Neurobiology of Disease

Disruption of TrkB-Mediated Phospholipase Cγ Signaling Inhibits Limbic Epileptogenesis

Xiao Ping He,1 Enhui Pan,1 Carla Sciarretta,1 Liliana Minichiello,1,4,5 and James O. McNamara1,2,3

Department of Medicine (Neurology),1 Neurobiology,1 and Pharmacology and Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, European Molecular Biology Laboratory, Mouse Biology Unit, 00015 Monterotondo, Italy, and Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom

The BDNF receptor, TrkB, is critical to limbic epileptogenesis, but the responsible downstream signaling pathways are unknown. We hypothesized that TrkB-dependent activation of phospholipase Cγ1 (PLCγ1) signaling is the key pathway and tested this in trkBPLC/PLC mice carrying a mutation (Y816F) that uncouples TrkB from PLCγ1. Biochemical measures revealed activation of both TrkB and PLCγ1 in hippocampi in the pilocarpine and kindling models in wild-type mice. PLCγ1 activation was decreased in hippocampi isolated from trkBPLC/PLC compared with control mice. Epileptogenesis assessed by development of kindling was inhibited in trkBPLC/PLC compared with control mice. Long-term potentiation of the mossy fiber-CA3 pyramid synapse was impaired in slices of trkBPLC/PLC mice. We conclude that TrkB-dependent activation of PLCγ1 signaling is an important molecular mechanism of limbic epileptogenesis. Elucidating signaling pathways activated by a cell membrane receptor in animal models of CNS disorders promises to reveal novel targets for specific and effective therapeuti...

Pilocarpine-induced status epilepticus. A single intraperitoneal (i.p.) injection of pilocarpine, a muscarinic cholinergic agonist, was administered to induce status epilepticus (SE). To minimize peripheral cholinergic effects, male and female C57BL/6 mice of age 2–3 months were treated with N-methyl-scopolamine nitrate (1 mg/kg, i.p.) (Sigma). Fifteen minutes later, either pilocarpine (375 mg/kg, Sigma) or vehicle (normal saline) was injected i.p. and mice were observed for the appearance of seizure activity and onset of SE for the next 3–4 h. Seizures were classified according to Racine (1972) with slight modifications (Borges et al., 2003). Status epilepticus was defined as occasional or frequent myoclonic jerks, partial-or whole-body clonus, shivering, loss of posture, and/or rearing and falling that was not interrupted by periods of normal behavior. After 3 h of continuous seizure activity, diazepam (10 mg/kg, i.p.) (Hospira) was administered to terminate SE. Pilocarpine-treated animals that failed to exhibit SE or did not survive SE were excluded from the study. Unless specified otherwise, both pilocarpine- and saline-treated mice were decapitated 6 h after the onset of SE for biochemical and immunohistochemical experiments.

To ascertain that pilocarpine-induced status epilepticus assessed by behavioral measures was associated with hippocampal electrographic seizure, a pilot experiment was performed in which a bipolar recording electrode was placed in the right dorsal hippocampus using stereotaxic guidance (2.0 mm posterior and 1.6 mm lateral to bregma and 1.5 mm below dura) under pentobarbital anesthesia. One week thereafter, animals were given N-methyl-scopolamine and pilocarpine as described in the preceding paragraph; 3 h after onset, status epilepticus was terminated by diazepam. EEG recordings revealed electrographic seizure activity in hippocampus in all animals (3+/+ , 2 trkBwt/wt, and 3 trkBplc/plc), the duration of which corresponded to the duration of status epilepticus assessed by behavioral measures (data not shown). Behavioral measures alone were used to assess status epilepticus for the remainder of the experiments with the pilocarpine model.

Surgery and kindling. Twelve +/+ , 12 trkBwt/wt, and 10 trkbpplc/plc mice were included in the kindling experiment. Procedures for surgery and kindling were described as previously (He et al., 2002, 2004) by an individual blinded to genotype of the animals. Briefly, under pentobarbital anesthesia (60 mg/kg) (Ovation) anesthesia, a bipolar electrode used for stimulation and recording was stereotaxically implanted in the right amygdala. Animals were postoperatively treated twice daily, 5 d per week as described previously (He et al., 2002, 2004; Danzer et al., 2010). Briefly, under pentobarbital anesthesia (200 mg/kg), mice were perfused with 4% paraformaldehyde in PBS and the brains were removed, postfixed and cryoprotected. Forty micrometer coronal sections were cut and used for immunofluorescent staining. After 1 h incubation with blocking solution (5% NGS, 0.5% NP40 in PBS buffer with 1 mM NaOAc, y816 antibody was applied to floating sections overnight at 4°C. Alexa Fluor 594 goat anti-rabbit secondary antibody (Invitrogen) was used to visualize the immunofluorescent staining. The sections from experimental and control animals of different genotypes were processed simultaneously in the same incubation plates using the identical solutions and protocols so that valid comparisons could be made. Images were captured and quantified using a Leica TCS SL confocal system. Immunoreactivity over the corpus callosum was sampled in each section as internal control because of its low immunoreactivity. In addition values were collected from a square of fixed size overlaying CA1 stratum oriens, CA1 stratum lucidum–moleculare, and CA3a stratum lucidum (supplemental Fig. 1B, available at www.jneurosci.org as supplemental material), the period of time postinjection in which the highest density of seizures was observed. The specificity of y816 antibody for TrkB y816 was verified by the reductions of immunoreactivity in stratum lucidum of trkbplc/plc compared with control mice (supplemental Fig. 1A, available at www.jneurosci.org as supplemental material). All results from experimental mice and their controls were analyzed by Student’s t test.

Hippocampal slice preparation and electrophysiology. Mice (postnatal day 28–42) were anesthetized with pentobarbital and decapitated. The brain was quickly removed and placed in ice-cold buffer containing the following (in mM): 110 sucrose, 60 NaCl, 3 KCl, 1.25 NaH2PO4, 28 NaHCO3, 0.5 CaCl2, 7.0 MgCl2, and 5 dextrose, saturated with 95% O2 plus 5% CO2, pH 7.4. Following dissection of hippocampi, transverse slices (400 μm in thickness) were cut with a vibratome and incubated in oxygenated artificial CSF (ACSF) containing the following (in mM): 124 NaCl, 1.75 KCl, 1.25 KGlu, 26 NaHCO3, 2.4 CaCl2, 1.3 MgCl2, and 10 dextrose for at least 1 h at 32–34°C before recording. The slices were then transferred to a recording chamber mounted on Zeiss Axioskop upright microscope.

The following criteria were applied to be considered a mossy fiber excitatory postsynaptic field potentials (EPSPS): (1) the ratio for paired pulse facilitation (PPF) at 60 ms interval was 1.75 or greater; (2) frequency facilitation at 20 Hz was 2.0 or greater as determined by the ratio of the amplitude of the response to the third pulse compared with the first pulse (Toth et al., 2000); and (3) application of the Group II metabotropic glutamate receptor (mGLuR) H agonist 2-(2,3-

Biochemistry. Following decapitation, the mouse head was quickly dipped into liquid nitrogen for 4 s to rapidly cool the brain. The hippocampi were rapidly dissected on ice and homogenized in lysis buffer (20 mM Tris, pH 8.0, 137 mM NaCl, 1% NP40, 10% glycerol, 1 mM sodium orthovanadate (NaOv), 1 mM phenylmethylsulfonylfluoride (PMSF), and 1 Complete Mini protease inhibitor tablet (Mini, Roche)/10 ml). The supernatant was saved following centrifugation at 16,000 × g for 10 min, aliquoted and stored at −80°C for further biochemical analysis.

In experiments studying a synaptosomal membrane fraction, hippocampi were homogenized in an isotonic sucrose buffer (0.32 m sucrose, 4 mM HEPES, 1 mM NaOv, 1 mM PMSF, and 1 Mini tablet/10 ml, pH 7.4), centrifuged at 325 × g for 10 min at 4°C, and the supernatant was collected and centrifuged at 16,000 × g for 15 min to provide a crude synaptosomal pellet. Crude synaptosomes underwent osmotic shock by addition of ice-cold deionized H2O and rapidly returned to osmotic balance with 1 m HEPES pH 7.4; following centrifugation at 16,000 × g for 30 min, the pellet consisting of an enriched synaptosomal membrane fraction was collected. BCA kit (Thermo Scientific) was used to determine the protein concentration.

Western blotting was performed to analyze phosphorylated and nonphosphorylated TrkB and PLCγ1 using procedures as described previously (He et al., 2004; Huang et al., 2008). The following antibodies were used in these experiments: p-Trk (Y816) (a gift from Dr. Moses Chao, New York University, New York, NY); p-PLCγ1 (Y783) (Biosource); TrkB (BD Biosciences); PLCγ1 (Cell Signaling Technology); β-actin (Sigma). The results from Western blotting were quantified by a method described previously (Huang et al., 2008). Briefly, the immunoreactivity of individual band on Western blots was measured by ImageQuant software and normalized to TrkB or β-actin content; similar results were obtained with the two methods. Student’s t test and one-way ANOVA were used for statistical analyses. Results are presented as mean ± SEM for the designated number of experiments.

Immunohistochemistry. P-TrkB immunohistochemistry was performed using the protocol described previously (Danzer and McNamara, 2004; Danzer et al., 2010). Briefly, under pentobarbital anesthesia (200 mg/kg), mice were perfused with 4% paraformaldehyde in PBS and the brains were removed, postfixed and cryoprotected. Forty micrometer coronal sections were cut and used for immunofluorescent staining. After 1 h incubation with blocking solution (5% NGS, 0.5% NP40 in PBS buffer with 1 mM NaOAc, y816 antibody was applied to floating sections overnight at 4°C. Alexa Fluor 594 goat anti-rabbit secondary antibody (Invitrogen) was used to visualize the immunofluorescent staining. The sections from experimental and control animals of different genotypes were processed simultaneously in the same incubation plates using the identical solutions and protocols so that valid comparisons could be made. Images were captured and quantified using a Leica TCS SL confocal system. Immunoreactivity over the corpus callosum was sampled in each section as internal control because of its low immunoreactivity. In addition values were collected from a square of fixed size overlaying CA1 stratum oriens, CA1 stratum lacunosum–moleculare, and CA3a stratum lucidum (supplemental Fig. 1B, available at www.jneurosci.org as supplemental material), the period of time postinjection in which the highest density of seizures was observed. The specificity of y816 antibody for TrkB y816 was verified by the reductions of immunoreactivity in stratum lucidum of trkbplc/plc compared with control mice (supplemental Fig. 1A, available at www.jneurosci.org as supplemental material). All results from experimental mice and their controls were analyzed by Student’s t test.
3-dicarboxycyclopropyl) glycine (DCG-IV) 1 μM at the end of the experiment reduced the amplitude of the evoked fEPSP by at least 70%. Addition of picROTOXIN, which blocks feedforward inhibition of CA3 pyramids evoked by mossy fiber activation of interneurons in stratum lucidum, did not modify the latency, amplitude, or waveform of the mossy fiber (mf)-CA3 pyramid fEPSP. The mossy fiber-CA3 pyramid fEPSPs were induced by a bipolar tungsten stimulating electrode placed at the junction of the granule cell layer and hilus near the midpoint of the suprapyramidal blade of the dentate. Extracellular recordings were obtained with a glass micropipette filled with 2 mM NaCl, 2–6 M NaCl, and 2–6 M NaCl. A stimulus intensity of 0.03 Hz) with a Digitimer constant current stimulator (DS3. Digitimer Ltd.). A stimulus intensity sufficient to induce a fEPSP amplitude approximating 30% of the maximum amplitude was used for these experiments. D, L-APV (100 μM) was included in perfusion solution to eliminate contamination of associational-commisural afferents (Zalutsky and Nicoll, 1990). LTP was induced by applying a total of 4 trains of high-frequency stimulation (HFS) (each train consisting of 0.2 ms pulses at 100 Hz for 1 s and intensity sufficient to induce maximum fEPSP amplitude and intertrain interval of 10 s). To assure objectivity, the individual performing all experiments with wild-type and mutant mice was blinded as to genotype.

For the LTP experiment, the amplitude of fEPSPs was measured and LTP was plotted as mean percentage change in the fEPSP amplitude 50–60 min after HFS relative to the 10 min of fEPSP amplitude immediately preceding the HFS. The numbers listed in the figure legends and text refer to the number of animals. Results are typically obtained and averaged from at least two slices from each animal and the average value is presented as a single value for each animal. Data were collected from slices at room temperature using a Multi 700A amplifier and pClamp 9.2 software (Molecular Devices). The synaptic responses were filtered at 2 kHz and digitized at 5 kHz. All data were presented as mean ± SEM and analyzed by Student’s t test with Excel (Microsoft) and Prism (GraphPad Software) software.

Results

Biochemical study of TrkB and PLCγ1 signaling during limbic epileptogenesis

Induction of continuous seizure activity for a couple h by systemically administered pilocarpine is followed by emergence of spontaneous recurrent seizures arising weeks thereafter, thereby recapitulating some features of temporal lobe epilepsy (TLE) in humans (Lemos and Cavalheiro, 1995; Klintgaard et al., 2002). To test whether TrkB and PLCγ1 underwent activation in the pilocarpine model, Western blots were prepared from hippocampal homogenates isolated from wild-type (+/+) mice 6 h following the onset of status epilepticus induced by injection of pilocarpine. Status epilepticus was associated with increased tyrosine phosphorylation of TrkB as evidenced by increased immunoreactivity of a 145 kDa band detected by an antibody specific to pY816 Trk (Fig. 1a, top). Note that the increased size of the pY816 Trk band in the status epilepticus treatment (Fig. 1a, top) compared with vehicle is similar to that observed by Iwakura et al. (2008), (see Fig. 4) upon BDNF treatment of heterologous cells expressing TrkB using the same antibody; the increased size of the band likely reflects TrkB molecules phosphorylated to different extents resulting in small differences of migration within the SDS gel. No significant increase of TrkB content was detected (Fig. 1a, top). Quantitative analysis of Western blot of pY816 TrkB and TrkB in hippocampal homogenate isolated 6 h after onset of status epilepticus. Bottom, Quantitative analysis of Western blot of pY816 TrkB at multiple times (30 min, 3 h, 6 h, 12 h, 24 h and 1 week) after onset of pilo-induced status epilepticus. The fold increase of pY816 Trk relative to TrkB in 6 h group is significantly higher than in NS controls (p < 0.001). Western blots were quantified and presented as mean ± SEM of fold increase of pY816 relative to TrkB in pilo mice (n = 4 for each time point) compared with NS controls (n = 4). Note that different groups of animals were studied at 6 h after pilo in bottom panel compared with top panel. b, Top, Representative Western blot of pY783 PLCγ1 and PLCγ1 in hippocampal homogenate isolated 6 h after onset of status epilepticus. Bottom, Quantitative analysis of Western blot of pY783 relative to PLCγ1 immunoreactivity at multiple times after onset of pilo-induced status epilepticus. The fold increases of pY783 PLCγ1 relative to PLCγ1 in 6 h (p < 0.01) and 12 h (p < 0.001) groups are significantly higher than in NS controls. Data are presented as mean ± SEM of fold increase of pY783 relative to PLCγ1 in pilo mice (n = 4 for each time point) compared with NS controls (n = 4). Note that different groups of animals were studied at 6 h after pilo in the bottom panel compared with the top panel.

Figure 1. Figure 1. TrkB-PLCγ1 signaling is increased in the pilocarpine (pilo) model. a, Top, Representative Western blot of pY816 TrkB and TrkB in hippocampal homogenate isolated 6 h after onset of status epilepticus. Bottom, Quantitative analysis of Western blot of pY816 TrkB at multiple times (30 min, 3 h, 6 h, 12 h, 24 h and 1 week) after onset of pilo-induced status epilepticus. The fold increase of pY816 TrkB relative to TrkB in 6 h group is significantly higher than in NS controls (p < 0.001). Western blots were quantified and presented as mean ± SEM of fold increase of pY816 relative to TrkB in pilo mice (n = 4 for each time point) compared with NS controls (n = 4). Note that different groups of animals were studied at 6 h after pilo in bottom panel compared with top panel.
compared with unstimulated controls (C) (Fig. 2). Immunoreactivity (Fig. 2) stimulation. The kindled seizure also resulted in increased pY816 relative to TrkB in mice 6 h following a class 4/5 kindled seizure evoked by amygdala kindling. Western blots were pre-
dated by increased pY783 PLC1 immunoreactivity, a kindled seizure also induced increased ty-
zonine phosphorylation of PLC1 immunoreactivity following status epilepticus was a consequence of TrkB activation. We first examined pY816 Trk immunoreactivity in synaptic membranes isolated from trkBWT/WT and trkBPLC/PLC mice isolated 6 h following status epilepticus. Consistent with findings in Figure 1, status epilepticus was associated with increased pY816 Trk immunoreactivity in hippocampal synaptic membranes isolated from trkBWT/WT mice (Fig. 3, top). Quantification of pY816 immunoreactivity revealed a 1.6-fold increase in trkBWT/WT animals killed 6 h after status epilepticus (Fig. 3a, bottom, n = 3, p < 0.001). Analysis of pY816 immunoreactivity in trkBPLC/PLC following treatment with normal saline revealed a 40% reduction compared with trkBWT/WT animals (Fig. 3a, n = 3, p < 0.05), demonstrating that phosphorylation of pY816 of TrkB itself contributes to pY816 immunoreactivity measured under basal conditions. Likewise following status epilepticus, the pY816 immunoreactivity in trkBWT/WT exceeded that in trkBPLC/PLC mice by 1.7-fold (Fig. 3a, n = 3, p < 0.001), demonstrating that the increased pY816 immunoreactivity following status epilepticus is due mainly to phosphorylation of TrkB. A small increase of pY816 immunoreactivity of 145 kDa band was evident following status epilepticus in trkBPLC/PLC mice (Fig. 3a, n = 3, p < 0.05), suggesting the possibility that status epilepticus may also result in increased pY816 immunoreactivity of TrkC.

Next we asked whether the status epilepticus-induced activation of PLC1 was dependent upon TrkB activation, again probing Western blots of hippocampal synaptic membranes isolated from trkBWT/WT and trkBPLC/PLC with an antibody specific to pY816 PLC1. Increased pY783 PLC1 immunoreactivity was evident following status epilepticus in trkBWT/WT mice (Fig. 3b, top). Quantification of the pY783 immunoreactivity revealed a 2.0-fold increase in trkBWT/WT animals killed 6 h after status epilepticus (Fig. 3b, bottom, n = 3, p = 0.051). Analysis of pY783 PLC1 immunoreactivity in trkBPLC/PLC following treatment with normal saline revealed a 38% reduction compared with trkBWT/WT animals which was not statistically significant (Fig. 3b, n = 3, p > 0.05). Following status epilepticus, pY783 PLC1 immunoreactivity in trkBWT/WT exceeded that in trkBPLC/PLC mice by 1.9-fold (Fig. 3b, n = 3, p < 0.05), demonstrating that the status epilepticus-induced increase of pY783 PLC1 is due predominantly to TrkB activation. The small absolute increase of pY816 PLC1 immunoreactivity in trkBPLC/PLC mice following p3 to PLC1 at 6 and 12 h respectively are significantly higher in the p3-treated group compared with NS controls (6 h vs NS, p < 0.01; 12 h vs NS, p < 0.001, one-way ANOVA).

To test whether TrkB and PLCγ signaling were activated in a distinct model of limbic epileptogenesis, Western blots were prepared from hippocampal homogenates isolated from wild-type mice 6 h following a class 4/5 kindled seizure evoked by amygdala stimulation. The kindled seizure also resulted in increased pY816 Trk immunoreactivity (Fig. 2a). No significant increase of TrkB content was detected (Fig. 2a). Quantitative analyses of Western blots revealed a 1.8-fold increase of pY816 relative to TrkB in mice killed 6 h after a class 4/5 kindled seizure (K) (n = 4) compared with unstimulated controls (C) (n = 3) (p < 0.05), Student's t test. Consistent with this increase of pY816 Trk immunoreactivity, a kindled seizure also induced increased tyrosine phosphorylation of PLC1 itself 6 h afterward as evidenced by increased pY816 PLC1 immunoreactivity (Fig. 2b).

No change in content of PLC1 itself was detected (Fig. 2b). The 1.9-fold increase of pY783 relative to PLC1 in K (n = 4) compared with C (n = 3) was significant (p < 0.05), Student's t test.

The correlation of increased pY816 Trk and pY783 PLC1 immunoreactivity at 6 h after seizures in two distinct models of limbic epilepsy together with similarity of time course in the
or trkBWT/WWT (11.1 ± 1.0, p = 0.001). By contrast, no significant difference was evident in the electrographic seizure duration during kindling development among 3 genotypes. Likewise no significant differences were detected in the current required to evoke an initial electrographic seizure duration in the three groups (+/+ 150.0 ± 27.3 μA; trkBWT/WWT 172.7 ± 24.5 μA; trkBPLC/PLC 128 ± 14.1 μA; p > 0.05). Together, these results demonstrate that selectively limiting activation of PLCγ signaling by TrkB markedly inhibits epileptogenesis in the kindling model.

Immunohistochemical localization of pY816 Trk Immunoreactivity in limbic epileptogenesis

The pivotal role of TrkB-dependent PLCγ1 signaling in epileptogenesis in the kindling model raised the question as to potential cellular consequences of the enhanced activation of TrkB and PLCγ1 that might contribute to epileptogenesis. Insight into the anatomic locale of the enhanced TrkB activation would provide a valuable clue as to the nature and locale of potential cellular mechanisms. Our previous results provided immunohistochemical evidence that TrkB receptors undergo increased phosphorylation during epileptogenesis in a spatially specific pattern in the hippocampus, that is, increased p-Trk (pY515) was evident in the mossy fiber pathway in multiple models (Binder et al., 1999; He et al., 2002). That said, the anatomic locale of enhanced pY816 Trk immunoreactivity detected by Western blotting in the pilocarpine and kindling models is unknown. To address this question, we performed pY816 immunohistochemistry in these models.

The immunohistochemical pattern in sections prepared from WT mice killed 6 h after onset of status epilepticus revealed increased pY816 Trk immunoreactivity in the stratum lucidum of CA3a bilaterally (only one hippocampus shown) in all brain sections examined (Fig. 5a, top); no overt changes of p-Trk immunoreactivity were noted elsewhere in the hippocampus. Quantification revealed a 1.7-fold increase of pY816 immunoreactivity in CA3a stratum lucidum in pilocarpine (n = 6) compared with normal saline (n = 5)-treated animals (p < 0.05) (Fig. 5a, bottom). By contrast, no significant changes were detected in stratum oriens or lacunosum-moleculare of CA1. Like the pilocarpine model, increased pY816 Trk immunoreactivity was detected in the mossy fiber pathway of hippocampus bilaterally of animals killed 6 h after the last class 4/5 seizure evoked by amygdala stimulation in the kindling model compared with sham-stimulated controls (Fig. 5b, top). Quantification revealed 2.6-fold increase of pY816 immunoreactivity in CA3a stratum lucidum in pilocarpine (n = 6) compared with control group (n = 3) (p < 0.05) (Fig. 5b, bottom). By contrast, no significant changes were detected in stratum oriens or lacunosum-moleculare of CA1.

Inhibition of LTP of mossy fiber-CA3 pyramid synapse in trkBPLC/PLC mice

The anatomic localization of the increased pY816 Trk immunoreactivity to the mossy fiber pathway directed study of potential cellular consequences of TrkB activation to this locale. One consequence of TrkB activation in this locale that might promote limbic epileptogenesis is development of LTP of the excitatory synapse of mf axons of dentate granule cells with CA3 pyramidal cells. Our previous work demonstrated that inhibiting TrkB kinase activity eliminated LTP of this synapse induced by HFS of the dentate granule cells (Huang et al., 2008). To determine whether TrkB signaling through PLCγ in particular is required for LTP of this synapse, the effects of HFS of the mf on the efficacy of LTD of CA3 pyramidal cell somata were examined.

Figure 4. Top, Kindling development is inhibited in trkBPLC/PLC mutants. Kindling development is presented as behavioral seizure class (y-axis). Stimulation number (x-axis) refers to the number of stimulations that evoked an electrographic seizure with duration of at least 5 s. Bottom, number of stimulations required to reach different seizure classes in wild-type (+/+ (n = 12), trkBWT/WT (n = 12), and trkBWT/WT (n = 10). Fully kindled stage is defined by the occurrence of three consecutive seizures of class 4 or 5. For the number reaching first class 1 or 2, +/+ versus trkBPLC/PLC, p < 0.01; trkBWT/WT versus trkBPLC/PLC, p < 0.01. For the number reaching fully kindled stage, +/+ versus trkBPLC/PLC, p < 0.01; trkBWT/WT versus trkBPLC/PLC, p < 0.01. For the number reaching fully kindled stage, +/+ versus trkBPLC/PLC, p < 0.01; trkBWT/WT versus trkBPLC/PLC, p < 0.01. All data are presented as mean ± SEM; one-way ANOVA with post hoc Bonferroni’s test.
of this synapse were compared in trkB^{PLC/PLC} and control mice. Significant (p < 0.01) impairments of HFS-induced LTP of the mf-CA3 pyramid synapse were detected in slices isolated from trkB^{PLC/PLC} (115 ± 3%, n = 7) compared with WT (155 ± 9%, n = 8) or trkB^{WT/WT} (148 ± 4%, n = 7) control mice (Fig. 6). Importantly, no differences in basal synaptic transmission were detected between trkB^{PLC/PLC} and control mice as evident in part by similar ratios of paired pulse facilitation of the fEPSP in the three groups (PPF: +/-, 2.56 ± 0.5, n = 5; trkB^{PLC/PLC}, 1.83 ± 0.3, n = 5, p > 0.05, t test and trkB^{WT/WT} 1.95 ± 0.3, n = 5, p > 0.05, t test). Moreover, the impairment of mf-LTP was specific to the PLCγ1 signaling pathway because no differences in LTP of the mf-CA3 pyramid synapse were detected in trkB^{SHC/SHC} compared with WT control mice (+/-, 144 ± 7%, n = 6; trkB^{SHC/SHC}, 145 ± 7%, n = 5, p > 0.05, t test). Together, these data demonstrate that TrkB-dependent signaling through the PLCγ1 but not the Shc pathway is required for LTP of the mf-CA3 pyramid synapse.

Discussion

We hypothesized that the neurotrophin receptor, TrkB, promotes limbic epileptogenesis by activation of the PLCγ1 signaling pathway. We used biochemical, immunohistochemical, and electrophysiological studies of trkB^{WT/WT} and trkB^{PLC/PLC} mice to test this hypothesis. Four principal findings emerged. (1) Time-dependent increases of both pY816 Trk and pY783 PLCγ1 immunoreactivity were detected in hippocampi of WT mice in the pilocarpine and kindling models. The enhanced pY783 PLCγ1 immunoreactivity in the pilocarpine model was decreased in hippocampi isolated from trkB^{PLC/PLC} mice. (2) Limbic epileptogenesis as measured by development of kindling was markedly inhibited in trkB^{PLC/PLC} mice. (3) The enhanced pY816 Trk immunoreactivity in WT mice was selectively localized to the mossy fiber pathway within hippocampus in these models. (4) LTP of the mossy fiber-CA3 pyramid synapse was impaired in slices of trkB^{PLC/PLC} mice. We conclude that activation of pY783 PLCγ1 is due mainly to TrkB activity in these models and that TrkB-induced PLCγ1 signaling promotes limbic epileptogenesis.

The spatial and temporal patterns of TrkB activation are notable. While the precise identity of the endogenous ligand(s) promoting TrkB activation in these models is uncertain, the prototypic agonist of TrkB, BDNF, is a leading candidate. Yet persistence of increased pY515 TrkB following seizures in BDNF conditional knock-out mice (He et al., 2004) led to the discovery that the divalent cation, zinc, can transactivate TrkB by a BDNF independent mechanism in vitro (Huang et al., 2008). The localization of increased pY816 TrkB immunoreactivity exclusively to stratum lucidum is puzzling because both BDNF and zinc are thought to reside in synaptic vesicles of axons of CA3 and CA1 pyramids and to be released during hippocampal seizures; this should result in increased pY816 TrkB in strata oriens and radiatum of CA3 and CA1 yet no increase of pY816 was found in these regions (Fig. 5). The localization of increased pY816 TrkB immunoreactivity to stratum lucidum correlates with the highest concentrations of BDNF protein and vesicular zinc within hippocampus and forebrain (Yan et al., 1997; Cole TB et al., 1999; Frederickson et al., 2005). Thus low concentrations of BDNF and zinc together with limited sensitivity of the immunohistochemical method likely contribute to our inability to find increases in hippocampal regions apart from stratum lucidum. We suspect that similar factors contribute to an additional unexpected result, namely the absence of increased pY816 TrkB immunoreactivity in Western blots 30 min or 3 h following onset of status epilepticus (Fig. 1). The lack of increase at 30 min and 3 h is unexpected for several reasons: (1) both endogenous BDNF and zinc are released in an activity-dependent fashion (Balkowiec and Katz, 2002; Qian and Noebels, 2005; Matsumoto et al., 2008); (2) the synchronous, high-frequency firing of populations of hippocampal neurons (Labine et al., 1993; Alexander et al., 2009) almost certainly triggers synaptic release of both BDNF and zinc during the seizures; (3) application of either BDNF or zinc to cultured neurons triggers striking activation of TrkB within 5–15 min (Huang et al.,...
of the mf-CA3 pyramid synapse were detected in 9%, were detected in slices isolated from mice establishes a causal role for TrkB-dependent PLC
tipation (Korte et al., 1995; Patterson et al., 1996; Huang et al., 2008; mice or with zinc chelators provide functional evidence of TrkB
Figure 6. Mf-CA3 LTP is impaired in trkBPLC mutants. Hippocampal slices were isolated from wild-type or mutant mice and mf-evoked EFSs were recorded. Graphs represent mean ± SEM of the responses evoked compared with baseline. Traces of representative experiments are shown above each graph. Top, HFS-induced mf LTP is impaired in trkBPLC mutant mice. Significant ($p < 0.01$) impairments of HFS-induced LTP of the mf-CA3 pyramid synapse were detected in slices isolated from trkBPLC (115 ± 3%, $n = 7$) compared with WT (155 ± 9%, $n = 8$) or trkBWT (148 ± 4%, $n = 7$) control mice. Slices isolated from trkBWT mice exhibited increases of EFS (148 ± 4%, $n = 7$) similar to wild-type animals (+/+) (155 ± 9%, $n = 8$). Scale bar, 0.25 mV, 25 ms. Bottom, By contrast, no differences in HFS-induced LTP of the mf-CA3 pyramid synapse were detected in trkBSHC/SHC compared with WT control mice (+/+, 144 ± 7%, $n = 6$; trkBSHC/SHC, 145 ± 7%, $n = 5$, $p > 0.05$, Student’s t-test). Scale bar, 0.5 mV, 25 ms.

2008); (4) impairments of LTP in slices from BDNF knock-out mice or with zinc chelators provide functional evidence of TrkB activation as early as 15 min following high-frequency stimulation (Korte et al., 1995; Patterson et al., 1996; Huang et al., 2008; Matsumoto et al., 2008). Collectively, this suggests that TrkB is activated at 30 min and 3 h following onset of status epilepticus yet escapes detection. Perhaps higher concentrations of BDNF mediated by seizure-evoked increases of transcription and translation result in a greater and more readily detectable activation of TrkB at later time points, a suggestion consistent with increased BDNF mRNA and protein 3–7 h after onset of hippocampal seizures (Ernfors et al., 1991; Isackson et al., 1991; Nawa et al., 1995; Yan et al., 1997). If BDNF activates TrkB at these later time points in WT animals, then compensatory increases of other neurotrophins (e.g., NT-3) and/or zinc may mediate the late increases of TrkB activation detected in conditional BDNF knock-out mice (He et al., 2004). That said, the latency of several hours between seizure onset and detectable increases of TrkB activation may provide a therapeutic window within which to intervene with an inhibitor to limit progressive severity of epilepsy.

The marked inhibition of development of kindling of trkBPLC mice establishes a causal role for TrkB-dependent PLC signaling in limbic epileptogenesis in vivo. Given the enormous diversity of cell surface receptors presumably undergoing activation during an event as complex as a seizure (McNamara et al., 2006), the activation of PLC signaling almost exclusively by TrkB (Fig. 3) is remarkable. Also remarkable is the striking specificity of signaling pathways downstream of TrkB with respect to the phenotype of epileptogenesis. That is, increases of both pY515 and pY816 immunoreactivity in diverse models of limbic epileptogenesis (Binder et al., 1999; He et al., 2004) suggest that TrkB activates both Shc and PLC signaling. Yet in contrast to the marked inhibition of development of kindling in trkBPLC mice, no differences in development of kindling were detected between WT and trkBSHC/SHC mice (He et al., 2002). Although inhibition of kindling is marked in trkBPLC mice, the magnitude of inhibition was less than reported previously with conditional trkB-nulls in which trkB was recombined from CNS neurons by crossing synapsin-cre with floxed trkB mice (He et al., 2004). Notably, the mutation of the trkBPLC is in the germline whereas the onset of trkB recombination is delayed until late in embryonic development in the synapsin-cre trkBFLOX/FLOX, perhaps perturbing TrkB signaling earlier in the life of the trkBPLC mice compared with the conditional null mutants facilitates emergence of a compensatory mechanism that promotes epileptogenesis. The residual immunoreactivity detected by the pY186 TrkB antibody migrating at ~145 kDa in SDS-PAGE (Fig. 3) of hippocampal of trkBPLC mice likely represents p-TrkC; if so, this might be a compensatory mechanism promoting epileptogenesis. Alternatively, perhaps TrkB-mediated activation of the Shc pathway promotes epileptogenesis in the absence but not presence of TrkB-mediated activation of PLC signaling.

The inhibition of epileptogenesis in the trkBPLC mice provides clues to cellular mechanisms by which enhanced activation of TrkB promotes limbic epileptogenesis. Both ex vivo and in vivo studies of animal models suggest that LTP of excitatory synapses between principal cells contributes to limbic epileptogenesis (Sutula and Steward, 1987); potentiation of these synapses may facilitate propagation of seizure activity through synaptically coupled neuronal populations in the limbic system and beyond. Evidence that the mf-CA3 pyramid synapse undergoes LTP in vivo emerged in the kainic acid model of limbic epilepsy (Goussakov et al., 2000). The requirement for TrkB-dependent PLC signaling for LTP of this synapse together with evidence of increased pY816 immunoreactivity in the mf pathway in sections ex vivo from these models suggests that TrkB-mediated activation of PLC signaling in vivo may contribute to LTP of this synapse during epileptogenesis. The fact that LTP of these synapses remains intact in the trkBSHC/SHC mice is consistent with findings at the Schaffer collateral-CA1 synapse (Minichelli et al., 2002; Minichelli, 2009) and correlates with similar rates of kindling development in trkBSHC/SHC and control mice (He et al., 2002).

Notably, enhanced excitability in models of epilepsy is often accompanied and likely caused by both enhanced function of excitatory synapses and impaired function of inhibitory synapses. Might enhanced activation of PLC signaling by TrkB somehow compromise inhibitory function and thereby contribute to the increased excitability of limbic epilepsy? One interesting possibility is that enhanced TrkB-dependent activation of PLC signaling reduces expression of the K-Cl cotransporter, KCC2, resulting in accumulation of $[\text{Cl}^{-}]_{i}$ and a shift of E_{GABA} in a depolarizing direction (Rivera et al., 2004). Collectively, study of human epileptic tissue (Cohen et al., 2002; Huberfeld et al., 2007) buttressed by study of diverse in vivo and in vitro models (Rivera et al., 2002, 2004; Woo et al., 2002; Pathak et al., 2007; Li et al., 2008; Blesse et al., 2009) advance reduced expression of KCC2 and resulting accumulation of $[\text{Cl}^{-}]_{i}$, as an important molecular
and cellular mechanism contributing to limbic epilepsy. Interestingly, in vitro studies reveal that TrkB-mediated activation of PLCγ signaling can suppress KCC2 expression (Rivera et al., 2002, 2004). Whether TrkB-mediated activation of PLCγ signaling promotes reductions of KCC2 expression described in the kindling and pilocarpine models (Rivera et al., 2002; Li et al., 2008) in vivo is unclear.

Our work elucidates a single signaling pathway activated by a single receptor contributing to limbic epileptogenesis in vivo, namely TrkB-mediated activation of PLCγ. Whereas a pharmacological approach would be expected to inhibit PLCγ activated by diverse membrane receptors, only PLCγ activated by TrkB is inhibited in the trkBPLC mutants. That epileptogenesis is inhibited in trkBPLC but not trkBHISC/HIC mice (He et al., 2002) implies that anti-epileptogenic therapies need not necessarily target TrkB itself, thereby circumventing potential unwanted consequences of global inhibition of TrkB. Novel downstream targets suggested by the present findings include PLCγ itself or uncoupling TrkB from PLCγ. Dissecting signaling pathways directly coupled to a single cell membrane receptor in vivo in models of CNS disorders may elucidate novel targets for specific and effective therapeutic implementation.

References

Murray KD, Isackson PJ, Eskin TA, King MA, Montesinos SP, Abraham LA, Roper SN (2000) Altered mRNA expression for brain-derived neurotrophic factor transgenic mice exhibit passive avoidance deficits, in-

