Physical Fitness Training for Patients With Stroke: An Updated Review
David H. Saunders, Carolyn A. Greig, Archie Young, and Gillian E. Mead

Stroke. 2010;41:e160-e161; originally published online January 28, 2010;
doi: 10.1161/STROKEAHA.109.570119
Stroke is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0039-2499. Online ISSN: 1524-4628

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://stroke.ahajournals.org/content/41/3/e160
Physical fitness training for patients with stroke: An updated review

David H. Saunders, BSc, MPhil, PhD; Carolyn A. Greig, BSc, MSc, PhD; Archie Young, BSc, MBChB, MD, FRCP; Gillian E. Mead, MB, BChir, FRCP, MD, MA

Physical fitness is low after stroke and this may cause or exacerbate some common poststroke problems, including disability. It is not known whether improving physical fitness after stroke reduces disability or dependency.

Objectives

The primary aims of the review were to determine whether physical fitness training (cardiorespiratory and/or strength) after stroke reduces death, dependence, and disability at the end of intervention or follow-up. The secondary aims were to determine the effects of fitness training on physical fitness, mobility, physical function, health status and quality of life, mood, and the incidence of adverse events.

Methods

Search Strategy

We searched the Cochrane Stroke Group Trials Register (last searched March 2009), the Cochrane Central Register of Controlled Trials (Cochrane Library, 2007, Issue 1), MEDLINE (1966 to March 2007), EMBASE (1980 to March 2007), CINAHL (1982 to March 2007), SPORTDiscus (1949 to March 2007), Science Citation Index Expanded (1981 to March 2007), Web of Science Proceedings (1982 to March 2007), Physiotherapy Evidence Database (March 2007), REHABDATA (1956 to March 2007), and Index to UK Theses (1970 to March 2007). We hand-searched relevant journals and conference proceedings and screened bibliographies. To identify unpublished and ongoing trials, we searched trial registers and contacted experts in the field.

Selection Criteria

Randomized controlled trials were included where the aim of the intervention was to improve either muscle strength and/or cardiopulmonary fitness and whose control groups comprised no intervention, usual care, or a nonexercise intervention.

Data Collection and Analysis

Trial eligibility and quality were determined by 2 reviewers. One reviewer extracted outcome data as end of intervention and follow-up scores or as change from baseline scores. Meta-analysis was performed using the Cochrane Review Manager software, RevMan 5, to calculate effect sizes and 95% CIs. Diverse outcome measures limited the intended analyses.

Results

We included 24 trials, involving 1147 participants, comprising cardiorespiratory (11 trials, n=692), strength (4 trials, n=158), and mixed training interventions (9 trials, n=360). Death was infrequent at the end of the intervention (one of 1147) and follow-up (8 of 627). No dependence data were reported. Few disability outcomes were suitable for meta-analysis and most study effect sizes were not significant. Fitness training did improve physical fitness but functional benefits only occurred after task-related training, in particular

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Trials (N)</th>
<th>Participants (n)</th>
<th>Mean Difference (Fixed-Effects Model)</th>
<th>95% CI</th>
<th>Significance (P Values)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum walking speed</td>
<td>8 (462)</td>
<td></td>
<td>6.47 m · min⁻¹</td>
<td>2.37–10.6</td>
<td>0.002</td>
</tr>
<tr>
<td>Comfortable walking speed</td>
<td>4 (356)</td>
<td></td>
<td>5.15 m · min⁻¹</td>
<td>2.05–8.25</td>
<td>0.001</td>
</tr>
<tr>
<td>Walking endurance</td>
<td>3 (296)</td>
<td></td>
<td>38.9 meters</td>
<td>14.3–63.5</td>
<td>0.002</td>
</tr>
<tr>
<td>Functional ambulation categories</td>
<td>4 (228)</td>
<td></td>
<td>0.72</td>
<td>0.46–0.98</td>
<td><0.00001</td>
</tr>
</tbody>
</table>

*Training interventions involved task-related (ie, walking-related) exercise presented before completion of usual rehabilitation.
walking. The only consistent effect observed within the trials was that cardiorespiratory training involving walking improved a range of walking performance measures and reduced dependence on others for walking at the end of intervention (Table). The 8 of 24 trials that included additional follow-up measures suggest that any end-of-intervention benefits did not persist after the interventions had finished. Current data include few strength training trials and lack nonexercise attention controls, long-term training, and follow-up.

Reviewer Conclusions

The effects of physical fitness training on disability, death, and dependence are unclear. There is sufficient evidence to incorporate cardiorespiratory training, involving walking, within poststroke rehabilitation to improve speed, tolerance, and independence during walking. Current data include few strength training trials and lack nonexercise attention controls, long-term training, and follow-up. Further trials are needed to optimize exercise prescription after stroke and identify how long-term benefits can be achieved through effective implementation of physical activity programs.

Note: The full text of this review should be cited as Saunders DH, Greig CA, Mead GE, Young A. Physical fitness training for stroke patients. *Cochrane Database of Systematic Reviews*. 2009, Issue 4. Art. No.: CD003316. DOI: 10.1002/14651858.CD003316.pub3.

Disclosures

G.E.M. was the principal applicant, and D.H.S., C.A.G., and A.Y. were co-authors, of the STARTER trial (Mead et al, 2007) which is an included study in this review. This trial was funded by the Chief Scientist Office of the Scottish Government Health Directorates. A.Y. is married to a director of a company which provides training for those who deliver or supervise exercise for patients, including after stroke.

Key Words: cardiorespiratory fitness, disability, exercise, muscle strength, therapy