Salmonella infections in garden birds and cats in a domestic environment

Citation for published version:

Digital Object Identifier (DOI):
10.1136/vr.c3156

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Veterinary Record

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Salmonella infections in garden birds and cats in a domestic environment

D. J. Taylor, A. W. Philbey

WILD bird strains of *Salmonella enterica* serovar Typhimurium, including phage types (definitive types) DT40 and DT56v, have been associated with disease in finches (Family Fringillidae), cats and human beings in the UK and Sweden (Tauti and Österlund 2000, Pennycott and others 2006, Hughes and others 2008, Philbey and others 2008, 2009). Salmonellosis in wild finches in the UK is related to congregation of birds around feeding tables in gardens in the cooler months of the year (Pennycott and others 2006). Cats are thought to become infected with wild bird strains of *S* Typhimurium by catching small birds at these feeding stations (Philbey and others 2008), but a direct link between salmonellosis in birds and cats has not been demonstrated. This short communication describes a study to investigate the occurrence of *Salmonella* species in wild birds, cats and the environment in a domestic setting.

The study site comprised a household and two adjoining village gardens in Lennoxtown, near Glasgow, with three human occupants and two male neutered domestic shorthair cats (cat 1: five years old; cat 2: 10 years old). Feeders containing mixed seed, niger seed, peanuts or fat were provided at two feeding sites in each of the gardens. Sick birds were observed in both gardens over an eight-week-period from late December 2008 to early February 2009 (Fig 1a). During this period, cat 1 caught 14 goldfinches (*Carduelis carduelis*) and eight siskins (*Carduelis spinus*), and later caught several greenfinches (*Carduelis chloris*) and chaffinches (*Fringilla coelebs*) (Fig 1b). Many of these birds were taken from cat 1 by cat 2 and, apart from intact birds retrieved for postmortem examination, the birds were mostly eaten indoors by either of the two cats. In the previous year, cat 1 had caught only a few small rodents.

Six uneaten or partially eaten carcases (two siskins, two chaffinches, one goldfinch and one greenfinch) were retrieved from the cats in January and February 2009 (Table 1, Fig 1c). On gross examination, all six carcases had pale yellow foci, 1 to 2 mm in diameter, in the liver and spleen (Fig 1d). Histological examination revealed that these foci were necrotising inflammatory lesions containing colonies of bacteria (Fig 1e). Samples of tissue from these birds, along with tissue from one wood mouse (*Apodemus sylvaticus*), were submitted for postmortem examination, the birds were mostly eaten indoors by either of the two cats. In the previous year, cat 1 had caught only a few small rodents.

FIG 1: (a) Sick siskin (*Carduelis spinus*) on a niger seed feeder at feeding site 1. (b) Cat 1 with a goldfinch (*Carduelis carduelis*) inside the house. (c) Goldfinch 1 that had been caught by cat 1; cat 2: 10 years old). Feeders containing mixed seed, niger seed, peanuts or fat were provided at two feeding sites in each of the gardens. Sick birds were observed in both gardens over an eight-week-period from late December 2008 to early February 2009 (Fig 1a). During this period, cat 1 caught 14 goldfinches (*Carduelis carduelis*) and eight siskins (*Carduelis spinus*), and later caught several greenfinches (*Carduelis chloris*) and chaffinches (*Fringilla coelebs*) (Fig 1b). Many of these birds were taken from cat 1 by cat 2 and, apart from intact birds retrieved for postmortem examination, the birds were mostly eaten indoors by either of the two cats. In the previous year, cat 1 had caught only a few small rodents. Six uneaten or partially eaten carcases (two siskins, two chaffinches, one goldfinch and one greenfinch) were retrieved from the cats in January and February 2009 (Table 1, Fig 1c). On gross examination, all six carcases had pale yellow foci, 1 to 2 mm in diameter, in the liver and spleen (Fig 1d). Histological examination revealed that these foci were necrotising inflammatory lesions containing colonies of bacteria (Fig 1e). Samples of tissue from these birds, along with tissue from one wood mouse (*Apodemus sylvaticus*) caught by one cat, were submitted for *Salmonella* species isolation. Faecal samples were collected from each cat on two occasions, along with 22 swabs from various sites in the gardens and the household, from January to March 2009, and also cultured for *Salmonella* species isolation.

Tissues, faecal samples and swabs from the environment were inoculated into tetrahydroionate broth and incubated overnight at 37°C aerobically, then subcultured on to *Salmonella* Shigella agar and desoxycholate agar (Oxoid). Bacterial colonies typical of *Salmonella* species were subcultured and identified by slide agglutination and biochemical testing (API 20 E; bioMérieux) as *Salmonella* species. The serovar and phage type of the isolates were determined at the Scottish *Salmonella* Reference Laboratory.

S Typhimurium phage type DT40 was recovered from the liver, spleen, intestine or partially eaten viscera of the six bird carcases submitted for postmortem examination, from one faecal sample from each cat, from the sample of mouse viscera and from the ground under the four bird-feeding stations in the main garden, as well as the ground under two feeding stations in the neighbouring garden (Table 1). However, samples from the bird feeders, the contents of a vacuum cleaner in the house, the sewerage drain of the house, and...
the house remained clinically healthy. On February 3, 2009, the two cats and all three human occupants of feeding stations were negative for Salmonella species (Jones and Twigg 1976), the infection of the field birds during the winter months. Although wild rodents can harbour Salmonella Typhimurium DT40 by catching and eating garden birds, and that both cats and the garden environment are a potential source of infection for human beings. These findings confirm that cats can be infected with Salmonella Typhimurium DT40 by catching and eating garden birds, and that both cats and the garden environment are a potential source of infection for human beings.

References

Salmonella infections in garden birds and cats in a domestic environment

D. J. Taylor and A. W. Philbey

Veterinary Record 2010 167: 26-27
doi: 10.1136/vr.c3156

Updated information and services can be found at:
http://veterinaryrecord.bmj.com/content/167/1/26.full.html

These include:

References
This article cites 7 articles, 4 of which can be accessed free at:
http://veterinaryrecord.bmj.com/content/167/1/26.full.html#ref-list-1

Article cited in:
http://veterinaryrecord.bmj.com/content/167/1/26.full.html#related-urls

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/