We hypothesized that this mixed-metal system would carry out tandem catalysis, with the CuII complex catalyzing xanthene oxygenation to form a mixture of ROH and ROOtBu and FeCl\textsubscript{3} catalyzing the formation of RO in improved yields with shorter reaction times.

Surprisingly, at catalyst loadings of 0.1 mol\% A and 0.1 mol\% FeCl\textsubscript{3}, the reaction proceeds at room temperature; A shows negligible activity at room temperature, and FeCl\textsubscript{3} achieves only 13\% conversion after 2 h, whereas the A/FeCl\textsubscript{3} mixture achieves 80\% conversion within 2 h. Reaction monitoring by 1H NMR spectroscopy revealed that the substrate is consumed after 4 h (Scheme 2, Figure 3), forming 72\% ROOtBu, 19\% RO and 9\% ROH. Longer reaction times (12 h) and higher relative concentrations of TBHP are found to drive the selectivity towards the ketone product (in excess of 80\%, Figure 3). It is significant that the addition of FeCl\textsubscript{3} both limits deactivation of the CuII catalyst and enhances reaction rate, implying that cooperative catalysis is taking place.

Scheme 2. Xanthene oxygenation catalyzed by a mixture of FeCl\textsubscript{3} and A, at 300 K (yields after 4 h shown, determined by 1H NMR spectroscopy).

To test the stability of the catalyst further, recycling was attempted. The reaction between xanthene and 4 eq. of TBHP at room temperature, catalyzed by 0.1 mol\% A/FeCl\textsubscript{3}, affords RO as a colorless precipitate in 90\% yield after 16 h. However, filtering and recharging the solution with xanthene and TBHP led to no further conversion of the substrate. In contrast, the catalyst was much more stable at very low loading and could be recycled multiple times. The reaction between xanthene and 4 eq. of TBHP, catalyzed by 0.002 mol\% A/FeCl\textsubscript{3} was monitored by 1H NMR spectroscopy (Figure 4, top). Under these conditions the catalyst is surprisingly active with 90\% conversion of the substrate in 30 h; the TOF at 50\% conversion is high at 1595 h-1. Under low-catalyst conditions, RO does not precipitate, and instead ROOtBu is formed as the major product (78\% selectivity at 30 h). The reaction is slower in the second cycle but 80\% conversion of xanthene is achieved after an additional 96 h. In the third cycle, the catalyst activity depreciates significantly and only 13\% conversion is seen in the next 48 h. Nevertheless, the mixed-metal catalyst is able to carry out more than 100,000 turn-overs under these conditions. Steady catalyst deactivation is seen over time, with the TOF diminishing by approximately 100 h-1 every 10 h (Figure 4, bottom).

To investigate the role of FeCl\textsubscript{3}, a catalytic reaction was carried out using A (0.1 mol\%) and InCl\textsubscript{3} (0.5 mol\%) as a chloride-containing, redox-inactive Lewis acid. After 24 h, the room-temperature reaction between xanthene and TBHP (2 eq) shows only 3\% conversion. A similar reaction involving scandium(III) triflate (0.5 mol\%) achieves higher conversion of 18\% after 24 h, forming ROOtBu as the sole product. Under the same conditions, reactions involving A and FeCl\textsubscript{3} achieve 90\% conversion at lower catalyst loading (0.1 mol\%), yielding higher amounts of the alcohol and ketone products, in just 3 h. These experiments indicate that FeCl\textsubscript{3} does not simply act as a Lewis acid or a chloride source, but that its redox properties may also be important.
CuCl₂ is known to catalyze the oxygenation of benzylic substrates⁵⁶ and we find that the room-temperature oxygenation of xanthene by TBHP, catalyzed by CuCl₂, proceeds with a reaction profile almost identical to catalytic reactions involving A/FeCl₃. However, an equimolar mixture of FeCl₃ and CuCl₂ leads to no enhancement of the CuCl₂ catalyzed reaction, indicating that the improved activity and stability of complex A on addition of FeCl₃ is a direct consequence of the macrocyclic ligand.

Scope of the catalytic reaction

The catalytic reaction is found to be tolerant of the choice of solvent, with identical conversion and product distributions seen after 2 h in acetonitrile (polar, coordinating), dichloromethane (polar, non-coordinating), and benzene (apolar).

A number of peroxide oxidants were tested in the xanthene oxygenation reaction, although TBHP is the best by far (Figure 5). Where 100% conversion of xanthene is seen after 2 h when TBHP is used, the conversion is lowered to 60% when H₂O₂ is used. Use of the organo-peroxides di-tert-butyl peroxide (DTBP), tert-butyl peroxy-benzoate, or dicumyl peroxide gives no reaction. Similarly, no reaction is seen when carried out in air in the absence of a hydroperoxide oxidant. Finally, adding cyclohexanecarboxaldehyde as a co-oxidant to promote aerobic oxidation¹⁰³⁻¹⁰⁶ does not yield any oxygenated products.

Figure 5. Screening different oxidants in the xanthene oxygenation reaction, catalysed by 0.1 mol% A and 0.1 mol% FeCl₃. Reaction conditions: 0.15 M xanthene, 2 eq oxidant, stirred MeCN, room temperature, 3 h (conversion of xanthene determined by ¹H NMR spectroscopy).

A range of hydrocarbon substrates were tested in reactions with TBHP, catalyzed by A only, at loadings between 0.2 and 0.1 mol%. No reaction occurs with cyclohexane¹⁰⁵ or n-decanol¹⁰⁶. Only trace amounts of oxygenated products are seen with cyclohexene¹⁰⁵ namely cyclohexene oxide, cyclohexenol and cyclohexenone. The aromatic alkene, trans-stilbene, reacts to yield the epoxide in 72% selectivity and 97% conversion; 17% of the remaining products are benzaldehyde and benzoic acid, which result from C–C bond breaking. Neither the Baeyer-Villiger reaction of cyclopentanone¹⁰⁷ nor the oxidation or oxidative-coupling of the ortho-directed phenol, 2,4-di-tert-butyl phenol¹⁰⁸⁻¹¹⁰ are catalyzed by A. Similarly, the para-directed phenol, 2,6-di-tert-butyl phenol does not react to give the expected para-quinone or diphenoxoquinone products¹¹¹⁻¹¹². Application of the mixed-metal system of A and FeCl₃ does not improve on any of these reactions.

As the catalytic reaction involving A and FeCl₃ is restricted mainly to π-activated benzylic substrates, a wider screening of these substrates was undertaken (Scheme 3). The reactions were assessed by ¹H NMR spectroscopy and GC-MS, and in some cases were carried out on a preparative scale to isolate the products by column chromatography (Figure 6).
for 16 h. The substrates with high benzylic C–H BDEs, i.e. toluene, para-nitro-toluene and benzyl sulfoxide, are not oxidized. Low to moderate conversion is seen for benzyl alcohol (51%), ethyl benzene (26%), cumene (20%), bibenzyl (11%), benzyl phenyl ether (24%), diphenyl methane (3%), 2-benzyl pyridine (21%), and 4-benzyl pyridine (42%). Of these, a few yield single carbonyl products with high selectivity: benzyl alcohol affords benzaldehyde (100%); ethyl benzene affords acetoephone (90%); benzyl-phenyl ether affords phenyl benzoate (69%); diphenyl methane affords benzophenone (100%); and both 2- and 4-benzyl pyridines afford the corresponding benzyl pyridines (100%). Three substrates in particular underwent high conversion. Benzyl amine is consumed quantitatively, but only affords 28% of the carbonyl product (benzyl amide), with benzaldehyde (55%) and benzonitrile (16%) seen as the other products. Benzyl methyl ether undergoes 91% conversion and is 94% selective for the ester, methyl benzoate. Triphenylmethane also undergoes 100% conversion, and affords (tert-buty)triphenyl methyl peroxy-ether as the sole product.

A series of bicyclic benzylic substrates were tested, all of which undergo high conversion, with the exception of α-tetralone (40%). The N-heterocyclic compounds indoline and 1,2,3,4-tetrahydroquinoline both afford the aromatic compounds indole and quinolone quantitatively, with no oxygenation of the substrate taking place following HAA. In contrast, the O-containing heterocycle iso-chroman quantitatively affords the mono-ketone product 4-chromanone. Likewise, 94% of indane reacts to afford the mono-ketone, indanone with 89% selectivity. For 1,2,3,4-tetrahydroanaphthene, 100% of the substrate is converted, forming a mixture of the mono-ketone, α-tetralone (51%) and para-quinone products 1,4-naphthoquinone (9.5%) and 2,3-dihydro-1,4-naphthoquinone.

The tricyclic benzylic substrates xanthene, fluorene, 9,10-dihydroanthracene (DHA), and 9,10-dihydrophenanthrene were all screened on a preparative scale. All four substrates react with 100% conversion, and the carbonyl products are isolated in high yields: xanthene, 90%; fluorenone, 89%; anthraquinone, 87%; and phenanthraquinone, 80%. Only 9,10-dihydrophenanthrene required heating at 60 °C.

Finally, three furan derivatives of benzylic substrates were tested, as this would hold some relevance to natural product synthesis. Phthalan reacts quantitatively at room temperature, with 45% selectivity for the mono-ketone, phthalide. A second product was also formed in significant quantity (representing 30% of the total GC trace). Dihydrobenzo[1,2-d]fururan only undergoes 44% conversion at 60 °C, to give a mixture of products; benzo[1,2-d]fururan is identified as the major product at 39% selectivity. Finally, menthofuran undergoes 75% conversion, but the products could not be identified by GC-MS and the selectivity for the major product is low at 34%.

The benzylic substrates that were screened span a benzylic C–H BDE range between 75 and 105 kcal mol⁻¹. Whilst that with the lowest BDE (xanthene) undergoes full conversion, and that with the highest BDE (toluene) does not react, there is no linear correlation between %conversion and BDE between these extremes. Likewise, there is neither correlation between %conversion and benzylic C–H pKa, nor with the ionization energies of the substrates. Comparing a set of substituted benzylic substrates of similar BDE values (85 – 87.5 kcal mol⁻¹) reveals that even in a narrow BDE range, there are vast differences in
% conversion, which is ascribed to functional group sensitivity. The two alkyl-substituted substrates in this sub-set, ethyl benzene and cumene, undergo similar conversion at 26% and 22%, respectively. In comparison, the conversion of benzyl alcohol is higher (57%) and that of benzylamine is higher still (100%). On the other hand, the two ether-containing compounds undergo very different conversions, at 33% for benzyl-phenyl ether and 81% for benzyl-methyl ether.

Characterization of the catalyst

Due to the strong paramagnetism exhibited by both complex A and FeCl₃, structural characterization of the catalytically-active species by NMR spectroscopy was not possible. Furthermore, we were unable to grow single crystals of the (pre-)catalyst from a wide range of solvent combinations and crystallization conditions and, as such, the structure has not been determined by X-ray crystallography.

It was thought that addition of FeCl₃ to A might cause: (i) trans-metalation to dinuclear Fe(II) or heterodinuclear Cu(II)/Fe(II) complexes; (ii) the formation of an ate-complex, with FeCl₂/FeCl₃ incorporated within the Cu(II) macrocycle through one or more bridging chloride ligands (see Figure 1), reminiscent of dinuclear Zn(II) macrocycles that bind chloride in the macrocyclic cleft; (iii) the formation of CuCl₂ which has been shown to catalyze the oxygenation reaction (see above).

In the +ve ion ESI-MS spectrum of a 1:1 mixture of A and FeCl₃ in MeCN, no ions corresponding to trans-metalated products are seen. Significantly however, a low-intensity ion at 980 m/z is assigned to the ate-complex [A−FeCl₃]⁺ (Figure 7) which might arise from an A/FeCl₃ complex or alternatively, as FeCl₃ is known to form [FeCl₃(MeCN)]²⁺[FeCl₄]⁻ in MeCN, the formation of an adduct between A and the [FeCl₄]⁻ anion. A further ion is seen at 853 m/z consistent with [A(Cl)]⁺ and supports the ability of the Cu(II) centers to bind chloride in the presence of FeCl₃. The base peak at 697 m/z is assigned to [KH₃L]⁺ and its observation may suggest demetalation and formation of CuCl₂.

The electronic absorption spectrum of A in MeCN shows three absorption bands at 240, 298 and 367 nm, as well as a shoulder at 400 nm (Figure 8). These are assigned to a mixture of charge-transfer and π → π* transitions and, with ε_max of 30,000 dm³ mol⁻¹ cm⁻¹ (at 240 nm), these bands would obscure the low-intensity charge-transfer bands of CuCl₂ and FeCl₃ (ε_max = 2,700 at 310 nm for CuCl₂; 8,300 at 240 nm for FeCl₃). Nonetheless, the absorption spectrum of A/FeCl₃ in MeCN is near-identical to that of A and does not support demetalation.

Figure 8. Electronic absorption spectra for CuCl₂, FeCl₃, A, and A/FeCl₃ at equimolar concentration in MeCN.

In the cyclic voltammogram (CV) A undergoes two irreversible Cu(II)/Cu(I) reduction processes at E_p = −1.40 and −1.71 V vs. Fe⁺/Fe⁺, and two irreversible Cu(II)/Cu(I) oxidation processes at E_p = +0.36 and +0.60 V (Figure S55). These step-wise redox processes indicate that electronic communication between the two metal centers occurs and is consistent with its EPR spectrum (see below). FeCl₃ undergoes irreversible Fe(III)/Fe(II) reduction at E_p = −0.56 V, and CuCl₂ undergoes reversible Cu(II)/Cu(I) oxidation at E_1/2 = +0.11 V, with the cathodic wave appearing at E_p = +0.05 V. In A/FeCl₃, a new, irreversible cathodic wave is seen in the CV, at E_p = −0.31 V, approximately midway between the cathodic waves of CuCl₂ and FeCl₃ (Figure S56). The peakheight of this new wave is directly proportional to the concentration of FeCl₃, and increases steadily on addition of FeCl₃ in portions (Figure S57). In the square-wave voltammogram of the mixture (SWV, Figure 9), it is more apparent that this new reduction process (E_p = −0.29 V), with its lower-intensity anodic wave on the return scan (E_p = −0.15 V), resembles the SWV signal of FeCl₃, albeit 166 mV more positive than for FeCl₃ measured in isolation. The presence of even trace amounts CuCl₂ would be immediately obvious in the SWV, due to the nanomolar detection limit inherent with that technique. The 166 mV anodic shift of the FeCl₃ reduction wave in the SWV is also accompanied by a 44–88 mV cathodic shift in the oxidation waves for A, and therefore lends support to the formation of a Cu(II)/Fe(II) ate-complex.

Figure 7. FT-ICR positive ion ESI-MS mass spectrum of a 1:1 solution of A and FeCl₃ in CH₃CN showing the highest molecular ion peak only (simulated spectrum below).
atom from FeCl$_3$ in the Fourier transform was modelled by including a single Cl atom 3.524 Å away from Cu (Table S6). As such, the EPR and EXAFS data indicate that A and FeCl$_3$/FeCl$_3^-$ form a weakly-associated adduct in solution rather than a formal ate-complex (Figure 1). Formation of such a hetero-metallic adduct, resulting in improved catalytic activity, is likely directed by the macrocyclic setting.

The XANES spectra at the Cu K-edge are dominated by the effective nuclear charge at Cu, and in this case are persistently Cu0. The edge position is unaffected by the inclusion of FeCl$_3$, and furthermore, the potential changes to the coordination sphere about Cu from local square-planar to pyramidal geometry due to the presence of Cl have no bearing on the pre-edge profile, with no departure from centrosymmetry. The pre-edge feature is small and like other Cu K-edge data, is observed as small bump or shoulder at the foot of the white line, yielding little information.

The EPR spectra of dinuclear CuII Pacman complexes that are structurally similar to A have been reported previously.83 The frozen MeCN/THF solution X-band EPR spectrum of A shows a signal consistent with two weakly coupled CuII ($S = 1/2$) ions (Figure S59).$^{120-121}$ The spectral profile is dominated by an axial g splitting synonymous with CuII, plus addition of the small exchange coupling gives rise to the weakly-resolved 7-line hyperfine pattern at low-field, characteristic of coupled 63,65Cu nuclei ($I = 1/2$, 100% abundant). A signature half-field signal is seen, arising from the forbidden $\Delta M_S = 2$ transition of the spin triplet ($S = 1$) formed by coupling of the two CuII ions, in agreement with the electrochemical measurements discussed above. The X-band EPR spectrum of FeCl$_3$ measured under the same conditions features a broad single signal with g = 2, commensurate with an $S = 5/2$ ferric species with intrinsically minute zero-field splitting.122 Mixing equimolar amounts of A and FeCl$_3$ produces a spectrum consistent with the sum of the two paramagnetic components. The half-field transition is still seen and is unperturbed by the presence of FeCl$_3$. Furthermore, there is no detectable indication of coupling between the CuII and FeII centers; the stronger coupling between the two CuII centers masks any interaction and dominates the spectral profile.

The Fourier transform of the EXAFS region of the Cu K-edge X-ray absorption spectrum for A measured in MeCN at 95 K (Figure 10) is well-reproduced using the crystal structure metrics (Table S5). Crystallographic Cu···N distances in the first coordination sphere are 1.903(2) and 1.919(3) Å for pyrrolide donors, and 1.987(2) and 2.073(3) Å for imine donors and compare well with the fitted EXAFS predicted Cu···N distances of 1.926, 2.016 and 2.066 Å, respectively. The Cu···Cu separation of 3.95 Å in the EXAFS is slightly longer than that determined crystallographically (3.6157(6) Å), but in close agreement with the distance previously determined by EPR in frozen solution (3.8 Å).83 Cu K-edge EXAFS recorded after addition of FeCl$_3$ to A (Figure 10) further show that the Cu ion remains complexed by the macrocycle. A prominent scattering peak evident in the Fourier transform was modelled by including a single Cl atom from FeCl$_3$/FeCl$_3^-$. The best fit places this Cl atom 3.524 Å away from Cu (Table S6).
the macrocyclic cleft. Unfortunately, no further evidence of potentially catalytically active species, especially in the presence of FeCl₃, could be gained.

Reaction mechanism, initial rates and simulation of pathways

The nature of catalytic hydrocarbon oxygenation reactions remains contentious as to whether the reaction proceeds through a reactive metal complex or freely-diffusing radicals. A number of iron-oxo complexes were once thought to carry out HAA and oxygenation of substrates (Gif chemistry), but HAA was later attributed to hydroxyl radicals, that in turn formed organic radicals (i.e. Fenton chemistry). The oxidation was shown by isotopic labelling and argon purge experiments to proceed through an auto-oxidation mechanism involving O₂.

The formation of highly reactive, freely-diffusing hydroxyl, tert-butoxyl or tert-butylperoxy radicals should lead to HAA from substrates with high C–H BDEs, such as toluene or cyclohexane. However, no reactions with these substrates were observed during this work. Furthermore, the rate of the decomposition reaction of the free tert-butoxyl radical by β-scission is rapid \(k = 2.1 \times 10^6 \text{ s}^{-1} \). Thus the formation of tert-butanol as a co-product from the reactions studied herein indicates that a tert-butoxyl radical is present, it is closely-associated with, and stabilized by, the catalyst.

Concerning the radical nature of the substrate following HAA, quantitative conversion of dihydroanthracene (DHA), is seen with high selectivity for anthraquinone (90%) over anthracene (10%). Similarly, the reaction of 9,10-dihydrophenanthrene produces phenanthraquinone in 80% yield. In a reaction mechanism that involves freely-diffusing benzyl radicals, anthracene or phenanthrene would be expected as the sole products.

Reactions catalyzed by A at 80 °C, or by A/FeCl₃ at room temperature, are unaffected by the presence of O₂, with identical yields of oxygenated xanthene products seen from reactions carried out under air or N₂. In contrast to previous studies, no homo-coupled 9,9’-bixanthene product is seen, even when the reaction is carried out under N₂. This provides further evidence that freely-diffusing organic radicals are not present, and also indicates that the hydroperoxide is responsible for oxygenation of the substrate, rather than O₂ through an auto-catalysis radical mechanism.

Assertions in the literature claim that high selectivity for peroxy-ether and ketone products is a signature for a free-radical mechanism. Whilst we have observed high selectivities for these products in our work, our other observations show that the HAA and oxygenation steps do not result from free radicals. As such, the mechanistic probe, 2-methyl-1-phenylpropan-2-yl hydroperoxide (MPPH) was used as, in this case, the alkoxyl free-radical formed following homolytic O–O bond fission in MPPH is unstable and undergoes very rapid β-scission, forming acetone and benzyl radical \(k \sim 2.2 \times 10^8 \text{ s}^{-1} \). In the case of a free-radical mechanism, the only products from a reaction involving xanthene and MPPH should therefore be acetone and those derived from benzyl free radicals. The room temperature reaction between xanthene and 1 eq of MPPH catalyzed by 0.1 mol% A/FeCl₃ (Scheme 4) results in 90% conversion of xanthene, whilst that with 2 eq of MPPH results in quantitative conversion. In line with the TBHP reactions above, the stoichiometry of MPPH influences the product distribution; use of 1 eq of MPPH gives ROH (30%), peroxy-ether (37%) and RO (33%) whereas 2 eq of MPPH gives ROH (6%), peroxy-ether (52%) and RO (42%).

Scheme 4. Reaction of xanthene with one equivalent of MPPH. Selectivities / % for xanthene oxidation products are with respect to xanthene. Selectivities / % for MPPOL and benzyl radical-derived products are with respect to MPPH.

Significantly, a resonance for the benzyl proton of 2-methyl-1-phenylpropan-2-ol (MPPOL) is seen at 2.72 ppm in the ¹H NMR spectrum, in a ratio of 4:5 with MPPH. The presence of significant amounts of MPPOL supports a metal-associated mechanism, as coordination of the alkoxide or alkoxyl radical to a metal center stabilizes the radical against β-scission. Furthermore, the presence of unreacted MPPH indicates that a metal hydroxide is also responsible for HAA, in order to account for the 90% conversion of the xanthene substrate. However, analysis of the reaction mixtures involving MPPH by GC-MS reveals that the benzyl-radical derived products benzaldehyde, benzyl alcohol and dibenzyl are also formed, albeit in low concentration (approximately 15% compared with xanthene). Overall, a predominantly metal-associated mechanism best fits with the observations above.

It is therefore apparent that the oxygenation reactions catalyzed by A/FeCl₃ feature elements of both free-radical and radical-free mechanisms. We therefore suggest that the reaction mechanism in this work involves “well-disguised”, metal-associated radical species in which the organic radical of the substrate that is formed following HAA is associated with the intermediate as a “cage-radical”.

To further elucidate the reaction pathways for the overall oxidation process, the reaction kinetics were explored in situ by ¹H NMR spectroscopy. Under the standard reaction conditions employed earlier (0.15 M xanthene, 0.30 M TBHP, 0.1 mol% A and 0.1 mol% FeCl₃), the xanthene consumption approximately fitted to a first-order integrated rate law, albeit coincidently (see below). Deuteration of xanthene at the benzyllic 9-position slows the rate of xanthene consumption marginally (Figure 11, Figure S95), indicative of a small primary kinetic isotope effect (KIE, \(V_D/V_H = 1.5 \)). Deuteration has a pronounced impact on the product distribution, with a substantial KIE estimated for the conversion of xanthyl peroxy into xanthyl / ketone (\(V_D/V_H \approx 6 \)). Deuteration at the 9-position of xanthene therefore has a more pronounced effect on the second oxidation step(s). The oxygenation reaction of \(\alpha,\alpha \)-xanthene was also monitored by ³H NMR spectroscopy (Figure S96), which confirms that tBuOD forms as a co-product. No D₂O / HDO was detected.
A qualitative tool was provided, ROH. In other words, an analysis, 200 mM, indicative of saturation in this reagent concentrations, becoming independent above approximately 1:1 ratio, which were evident of all components (xanthene, TBHP, xanthene substrate is entirely concentrated by 4 eq TBHP, catalysed by 0.1 mol% A and 0.1 mol% FeCl₃ at 300 K in d₅-MeCN, 0.1 mol% FeCl₃ at 300 K in d₅-MeCN (concentrations determined by ¹H NMR integration), Interpolation between the data-points is provided solely as an aid to the eye.

The influence of the electronic properties of the substrate on the rate of the reaction was briefly investigated using a series of xanthene substrates substituted at the 2-position, (see Figure S97). The reaction constant, ρ, is small but positive (1.2 ± 0.2), implying only marginal accumulation of electron density at the benzylic reaction center, and is consistent with both radical and radical-free mechanisms.¹³⁷,¹³⁸

In order to further explore the system, the reactant concentrations were varied from the standard conditions. However, this rapidly led to major deviations from what had appeared as approximately first-order kinetics; indeed, no simple correlations were evident. Initial rates were thus analyzed as a function of all components (xanthene, TBHP, A and FeCl₃) which were independently varied. The initial rate was found to have a linear dependency on the initial concentrations of xanthene (albeit with a small non-zero intercept), the copper catalyst (A) and the FeCl₃, suggesting first order kinetics with respect to each component (Figures S98, S100 and S101). Importantly, the initial rates become independent of copper catalyst (A) and FeCl₃ when the concentration of one pre-catalyst becomes super-stoichiometric over the other. In other words, A and FeCl₃ appear to operate cooperatively (1:1 ratio). The initial rate as a function of the TBHP concentration was approximately first order at low concentrations, becoming independent above approximately 200 mM, indicative of saturation in this reagent (Figure S99).

The temporal evolution of the xanthene oxygenation reaction, from a series of around 40 experiments in which the initial concentrations of reactants was varied, was qualitatively analyzed to identify trends and relationships between components. Three important features arose from these studies:

(i) The concentration of ROOtBu reaches a maximum value at the point that the xanthene substrate is entirely consumed. After this it is converted to ketone (RO) indicative of competition between xanthene and ROOtBu for the catalyst or a reactive intermediate.

(ii) ROH and ROOtBu form at identical rates when the initial concentrations of xanthene and TBHP are equimolar. Increasing the ratio of [TBHP] / [xanthene] results in ROOtBu being formed at a faster rate than ROH, indicating that ROOtBu and ROH arise from separate pathways or intermediates.

(iii) In cases where there is sufficient oxidant for conversion of ROH / ROOtBu to ketone (RO), the concentration of the alcohol (ROH) reaches a maximum shortly after the point where [xanthene] = [ROOtBu]. This final aspect was explored in a more quantitative way, by co-plotting temporal concentrations of xanthene, ROH and ROOtBu (see Figures S102 to S107 and Table S6).

The three features outlined above were then employed as the starting point for a series of models for reaction pathways that might account for the overall transformations. Extensive kinetic simulations were conducted to explore a very diverse series of models of increasing complexity. The failure of any of these models to provide a satisfactory global fit to the entire data-set (40 experiments) is indicative of the complex and interlinked nature of the reaction pathways. Nonetheless, the most effective model tested (outlined schematically in Scheme 5, full details provided in the SI) is able to provide a qualitative tool for prediction of temporal product distributions as a function of all initial concentrations. Consistent with the complexity of the system, and the qualitative nature of the model, some initial sets of conditions give better fits than others; two examples are given in Figure 12.

Figure 11. Monitoring oxygenation of d₂-xanthene by 4 eq TBHP, catalysed by 0.1 mol% A and 0.1 mol% FeCl₃ at 300 K in d₅-MeCN (concentrations determined by ¹H NMR integration). Interpolation between the data-points is provided solely as an aid to the eye.

Scheme 5. Schematic representation of the reaction network employed to explore the kinetics of oxidation of xanthene, catalyzed by a mixture of complex A and FeCl₃. Each step in the network involves the exogenous oxidant (TBHP). The primary catalyst initially generated from A + FeCl₃ is represented as cat A; a secondary, higher oxidation state species, generated by branching from the primary catalytic cycle is represented as cat B. Not shown in the network is an irreversible oxidative degradation of the primary catalyst and its reversible inhibition by xanthone complexation - see SI for full details.
The catalytic reaction involving A/FeCl$_3$ is limited to π-activated benzylic substrates, achieving oxygenation in high conversion for those with low to moderate C–H BDEs. Observation of oxygenated products indicates that a non-radical mechanism is operative, which is reinforced by N$_2$-purge experiments and the use of a MPPH mechanistic probe. However, the high selectivity for ketone, small KIE, and Hammett analysis indicate that the mechanism features radical elements, and the mechanism is therefore thought to be driven by metal-associated radicals.

Whilst the initial rates study that was conducted did not provide definitive insight into the reaction mechanism, a possible, albeit complex reaction network (Scheme 5) has been deduced through the analysis of qualitative trends and kinetic modelling. This is presented in its current form to illustrate the complexity of the kinetics of the reaction catalyzed by A/FeCl$_3$ and as a basis for more detailed mechanistic work in the future.

ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website at http://pubs.acs.org. Full experimental details, catalysis procedures, substrate screening data, mass spectra, UV/vis data, cyclic voltammetry, EPR data, EXAFS analysis and full kinetic data.

AUTHOR INFORMATION

Corresponding Authors
* J.B.L.: jason.love@ed.ac.uk. G.C.L.J.: guy.lloyd-jones@ed.ac.uk. S.S.: stephen.sproules@glasgow.ac.uk

Author Contributions

The manuscript was written through contributions of all authors.

Funding Sources

We thank the University of Edinburgh for the award of a Principal’s Career Development Scholarship (Ph.D. studentship to J.R.P.) and the EPSRC CRITICAT Centre for Doctoral Training (Ph.D. studentship to M.C.; Grant code: EP/L016419/1) for financial support. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no [340163]. We thank the Diamond Light Source for the data collected on beamline B18 (Rapid Access Proposal Number SP15756).

ACKNOWLEDGMENT

We also thank Dr Lorna Murray for NMR support and Dr Logan Mackay for mass spectrometry support.

REFERENCES

(7) Nesterov, D. S.; Nesterova, O. V.; Pomeireo, A. J. L. Homo- and heterometallic polynuclear transition metal catalysts for alkane CH

Table of Contents Synopsis

A dicopper Pacman complex acts as a cooperative catalyst for the oxygenation of benzylic C-H bonds by organic peroxides when activated by ferric chloride. Analytical and solution spectroscopies suggest an interaction between the dinuclear copper unit and the chloride of FeCl₃ occurs, and a full kinetic modelling of the reaction reveals a network of oxidation pathways, via the formation of metal-associated radical intermediates.