Non-Nuclear WldS Determines Its Neuroprotective Efficacy for Axons and Synapses In Vivo

Citation for published version:

Digital Object Identifier (DOI):
10.1523/JNEUROSCI.3814-08.2009

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
The Journal of Neuroscience

Publisher Rights Statement:
Copyright © 2009 Society for Neuroscience

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Non-Nuclear WldS Determines Its Neuroprotective Efficacy for Axons and Synapses In Vivo

Bogdan Beirowski, Elisabetta Babetto, Jon Gilley, Francesca Mazzola, Laura Conforti, Lucie Janeckova, Giulio Magni, Richard R. Ribchester and Michael P. Coleman

1Laboratory of Molecular Signalling, The Babraham Institute, Cambridge CB22 3AT, United Kingdom, 2Institute of Biochemical Biotechnologies, University of Ancona, Via Ranieri, 60131 Ancona, Italy, and 3Centre for Neuroscience Research, University of Edinburgh, Edinburgh EH8 9JZ, United Kingdom

Axon degeneration contributes widely to neurodegenerative disease but its regulation is poorly understood. The Wallerian degeneration slow (WldS) protein protects axons dose-dependently in many circumstances but is paradoxically abundant in nuclei. To test the hypothesis that WldS acts within nuclei in vivo, we redistributed it from nucleus to cytoplasm in transgenic mice. Surprisingly, instead of weakening the phenotype as expected, extranuclear WldS significantly enhanced structural and functional preservation of transected distal axons and their synapses. In contrast to native WldS mutants, distal axon stumps remained continuous and ultrastructurally intact up to 7 weeks after injury and motor nerve terminals were robustly preserved even in older mice, remaining functional for 6 d. Moreover, we detect extranuclear WldS for the first time in vivo, and higher axoplasmic levels in transgenic mice with WldS redistribution. Cytoplasmic WldS fractionated predominantly with mitochondria and microsomes. We conclude that WldS can act in one or more non-nuclear compartments to protect axons and synapses, and that molecular changes can enhance its therapeutic potential.

Key words: axon degeneration; Wallerian degeneration; neurodegeneration; slow Wallerian degeneration gene; neuroprotection; neuromuscular junction

Introduction

Axon degeneration occurs in many neurodegenerative diseases and often precedes neuronal cell body death (Raff et al., 2002; Coleman, 2005; Saxena and Caroni, 2007). Wallerian degeneration, a classical experimental model for axon degeneration, is a rapid sequence of events in distal axons after a period of separation from the cell body (Waller, 1850; Beirowski et al., 2005). It is substantially delayed by the WldS gene in mice (Mack et al., 2001), rats (Adalbert et al., 2005), and Drosophila (Hoopfer et al., 2006; MacDonald et al., 2006). WldS is an in-frame fusion protein arising from an 85-kb tandem triplication that does not alter expression of the two parent proteins (Coleman et al., 1998; Conforti et al., 2000b; Mack et al., 2001). It comprises the N-terminal 70 aa of multubiquitination factor Ube4b (N70-Ube4b), the complete sequence of Nmnat1, a key enzyme of nicotinamide adenine dinucleotide (NAD⁺) biosynthesis, and a short joining sequence of 18 aa with no known function.

The WldS gene delays axon degeneration in mouse models of several neurodegenerative disorders, suggesting a molecular similarity between processes regulating Wallerian degeneration and degeneration in some axonopathies (Coleman, 2005; Beirowski et al., 2009). This further indicates the need to dissect the molecular mechanisms of WldS.

Previous studies addressing which WldS domains are responsible for neuroprotection illustrate the importance of in vivo experiments. Whereas NAD⁺ overproduction by heavily overexpressed Nmnat isoforms confers axon protection in neuronal explant cultures and, to some extent, in Drosophila (Araki et al., 2004; Wang et al., 2005; MacDonald et al., 2006; Sasaki et al., 2006), overexpression of Nmnat1 in transgenic mice at levels similar to WldS provides no detectable axon protection (Conforti et al., 2007). Thus, WldS and NAD⁺ overproduction by Nmnat1 are not interchangeable, and the full axoprotective effect in vitro and in vivo requires more N-terminal sequences of WldS.

A key question about the WldS mechanism surrounds the subcellular site of its action (Fainzilber and Twiss, 2006). In vivo studies have consistently detected WldS only in the nucleus (Mack et al., 2001; Samsam et al., 2003; Sajadi et al., 2004; Wilbrey et al., 2008), suggesting that WldS confers its axonal effect indirectly by putative nuclear mechanisms (Araki et al., 2004; Gillingwater et al., 2006; Simonin et al., 2007a). However, the complete absence of WldS in other cellular compartments could not be proven experimentally owing to detection limits and there are precedents for proteins acting in a subcellular compartment where they are barely detectable (Hamilton et al., 2001). Interestingly, some indirect, in vitro evidence suggests bioenergetic or other axonal roles for WldS and its putative mediators (Wang et al., 2005; Yang et al., 2007b) compatible with cytoplasmic and axonal WldS presence.

Received Aug. 11, 2008; revised Nov. 8, 2008; accepted Dec. 4, 2008.

This work was supported by the Biotechnology and Biological Sciences Research Council and the German Federal Ministry of Education and Research (BMBF-LPD 9901/8-128). R.R.R. held a Royal Society of Edinburgh/Scottish Executive Support Research Fellowship during the conduct of this study. We are grateful to the staff of the Babraham Institute animal facilities for excellent technical assistance with mouse breeding and to Dr. Simon Walker (Babraham Institute) for assistance with confocal microscopy.

Correspondence should be addressed to Dr. Michael P. Coleman, Laboratory of Molecular Signalling, The Babraham Institute, Babraham Research Campus, Babraham, Cambridge CB22 3AT, U.K. E-mail: michael.coleman@bbsrc.ac.uk

DOI: 10.1523/JNEUROSCI.3814-08.2009

Copyright © 2009 Society for Neuroscience 0270-6474/09/290653-16$15.00/0
To elucidate the subcellular locus of Wld\(^5\) action in vivo, we generated transgenic mouse lines with reduced nuclear targeting and cytoplasmic redistribution of Wld\(^5\). These mice showed surprisingly strong protection of axons and synapses suggesting cytoplasmic Wld\(^5\) protected them more effectively for equivalent expression levels. We also show Wld\(^5\) exists at low concentrations in extranuclear compartments, and higher concentrations in the \(\Delta\text{NLS}\) Wld\(^5\) variant, consistent with a direct axonal role for Wld\(^5\).

Materials and Methods

In vitro/in vivo expression of Wld\(^5\) variants

To reduce Wld\(^5\) nuclear targeting, arginines 213 and 215 were mutated to alanine using the Stratagene QuickChange Site-Directed Mutagenesis Kit and the Wld\(^5\) transgene construct (Mack et al., 2001) as template. The two primers used were exactly reverse complementary, the forward primer having the following sequence (R\(\rightarrow\)A encoding mutations underlined): 5' - GAAGCATGCAAAGCCCTGCGCAGGGACGAAGTCGGGCTGATCAAGA3'.

The sequence contained in pBluescript CK+ (Stratagene) was verified and subcloned into pHB- Apr1 containing \(\beta\)-actin promoter (Mack et al., 2001) or into pcDNA3 vector (Invitrogen). For in vitro expression of variant Wld\(^5\) EGFP fusion proteins, the \(\Delta\text{NLS}\) R213A/R215A Wld\(^5\) cDNA was amplified by high-fidelity PCR from the above construct using \(Bam\)HI- and \(Hind\)III-tagged primers and subcloned in-frame to the EGFP sequence into pEGFP-N1 vector (BD Bioscience).

For generation of \(\Delta\text{NLS}\) Wld\(^5\) transgenic mice, the \(\Delta\text{NLS}\) R213A/R215A Wld\(^5\) cDNA including \(\beta\)-actin promoter from above pHB- Apr1 vector was linearized using EcoRI and Ndel restriction enzymes and pronuclear injection of the fragment into an F1 C57BL/CA strain was performed by the in-house Gene Targeting Facility of the Babraham Institute. Eleven founder mice for the \(\Delta\text{NLS}\) Wld\(^5\) strain and their transgene-positive offspring were identified by Southern blotting of \(Bam\)HI plus \(Hind\)III double-digested genomic tail DNA hybridized with a \(32\)P-labeled Wld\(^5\) cDNA probe and by PCR using appropriate primers. Founders with medium to high copy number integrations were selected for further study (to generate transgenic lines 1–8) and crossed to homozygous YFP-H mice (The Jackson Laboratory) to breed mice hemizygous for the \(\Delta\text{NLS}\) R213A/R215A Wld\(^5\) and YFP transgene. Subsequently, these mice were intercrossed to obtain mice homozygous for the \(\Delta\text{NLS}\) R213A/R215A Wld\(^5\) and positive for the YFP transgene. Mice positive for the YFP transgene were identified by Southern blotting using a \(32\)P-labeled YFP cDNA probe. Furthermore, we used double heterozygous native Wld\(^5\)/YFP-H mice, triple heterozygous tg-Wld\(^5\)/Wld\(^5\)/YFP-H mice, homozygous natural Wld\(^5\) mice, and homozygous Wld\(^5\) transgenic rats from line 79 (Adalbert et al., 2005) for this study. Triple heterozygous tg-Wld\(^5\)/Wld\(^5\)/YFP-H mice express levels of Wld\(^5\) protein similar to those of homozygous natural mutant Wld\(^5\) mice and display a similarly retarded time course of axon degeneration (Beirousski et al., 2005).

Cell culture

Culture and transfection of PC12 and HeLa cells using Lipofectamine 2000 (Invitrogen) was performed as described previously (Wilbrey et al., 2008). Dissociated hippocampal and DRG neuron cultures were prepared from embryonic day 14.5 (E14.5)–E16.5 mouse embryos and transfected using Lipofectamine LT with PLUS reagent (Invitrogen) as described previously (Conforti et al., 2007; Wilbrey et al., 2008). Cells were plated on 35 mm Petri dishes (Whitfield et al., 2004). Approximately 10,000 dissociated neurons were plated in a 1 cm\(^2\) area of a laminin-coated 35 mm Petri dish (\(\mu\)-Dish, ibidi) and maintained under the same conditions as above.

Biochemical assessment of variant Wld\(^5\) protein levels

Brains, lumbar spinal cord, and sciatic nerve segments were homogenized in RIPA buffer and prepared for Western blotting as previously described (Mack et al., 2001; Conforti et al., 2007).

Subcellular fractionation was as previously published with modifications (Spencer et al., 2000; Okado-Matsumoto and Fridovich, 2001; Liu et al., 2004; Fang et al., 2005). In initial experiments for generation of crude nuclear, cytoplasmic, and cytosolic fractions (see Fig. 2A) mouse brains were snap-frozen by immersion in liquid nitrogen and stored on dry ice. The nuclear transcription factor SP1 and \(\beta\)-actin served as nuclear and cytoplasmic markers respectively and as loading controls for these respective fractions (Sau et al., 2007).

Each brain was homogenized using a Teflon-glass pestle (no. B15541, Thomas; 10 strokes, 700 rpm) at 1:5 (w/v) ratio in ice-cold homogenization buffer containing 10 mM HEPES, 6 mM MgCl\(_2\), 1 mM EDTA, 10% sucrose, pH 7.2, and protease inhibitor cocktail (Roche Diagnostics). Unbroken cells and connective tissue were removed by filtration using a cell strainer (40 \(\mu\)m nylon, BD Falcon). Homogenized brain tissue was centrifuged at 2000 \(\times\)g for 5 min. Further centrifugation of the resulting pellet A and supernatant B at different speeds yielded the following fractions.

Nuclear fraction

The pellet A was washed repeatedly and finally resuspended in 0.25 ml of homogenization buffer containing additionally 0.5 M NaCl. The suspension was then incubated for 1 h in an ice bath with frequent vortexing. After incubation the suspension was centrifuged at 8000 \(\times\)g for 10 min, and the final supernatant was regarded as nuclear fraction.

Cytosolic fraction

The supernatant B was centrifuged at 8000 \(\times\)g, and the final supernatant was used as cytoplasmic fraction.

Cytosolic fraction

The supernatant B was centrifuged at 100,000 \(\times\)g for 30 min, and the final supernatant was regarded as cytosolic fraction.

In follow-up subcellular fractionation experiments for generation of enriched mitochondrial and microsomal preparations (see Fig. 9A), mouse and rat brains were homogenized as described above in buffer containing 50 mM Tris, 6 mM MgCl\(_2\), 1 mM EDTA, 10% sucrose, pH 7.2, and protease inhibitor cocktail (Roche Diagnostics). After 5 min of centrifugation at 2000 \(\times\)g, the resulting pellet C and supernatant D were used for generation of the following fractions.

Nuclear and postnuclear fraction

The pellet C was resuspended in homogenization buffer plus 0.5 M NaCl for 1 h on ice and the suspension centrifuged at 8000 \(\times\)g for 10 min. The resulting pellet was again resuspended in homogenization buffer and used as nuclear fraction. The supernatant D was centrifuged at 8000 \(\times\)g for 10 min to obtain the postnuclear fraction (supernatant).

Cytosolic fraction and mitochondria-enriched fraction

The postnuclear fraction was centrifuged at 21,000 \(\times\)g for 20 min to obtain mitochondria-enriched pellet and cytoplasmic fraction (supernatant). The mitochondria-enriched pellet was washed in homogenization buffer and resuspended in buffer containing 150 mM NaCl, 50 mM Tris/HCl, and 10% SDS, pH 8.0. This final suspension was regarded as mitochondria-enriched fraction.

Microsomal-enriched and cytosolic fraction

The cytoplasmic fraction was centrifuged at 135,000 \(\times\)g for 1 h to obtain the microsome-enriched fraction (pellet) and cytosolic fraction (supernatant). The microsome-enriched pellet was processed in the same way as the mitochondria-enriched pellet to obtain the final microsome-enriched fraction.
All described centrifugation steps were performed at 4°C using a Sanyo MSE Harrier 18/80 and Beckman MAX Ultracentrifuge. Subcellular fractions were stored at −80°C and subsequently used for Western blot analysis.

For Western blotting SDS-PAGE and standard wet protein transfer (Blot-Rad) to PVDF membranes were performed as previously described with modifications (Mack et al., 2004; Conforti et al., 2007). Variant WldS was detected using rabbit polyclonal antiserum Wld18 (1:2000, Santa Cruz Biotechnology, MAB052); and mouse monoclonal anti-histones H1 (1:500, Chemicon International, MAB052); and mouse monoclonal anti-COXIV (1:5000, Abcam, ab14744).

For quantification, integrated optical density (OD) of bands from three blots per experimental group was determined by NIH ImageJ software, normalized to the loading controls and expressed as a percentage of reference WldS expression level.

Nmnat enzyme activities from sagittally divided half mouse brains were determined as described previously (Conforti et al., 2007).

Assessment of axon preservation

All experiments were performed in accordance with the Animals (Scientific Procedures) Act, 1986, under Project License PPL 80/1778. Mice were anesthetized by intraperitoneal injection of ketanest (5 mg/kg; Parke Davis) and Rompun (100 mg/kg; Baywer). Right sciatic nerves were transected or crushed close to the “foramen intrapiriforme” with contralateral side as control. A 5 mm segment was removed to prevent regeneration from complicating analysis of degeneration at longer lesion durations (14–49 d). The lesion site was also inspected upon nerve removal to be sure the proximal and distal stumps had been fully separated and remained separate. After 6 h (for crush experiments) and 3, 5, 14, 21, 28, 35, and 49 d (for transaction experiments), the mice were humanely killed and sciatic/tibial nerve segments were dissected.

We tested the structural preservation of axons in the sciatic and tibial nerve following unilateral sciatic nerve transaction by confocal microscopy of a YFP-labeled axonal subset (longitudinal imaging) and by light/electron microscopy using highly established methods for evaluation of axon integrity (Mack et al., 2004; Conforti et al., 2007). For analysis of axonal preservation in YFP-labeled nerves, ~1.5-cm-long nerve stumps containing the sciatic and tibial nerve segments were dissected from humanely killed mice following sciatic nerve transaction, processed as previously described (Conforti et al., 2004, 2005), and mounted on conventional glass slides in Vectashield mounting medium for subsequent analysis on a Zeiss LSM 510 Meta Confocal system. Confoical z-stack series from both longitudinally embedded sciatic and tibial nerve were taken using a 20X magnification objective, and z-projections were electronically generated for final presentation. Criteria for survival were unfragmented YFP-positive fibers in the analyzed segment.

For semilight microscopy and electron microscopy, sciatic and tibial nerve segments were fixed for at least 3 d in 0.1 M phosphate buffer containing 4% paraformaldehyde and 2.5% glutaraldehyde, embedded in Durcupan resin (Fluka), and processed as described previously (Conforti et al., 2007). Morphological criteria for intact axons were normal myelin sheaths, uniform axoplasm, and intact mitochondria. The percentage of surviving axons in nerve segments was calculated in relation to unlesioned preparations.

Electrophysiology and vital labeling of neuromuscular junctions

Mice were killed by cervical dislocation. Previous section of the sciatic nerve was verified by reexposing the wound in the thigh. Tibial nerve–FDB preparations were dissected and pinned to a Sylgard-lined dish and bathed in oxygenated mammalian physiological saline (137 mM Na⁺, 4 mM K⁺, 2 mM Ca²⁺, 1 mM Mg²⁺, 147 mM Cl⁻, 5 mM glucose, and 5 mM HEPES, pH 7.2–7.4, equilibrated with 100% oxygen). The nerve was stimulated using a suction electrode connected to a Powerlab 4/20T and stimulated using 50–200 μs pulses, 0.1–1 mA intensity at 1–20 Hz. Muscle contractions were recorded as short (10–35 s) movies through a Wild M5A dissecting microscope using a Nikon Coolpix 4500 digital camera fitted with an ocular adapter. The three distal tendons of FDB were then tied together using Ethicon 7/0 suture and connected to a Grass force transducer and the Powerlab bridge amplifier. Twitch contractions to single stimuli delivered at 1–5 Hz and fused contractions evoked by 20 Hz stimulation were recorded using Chart v4.1.1 and Scope v3.6.8 software on an Apple Macintosh Powerbook computer. The preparation was then dismounted from the force transducer and a pair of fine electromyographic recording needles, insulated to within 0.2 mm of their tips with a coating of nail varnish, was inserted into the belly of the FDB muscle. The bathing solution was earthed (grounded) using an Ag/AgCl wire and all three electrodes were connected to the Bioamp input of the Powerlab unit. Stimuli to the tibial nerve were delivered either from the Powerlab using parameters indicated above, or using a A-M Systems 210 isolated pulse stimulator with variable 1–10 V pulses, 200 μs in duration and at frequencies of 1–40 Hz. EMG signals were low-pass (2 kHz), high-pass (10 Hz), 50 Hz notch, and mains filtered and averaged using Scope software. In some cases, a simpler preparation was used for EMG recording. Isolated hindlimbs were stripped of their skin and pinned to a Sylgard-lined dish in oxygenated mammalian saline as above. The tibial nerve was dissected free from the ankle, the foot was amputated at the tibia, and EMG needles were inserted immediately into the FDB/interosseous muscles. The tibial nerve was stimulated with a square wave pulse and the EMG response recorded and averaged using the Powerlab Scope software. Sample records were extracted from the Chart and Scope raw data files and pasted into Powerpoint.

For morphological quantification of functionally preserved neuromuscular junctions (NMJs) in tibial nerve–FDB preparations recycled synaptic vesicles of motor nerve terminals were stained using AM1-43 (Nerve Terminal Staining Kit II, Biotium) with 20 Hz nerve stimulation. AM1-43 is a fixable form of styryl dye FM1-43, widely used for vital labeling of NMJs, where it indicates functional synaptic transmission (Betz et al., 1992; Barry and Ribchester, 1995; Mack et al., 2001). Unspecific background fluorescence of AM1-43 was quenched with ADVASEP-7 (Kay et al., 1999). Acetylcholine receptors were subsequently stained with tetramethylrhodamine isothiocyanate conjugates of α-bungarotoxin (TRITC-α-BTX; Biotium). FDB muscles were fixed in 0.1 M PBS containing 4% paraformaldehyde for 30 min, cleaned of connective tissue and mounted on conventional glass slides in Vectashield mounting medium for analysis. For quantification of endplate occupancy following sciatic nerve lesion occupied and vacant bungarotoxin-labeled NMJs in the three subcompartments of the FDB muscle were counted using an IX81 Olympus fluorescence microscope. Fifty to one hundred endplates were assessed per FDB preparation and compared with the contralateral unlesioned preparation from each mouse.

Immunocytochemistry and immunohistochemistry

For conventional indirect immunofluorescence detection of WldS variant expression in primary and secondary cell culture, cells were fixed in 4% paraformaldehyde (PFA) 48 h after transfection, permeabilized with 1% Triton X-100 for 10 min, blocked [5% NGS (Sigma) in PBS, 1 h], and immunostained using rabbit polyclonal Wld18 antibody (1:500) and secondary Alexa658 goat-anti-rabbit antibody (1:200) diluted in 5% NGS/PBS. Nuclear counterstaining was performed with DAPI and cells were mounted in Vectashield (Vector Laboratories).

For immunofluorescence detection of variant WldS protein on brain, lumbar spinal cord, DRG, and sciatic nerve obtained from perfusion fixed mice, 20 μm cryostat sections on poly-L-lysine-coated glass slides (VWR SuperFrost Plus) were incubated overnight in citrate buffer, pH 6.0, at 50°C or for 45 min in 0.05% citric acid anhydride solution, pH 7.4, at 98°C (Namaatsu et al., 2005) and subsequently permeabilized with 0.1% Triton X-100 plus 0.05 M NH₄Cl in 0.05 M PBS for 10 min. The sections were then rinsed in fresh TBS, immunoblocked with 5% bovine serum albumin (Sigma) in TBS for 1 h, and incubated overnight at 4°C in primary antibody solution (Wld18 antibody, 1:500 in 0.8% bovine serum
onto poly-L-lysine-coated slides. Sections were incubated at 98°C with monoclonal anti-LAMP-2 (1:10, ABL-93, gift from Aviva Tolkovsky, 1:500, Sigma, clone 52, N0142); mouse monoclonal anti-COXIV (1:100, blocking buffer) for 1 h. The tyramide-fluorophore conjugate solution HRP-coupled goat anti-rabbit secondary antibody (1:100 in 1% TSA blocking buffer (Molecular Probes, Invitrogen) for 1 h, and primary antibody with 3% hydrogen peroxide in PBS for 1 h, cells were treated with 1% TSA blocking buffer (Molecular Probes, Invitrogen) for 1 h, and primary antibody Wld18 (1:500 in 1% TSA blocking buffer) was applied overnight at 4°C. Cells were extensively washed in PBS and incubated with HRP-coupled goat anti-rabbit secondary antibody (1:100 in 1% TSA blocking buffer) for 1 h. The tyramide-fluorophore conjugate solution was applied for 10 min according to the manufacturers instructions. Cells were extensively washed and conventionally counterstained with the following primary antibodies: mouse monoclonal anti-anti-neural filament 200 (1:500, Sigma, clone 52, N0142); mouse monoclonal anti-COXIV (1:100, Abcam, ab147444); mouse monoclonal anti-KDEL (1:100, MAC 256, gift from Geoff Buccher, Babraham Institute, Cambridge, UK); mouse monoclonal anti-LAMP-2 (1:10, ABL-93, gift from Aviva Tolkovsky, University of Cambridge, Cambridge, UK). Secondary Alexa488-goat anti-mouse (1:200) antibodies were applied, and cells were washed in PBS and diH2O and mounted in Vectashield mounting medium.

For high-sensitivity detection of variant Wld3 on cryostat sections of peripheral and central nerves, ~5 mm sciatic and optic nerve sections were dissected and postfixed for 2 h in 4% PFA in 0.1 M PBS. After extensive PBS washes, the nerves were incubated overnight in 20% sucrose, embedded in OCT embedding medium (Shandon), and frozen in a ~80°C freezer. Serial 20 μm cryostat sections were cut and mounted onto poly-l-lysine-coated slides. Sections were incubated at 98°C with 0.05% citraconic anhydride solution, pH 7.4, for 45 min and permeabilized with 0.5 M NH4Cl + 0.25% Triton X-100 in 0.1 M PBS, and low-abundance Wld3 protein was detected using HRP-catalyzed tyramide-fluorophore conjugate deposition as described above. In some experiments, the sections were counterstained with Hoechst 33258 and finally mounted in Vectashield mounting medium.

For nonfluorescence immunohistochemical detection of Wld3 variants, frozen sections were pretreated by incubating overnight at 50°C in citrate buffer, pH 6.0, for antigen retrieval. The Vectastain Elite ABC Kit (PK-6100, Vector Laboratories) was applied according to the manufacturer’s instructions, and the peroxidase reaction was visualized with 3,3′-diaminobenzidine (DAB) plus nickel enhancement (ABC method). The WldS18 primary antibody was used at a dilution of 1:500. DAB-labeled sections were counterstained with nuclear fast red (Vector Laboratories).

Nonfluorescent immunohistochemically stained tissue sections were imaged with a Leitz DM RB microscope coupled to a Leica DC camera system and Leica DC Tview Software.

Confocal imaging and fluorescence intensity quantification
Immunostained tissue sections and vital dye-labeled muscle preparations were imaged on a Zeiss LSM 510 Meta Confocal system, and z-series were merged using algorithms from Zeiss LSM Software Release 3.2. Colocalization analysis used Multi-track configuration mode to avoid cross talk between individual fluorophores and bleed-through. Object based colocalization analysis was performed by assessment of overlap between linear fluorescence intensity profiles in individual focal planes.

Nuclear variant Wld3 expression in lumbar spinal cord motoneurons was measured in the ventral horn (10 motoneurons per mouse). Confocal z-series stacks of Hoechst 33258-labeled entire nuclear profiles were recorded and mean variant Wld3 fluorescence intensities were measured on each single optical section using algorithms from Zeiss LSM Software Release 3.2. The measured mean intensities were normalized to reference signal derived from endothelial nuclear profiles without variant Wld3 expression from the same section (nuclei of endothelial cells).

Statistical analysis
Data are presented as mean ± SD. One-way ANOVA was used for group comparisons and statistical significance or high significance was considered if p < 0.05 or p < 0.005, respectively.

Results
Two point mutations redistribute Wld3 from nucleus to cytoplasm in vitro
To reduce targeting of full-length Wld3 protein from nuclei we introduced two point mutations (R213A, R215A) within the NLS of the Nmnat1 domain. We confirmed nuclear Wld3 reduction by transiently transfecting primary hippocampal and dorsal root ganglion (DRG) cultures and HeLa and PC12 cells. Immunofluorescence with Wld18 antibody, directed against the unique linker region in Wld3 (Samsam et al., 2003), showed almost complete exclusion from nuclei in HeLa and PC12 cells and substantially reduced nuclear targeting in primary culture (Fig. 1A and data not shown). Thus, the previously identified Nmnat1 NLS (Sasaki et al., 2006) is also the main determinant of nuclear localization of full-length Wld3 protein. We additionally identified a weak predicted NLS (PSORTII and NucPred predictions) within the N-terminal 16 aa of Wld3 but chose not to mutate this region because its influence on Wld3 biochemistry (Laser et al., 2006) could affect phenotype in other ways.

Interestingly, in neurons we detected a strong signal in neuritic trees, especially prominent in neurites >500 μm (Fig. 1A and data not shown). This suggests that the ANLS Wld3 molecule either diffuses or is transported into neurites in vitro. Neuritic immunosignal was not observed in cells expressing native Wld3 using this method.

Generation of transgenic mice overexpressing ΔNLS Wld3
After testing in vitro we coupled the ΔNLSR213AR215A Wld3 cDNA to a β-actin promoter, a system that consistently confers a Wld3 phenotype in mice and rats using native Wld3 (Mack et al., 2001; Adalbert et al., 2005). Lines were established from seven of the eight founders (lines 1–6, 8) by breeding to YFP-H mice (Feng et al., 2000) for convenient assay of axon degeneration (Beировski et al., 2004). Line 3, 6, and 8 hemizygoites showed very similar total brain expression levels to that of Wld3 in heterozygous Wld3 mice, whereas variant Wld3 levels were higher in lines 2 and 5 (Fig. 1B). Lumbar spinal cord levels were lower relative to Wld3 heterozygotes in lines 3, 6, and 8. This difference between brain and spinal cord may reflect the increased presence of variant Wld3 in the axon (see below), most of which lies outside the spinal cord. As expected, breeding to homozgyosity elevated ΔNLS Wld3 protein expression in brain approximately twofold (data not shown). Variant Wld3 was not detectable in Western blots from lines 1 and 4, even in homozgyous mice, probably reflecting insertion silencing. Enzyme assays showed increased Nmnat activity in brains of highly expressing lines broadly in line with these protein concentrations (Fig. 1C), also confirming that mutation of the NLS did not impair NAD+ synthesis efficacy, which is critical for the neuroprotective phenotype (Araki et al., 2004) (L. Conforti, A. Wilbrey, G. Morreale, L. Janecka, B. Beировski, R. Adalbert, F. Mazzola, M. Di Stefano, R. Hartley, E. Babetto, T. Smith, J. Gilley, R. Billington, A. Genazzani, R. Ribchester, G. Magni, and M. Coleman, unpublished work).
NLS mutation reduces nuclear targeting of WldS in vivo

To assess subcellular redistribution of the ΔNLS WldS protein in vivo, we performed Western blots of nuclear, cytoplasmic, and cytosolic fractions (Fig. 2A). Nuclear targeting was reduced by >90% in brain tissue in all expressing lines relative to native WldS (Fig. 2A), although curiously cytoplasmic levels were consistently increased only in transgenic line 5. This could reflect the enormous dilution upon redistribution from nucleus to the much larger cytoplasmic compartment, especially in projection neurons. We were surprised to find significant quantities of native WldS in cytoplasm, but this may have been missed previously due to the use of paraffin-embedded sections, sometimes a less specific antibody (Mack et al., 2001), and Western blotting of just one brain region (cortex) (Fang et al., 2005). In accordance with earlier results (Fang et al., 2005), however, we did not detect WldS in cytosol.

Immunofluorescence of brain and lumbar spinal cord frozen sections also showed strongly reduced nuclear targeting (Fig. 2B). In some cortical and cerebellar neurons, confocal imaging showed only very faint nuclear WldS staining (Fig. 2B, rows 1–4). Faint signals in motor neuron nuclei (Fig. 2B, rows 5–7) were highly significantly reduced in multiple lines relative to spontaneous WldS mice (Fig. 2C). Reflecting variant WldS redistribution, a faint outline of individual cell bodies was readily visible in homozygotes of lines 2 and 3 (Fig. 2B, row 6, arrows). Similar redistribution with reductions in nuclear targeting was seen in DRG neurons (supplemental Fig. 1, available at www.jneurosci.org as supplemental material).

Using 3,3'-diaminobenzidine immunostaining on frozen sections, we found clear WldS cytoplasmic signals in ΔNLS WldS spinal cord motorneurons with distinct labeling of proximal neuronal processes (Fig. 2B, row 7, asterisks) was not 4 blots from brain and lumbar spinal cord crude extracts probed with Wld18 antibody and β-actin loading control. Bottom, Intensities of individual variant WldS protein Western blot bands from brain were densitometrically quantified and normalized to β-actin loading control (N = 3 mice for each group tested).

Thus, ΔNLS WldS transgenic lines express the variant WldS protein with full Nmnat enzyme activity and considerably reduced nuclear targeting and relative cytoplasmic redistribution in various neuronal subtypes.

ΔNLS WldS delays Wallerian degeneration more robustly than native WldS

We and others have previously shown that delay of Wallerian degeneration and related axon pathologies by WldS is strongly dose dependent (Perry et al., 1990; Mack et al., 2001; Samsam et al., 2003; Adalbert et al., 2005). In particular, the strength of axon protection in transgenic mice correlates closely with WldS protein level (Mack et al., 2001) (and unpublished observations) (note: the lower expressing lines are no longer available for comparison). Thus, if WldS works through an intranuclear mechanism, reducing nuclear targeting should weaken the protective phenotype.

Surprisingly, however, axonal continuity was substantially better preserved 3, 5, and 14 d after nerve lesion in ΔNLS WldS transgenic lines 2, 3, 5, 6, and 8 than in native WldS mice (Fig. 3A and data not shown). Fragmentation in wild type and partial fragmentation in WldS heterozygotes (Fig. 3A, asterisks) was not

Figure 1. Subcellular localization of ΔNLS WldS in different cell types in vitro and initial characterization of ΔNLS WldS transgenic mice. A. Immunofluorescence using Wld18 primary and Alexa dye-coupled secondary antibodies showing ΔNLS WldS cytoplasmic translocation in transfected HeLa and PC12 cells and hippocampal neurons. B, Top, Representative Westerns...
seen in hemizygous ΔNLS WldS transgenics. Similar results were obtained in transverse semithin sections 3–14 d after nerve lesion (Fig. 3B; supplemental Fig. 2, available at www.jneurosci.org as supplemental material). Quantification showed significantly to highly significantly more intact axons in line 2, 3, 5, 6, and 8 hemizygotes than in WldS heterozygotes (p < 0.05 and p < 0.005, one-way ANOVA). For example, after 14 d, 24.2 ± 2.2% intact axons were intact in WldS (N = 3) compared with 67.4 ± 2.8% in line 3 (N = 3).

Intriguingly, lines 1 and 4 showed axon preservation up to 14 d (supplemental Fig. 3, available at www.jneurosci.org as supplemental material, and data not shown) despite the lack of detectable variant WldS on Western blots (Fig. 1B). In contrast, we previously reported that a low but detectable level of native WldS was insufficient to confer any detectable axon protection (WldS transgenic line 4839 hemizygotes) (Mack et al., 2001). Thus, the amount of protein expressed in transgenic WldS line 4839 should be at least as great, while axon protection is far weaker than in ΔNLS WldS lines 1 and 4. Unfortunately the previously generated WldS line 4839 is no longer available for direct comparison, but this result also suggests WldS has greater efficacy after a reduction in nuclear targeting.

Reduction of WldS nuclear targeting extends the maximum preservation of axon continuity and ultrastructure

We then asked whether the maximum time for which axon continuity and ultrastructure can be preserved increases when WldS nuclear targeting is reduced. For this we used lines 3 and 8 with expression levels similar to native WldS mice. In WldS heterozygotes all axons degenerated by 21 d, whereas in line 3 ΔNLS WldS transgenics some axons remained continuous for at least 35 d (Fig. 4A). In homozygotes the maximum preservation of continuous axons was extended from 35 to 49 d (Fig. 4B and data not shown). It is also interesting to note that YFP has a sufficiently long half-life in these axons to give a strong signal for 7 weeks after being isolated from any further synthesis in the cell body. To confirm that the loss of signal in WldS is not simply due to degradation of YFP, and to study the underlying axon ultrastructure, we then performed electron microscopy at these time points (Fig. 4C). Many ultrastructurally normal axons were preserved up to 49 d in ΔNLS WldS lines 3 and 8, with uniformly distributed axoplasm and unswollen mitochondria, whereas all axonal profiles were completely degraded in spontaneous WldS mice (Fig. 4C).

Denervated ΔNLS WldS axons and neuromuscular junctions remain functional in young and aged transgenics

To test whether NMJs were also preserved after axotomy, we recorded muscle contractions, electromyography, and vital label-
ing of synaptic terminals in FDB preparations. Functional protection of axotomized motor nerve terminals and NMJs in spontaneous and transgenic Wld³ mice is highly age dependent, with innervation 3 d after a nerve lesion falling from >80% at 1–2 months to <20% at 12 month (Gillingwater et al., 2002). As expected, young Wld³ homozygotes (~2 months) showed robust conduction of action potentials and synaptic transmission 3 and 6 d after axotomy, but this protective phenotype was almost completely lost in older mice (aged >7 months).

Three days after sciatic nerve transection, 2-month-old wild-type FDB muscles showed no activity, while age-matched FDB from ΔNLS Wld³ line 3 or spontaneous Wld³ mutants showed robust contractile and electromyographic responses to nerve stimulation indicating functional preservation of both motor axons and NMJs (supplemental Fig. 4A–F, Movies 1, 2, available at www.jneurosci.org as supplemental material). Quantitative, functional labeling using the activity-dependent nerve terminal dye AM1-43 showed almost 100% innervated NMJs in FDB preparations from both ΔNLS Wld³ and spontaneous Wld³ mutants (supplemental Fig. 4G, available at www.jneurosci.org as supplemental material). Six days after sciatic nerve transection the proportion of occupied NMJs decreased to ~50% in young Wld³ mutants, whereas young ΔNLS Wld³ transgenics still showed almost 100% intact NMJs, indicating stronger protection of synaptic terminals (Fig. 5E; supplemental Fig. 4G, available at www.jneurosci.org as supplemental material). After 10 d, <10% of intact NMJs remained in ΔNLS Wld³ FDB (supplemental Fig. 4G, available at www.jneurosci.org as supplemental material).

We then studied mice aged 6–12 months old (Fig. 5), when native Wld³ mice almost completely lose neuromuscular synaptic protection. As expected, 7.5-month-old Wld³ muscles showed only weak or no contraction upon stimulation of the axotomized distal nerve stump (supplemental Movie 4, available at www.jneurosci.org as supplemental material; Fig. 5B). Electromyographic responses were also very weak (Fig. 5D). AM1-43 functional labeling in a 6-month-old Wld³ mutant confirmed almost complete absence of occupied NMJs (Fig. 5E). In marked contrast, axotomized FDB from 7.5-month-old ΔNLS Wld³ mice showed robust contractions after nerve stimulation, with contractile forces and electromyographic responses indistinguishable
Figure 4. Long-term axon survival after sciatic nerve lesion in ΔNLS Wld³ transgenics. A, Representative confocal images of lesioned sciatic/tibial nerves from heterozygous Wld³ (“Wld³ het”) and hemizygous ΔNLS Wld³ transgenics from line 3 crossed to YFP-H. While sciatic and tibial nerves from Wld³ heterozygotes show pronounced degradation of YFP-positive axon fragments from 21 d, ΔNLS Wld³ line 3 hemizygotes have uninterrupted axons up to 35 d (arrows in inset 1 and 2). B, Representative confocal images of lesioned sciatic/tibial nerves from Wld³ homozygotes and ΔNLS Wld³ line 3 homozygotes. While Wld³ homozygotes show pronounced degradation of YFP-positive axon fragments from 35 d, ΔNLS Wld³ line 3 mice display uninterrupted axons up to 49 d (arrows in inset 3 and 4). C, Transmission electron microscopy of distal sciatic and tibial nerve from Wld³ homozygotes (left) and line 3 (middle) and line 8 (right) ΔNLS Wld³ transgenics 35 and 49 d following nerve section. In contrast to Wld³, some ΔNLS Wld³ axons 49 d after axotomy are ultrastructurally preserved, showing intact myelin sheaths, uniform, regularly spaced cytoskeleton, and normal-appearing mitochondria. Scale bars, 2 μm.
from nonaxotomized muscles \((N = 2)\) (supplemental Movie 3, available at www.jneurosci.org as supplemental material; Fig. 5A, C). In accord with these results, quantitative AM1-43 functional labeling in a 12-month-old ΔNLS Wld\(^3\) mouse 6 d after lesion revealed 95% endplate occupancy (Fig. 5E). Together, these results suggest that the decline of synaptic protection with age in native Wld\(^3\) mice is significantly reduced by extranuclear targeting of variant Wld\(^3\). Thus, functional survival of motor axons and their nerve terminals increases and becomes independent of age if Wld\(^3\) is partially translocated from the nucleus to the cytoplasm \textit{in vivo}.

Detection of Wld\(^3\) protein variants in axons

These findings raise the possibility that even native Wld\(^3\) protein may function within axons. Western blotting with Wld18 at a dilution at which it is completely specific for Wld\(^3\) revealed a faint 43 kDa band in Wld\(^3\) mouse and transgenic Wld\(^3\) rat sciatic nerves that was absent in wild type (Fig. 6A, B). Consistent with a local protective action in axons, ΔNLS Wld\(^3\) transgenic mice showed substantially higher amounts in nerve extracts from lines 3 and 8 (Fig. 6A). Nevertheless, we could see no Wld\(^3\)-specific conventional immunofluorescence staining on sections or whole-mount preparations from paraformaldehyde fixed PNS and CNS tissue (data not shown). Interestingly, antigen retrieval using citraconic anhydride (Namimatsu et al., 2005) revealed a marked glial signal in sciatic and optic nerve sections from native Wld\(^3\) mice and rats and ΔNLS Wld\(^3\) transgenics (Fig. 6C and data not shown). This signal increased near the lesion site in injured nerves (Fig. 6D), but its significance for axon protection is unknown since neuronal expres-

Figure 5. Maintained preservation of neuromuscular function in aged ΔNLS Wld\(^3\) transgenic mice. \(A, B, \) Recordings of FDB repetitive 1 Hz muscle twitch contractions and 20 Hz fused contractile responses, 6 d after sciatic nerve lesion from 7.5-month-old ΔNLS Wld\(^3\) transgenic (\(A\)) and age-matched native Wld\(^3\) mutant (\(B\)). Note the amplitude of isometric force generated by nerve stimulation in ΔNLS Wld\(^3\) is \(-50\) times that of the native Wld\(^3\). The fluctuating baseline discernible in \(B\) is due partly to the increased amplifier gain required to register the muscle response and partly to distributed asynchronous spontaneous contractions typically observed in axotomized Wld\(^3\) muscle. \(C, D, \) Averaged extracellular EMG recordings using nerve/muscle preparations from \(A\) and \(B\). The initial spike is the stimulus artifact and the slower waves are produced by muscle fiber action potentials. Note the \(-10\)-fold greater amplitude of the evoked EMG response in ΔNLS Wld\(^3\) (\(C\)) compared with Wld\(^3\) (\(D\)). \(E, \) Representative confocal z-series projections of paraformaldehyde-fixed FDB nerve muscle preparations double labeled presynaptically with the activity-dependent nerve terminal dye AM1-43 and postsynaptically by the acetylcholine receptor marker TRITC-α-bungarotoxin. Colocalization of the green and red signals thus indicates functionally preserved NMJs.
Figure 6. Detection of Wld* and variant ΔNLS Wld* proteins in nerves in vivo. A, Western blot showing presence of variant Wld* proteins in sciatic nerve extracts from both spontaneous Wld* mice and ΔNLS Wld* transgenics. Note markedly higher levels of variant Wld* protein in extracts from ΔNLS Wld* lines 3 and 8 compared with Wld* (heterozygous and homozygous). B, Western blot showing presence of Wld* protein in sciatic nerve extracts from transgenic Wld* rat (line 79, homozygous). For comparison, detection of Wld* in similar total protein amount from brain homogenate from the same rat is also shown. C, Fluorescence immunostaining on wild-type, Wld* (homozygous), and ΔNLS Wld* (line 3, homozygous) longitudinal sciatic nerve sections using tubulin (green) and Wld18 (red) antibodies. Conventional epifluorescence microscopy (rows 1 and 2) demonstrates more intense Wld18 labeling in sciatic nerve from ΔNLS Wld* mouse than from Wld*. Higher-resolution confocal images (rows 3–6) from the same sections show variant Wld* protein signals in glial cells whose nuclei were counterstained with Hoechst 33258 (blue). Note more prominent Wld18 staining in sample from ΔNLS Wld* sciatic nerve. D, Confocal images showing induction of variant Wld* expression (red) in glial cells 6 h after sciatic nerve injury located distally from the lesion site. Note nuclear Wld* foci in activated glial cells (arrows, upper row) from native Wld* mutant, whereas induced ΔNLS Wld* protein expression shows a more cytoplasmic staining pattern demarcating the cell body (arrows, lower row). Blue, Hoechst 33258 counterstain. E, High-power confocal composite (z-series projection) shows presence and homogenous distribution of variant Wld* protein (red) in the nodal and internodal axoplasm of ΔNLS Wld* sciatic nerve (line 3) which is counterstained with tubulin (green). Note the fine granular staining pattern of Wld18 antibody within the axoplasm. Variant Wld* protein immunoreactivity is absent from wild-type sciatic axons. F, Confocal images (z-series projection + DIC merge) showing localization of Wld* protein (red) in nodal and perinodal axoplasm of native Wld* axon in contrast to wild-type fiber where Wld* signal is absent (Wld18 antibody plus Alexa568-tyramide signal amplification).
sion is sufficient for WldS neuroprotection and delay of Wallerian degeneration can be observed in vitro in the virtual absence of glia (Glass et al., 1993; MacDonald et al., 2006; Conforti et al., 2007). Using this method and high-power confocal imaging we also observed weak axonal staining in ΔNLS WldS but not in native WldS and wild-type sciatic nerve sections (Fig. 6E; supplemental Fig. 5, available at www.jneurosci.org as supplemental material; and not shown). Axoplasmic ΔNLS WldS protein was distributed throughout nodes and internodes of individual sciatic nerve axons in a fine granular staining pattern (Fig. 6E). To test whether variant WldS protein remains detectable after axotomy we conducted Western blotting and immunofluorescence on distal sciatic nerve stumps from ΔNLS WldS transgenic mice 1 week following lesion (supplemental Fig. 6, available at www.jneurosci.org as supplemental material). The protein was still present at this time, consistent with a direct axonal role, and no changes in staining pattern could be observed (supplemental Fig. 6B, available at www.jneurosci.org as supplemental material).

The presence of variant WldS protein in the axoplasm raises the possibility that it could be transported anterogradely and/or retrogradely. To test this and to further enhance the signal, we performed focal sciatic nerve crush injury and immunofluorescence on longitudinal sciatic nerve sections proximal and distal to crush site (6 h p.o.) using Wld18 (red) and APP (green) antibodies. Confocal projections demonstrate no Wld18 signal in wild type (A, left), weak Wld18 signal in nerve portions from native WldS (A, right) and substantial accumulation of variant WldS protein signal proximal and distal to the crush site in ΔNLS WldS sciatic nerves (B, lines 2 and 3 homozygous). APP immunosignal is enriched in proximal portions close to the crush site in all samples at this time point. Confocal survey composites in bottom panels show the position of surgical nerve constriction (arrows) in relation to adjacent nerve segments. C, Control double immunostaining on unlesioned longitudinal sciatic nerve segments from wild-type, native WldS, and ΔNLS WldS mice for comparison with A and B.
WldS nodes and internodes (Fig. 6), with lack of signal in wild type indicating specificity.

For further corroboration we then studied axonal WldS in superior cervical ganglion (SCG) explants (Fig. 8A) to exclude glia, reduce the dilution of WldS into the large axonal volume and to isolate neurites in the virtual absence of cell bodies. A robust WldS phenotype was present in explants from both WldS and ΔNLS WldS mice (data not shown). Neuritic extracts from WldS and ΔNLS WldS explants showed a clear Western blotting signal that was markedly stronger in the latter (N = 4 experiments) (Fig. 8A). CARD immunostaining confirmed protein redistribution showing decreased nuclear staining and distinct labeling of neurites in ΔNLS WldS SCGs and DRGs (Fig. 8B and data not shown). Interestingly, cell bodies and occasionally axons of many neurons showed discrete variant WldS foci of varying size (Figs. 8C–D, 9B–D). Longer tyramide deposition reaction times revealed cytoplasmic foci also for native WldS but not for wild-type controls. Variant WldS foci were also present in hippocampal cultures transfected with a ΔNLS WldS construct fused to EGFP (Fig. 8E). However, such foci were never observed in situ in brain

Figure 8. Visualization of WldS and variant ΔNLS WldS distribution in primary neuronal culture. A, Left, Western blot from SCG cell body/proximal neurite (“cell bodies”) and distal neurite fractions (“neurites”) showing WldS and variant WldS in neurites. Note the reduced level of variant ΔNLS WldS in cell bodies and significantly increased levels in neurites. To rule out nuclear contamination derived from glial and other cells in neurite fractions, Western blots were probed with the nuclear marker Histones H1. Right, Densitometric quantification of variant WldS protein (normalized to β-actin). Data from two independent experiments are presented as mean ± SD. B, Left, Confocal images showing cell bodies (and proximal neurites) from dissociated SCG preparations labeled with Wld18 antibody (green; Alexa488-tyramide signal amplification), neurofilament antibody (red) and DAPI (blue). Note cytoplasmic redistribution of the ΔNLS WldS protein variant relative to WldS. Right, Higher magnification confocal images demonstrating variant WldS in SCG neurites (green; Alexa488-tyramide signal amplification). C, D, High-power confocal projections demonstrating peri-nuclear variant WldS foci (green) in SCG preparation from ΔNLS WldS transgenic mouse (C) and occasional foci in proximal neurites (D, arrows). E, Confocal projection showing transfected hippocampal neuron expressing ΔNLS WldS-EGFP fusion protein. Note cytoplasmic ΔNLS WldS-EGFP foci in cell body and neurites.
or spinal cord neurons from ΔNLS Wld5 transgenics or spontaneous Wld5 mice, presumably due to lower concentrations of the variant Wld5 proteins in vivo and/or antigen masking through fixation and embedding procedures.

Together, these results suggest presence of extranuclear Wld5 in axons with higher axoplasmic levels in ΔNLS Wld5 transgenic mice and the possibility of axonal transport of Wld5 variants.
Wld⁵ and variant ΔNLS Wld⁵ proteins associate with mitochondria and intracellular membranes

Finally, we studied the association of Wld⁵ and variant Wld⁵ with organelles in subcellular fractionation of brain tissue and in cell culture. Wld⁵ and variant Wld⁵ were detectable both in enriched mitochondrial (MT) and intracellular membrane (microsome) fractions (MS) but absent in wild type (Fig. 9A). Similar data were obtained from transgenic Wld⁵ rats (data not shown). In CARD analysis, ~85% of extranuclear native or variant Wld⁵ foci partially colocalized with mitochondria, although many mitochondria were not colocalized (Fig. 9B). Again, wild-type controls lacked these foci (supplemental Fig. 7A, available at www.jneurosci.org as supplemental material). In transfected hippocampal primary cultured neurons and PC12 cells, ~90% and 60% of ΔNLS Wld⁵-EGFP foci partially colocalized with Mitotracker Red CMXRos (Fig. 9C) or DsRed2-Mito, respectively, and linear fluorescence intensity profiles confirmed partial colocalization (supplemental Fig. 7B, available at www.jneurosci.org as supplemental material). Many other Wld⁵ foci were adjacent to mitochondria, but conversely most mitochondria in PC12 cells were not detectably associated with Wld⁵, suggesting association with a subset of mitochondria. Additionally, we observed partial association between extranuclear Wld⁵ variants and the endoplasmic reticulum marker KDEL (anti-MAC256 antibody) in SCG neurons (Fig. 9D). Analysis of SCG neurons costained with LAMP-2 antibodies (anti-ABL-93) did not indicate any association with lysosomes (data not shown).

Discussion

These data show that the effectiveness of Wld⁵ mediated neuroprotection in vivo is highly dependent on non-nuclear levels of the mutant protein, indicating a cytoplasmic or even direct axonal role for Wld⁵ (Fig. 9E). We detect native Wld⁵ protein outside the nucleus and in axons for the first time in vivo and report novel subcellular localization to mitochondria and microsome fractions. In addition to these insights into the protective mechanism, the increased efficacy will improve assessment of which neurodegenerative disorders involve Wallerian-like degeneration and points to more optimal therapeutic strategies based around Wld⁵

Wld⁵ protection has been shown to be strongly dose-dependent by the weaker phenotype of C57BL/Wld⁵ heterozygotes in both injury and disease (Perry et al., 1992; Mack et al., 2001; Samsam et al., 2003; Mi et al., 2005) and by strong correlation between expression level and phenotype strength in Wld⁵ transgenic lines (Mack et al., 2001; Adalbert et al., 2005). Surprisingly, we found that reduced nuclear targeting of Wld⁵ without altering total expression level strengthens the protective phenotype, rather than weakening it as a nuclear action would predict. The maximum axon survival following sciatic nerve transection was extended from 4 to 7 weeks and very weakly expressing lines were able to confer a robust Wld⁵ phenotype. Intriguingly, the increased efficacy of the ΔNLS Wld⁵ variant is particularly striking at motor nerve terminals from older mice, where native Wld⁵ is far less effective than in the axon trunk (Mack et al., 2001; Gillingwater et al., 2002).

The reason for the substantial weakening of functional NMJ protection in older Wld⁵ mice is unknown but appears not to involve any decrease in Wld⁵ expression (Gillingwater et al., 2002). In contrast to spontaneous and transgenic Wld⁵ mice, ΔNLS Wld⁵ dramatically retained its ability to preserve neuromuscular synapses in older mice as well as increasing the maximum survival of axotomized NMJs in younger mice. We previously reported enhanced NMJ protection after sciatic nerve lesion in transgenic Wld⁵ rats and speculated that the longer distal axon stump relative to mice might be responsible (Adalbert et al., 2005). In Wld⁵ mice lengthening the distal stump delays degeneration of NMJs by 1–2 d/cm (Ribchester et al., 1995). One model to explain this could be that Wld⁵ neuromuscular synapses require continuous supply of a neuroprotective factor for their survival. We hypothesize now that this putative factor could be axonally transported Wld⁵ itself. As rate of axonal transport declines with age (Cross et al., 2008) the weakening of protective phenotype in old Wld⁵ mutants could be explained with this model. Axonal Wld⁵ protein may fall below an efficacy threshold for synaptic maintenance as mice age. This might not occur in old ΔNLS Wld⁵ transgenics due to the overall higher variant Wld⁵ levels in axons (as shown for sciatic nerves). Although we provide preliminary data suggesting fast axonal transport of at least variant ΔNLS Wld⁵ protein in sciatic nerve, further experiments addressing the relative levels of Wld⁵ variants being transported and at synapses will be needed to test this hypothesis.

Several hypotheses for Wld⁵ action now need to be reexamined to ask how each fits with these new data. For instance, mechanisms involving action of Wld⁵ exclusively in nuclei now appear unlikely, although we cannot rule out a simultaneous action in both cytoplasm and nuclei. Reports of gene expression changes in Wld⁵ mice (Gillingwater et al., 2006; Simonin et al., 2007b) may be less linked to the high nuclear Wld⁵ concentration than expected and feedback mechanisms from cytoplasmic Wld⁵ could be one other explanation for the gene expression data. Previous data based on strong lentiviral overexpression of Nmnat1 in DRG neurons suggested efficacy was independent of subcellular targeting (Sasaki et al., 2006) although it is not clear whether this reflects the axon protection mechanism in vivo (Conforti et al., 2007). Altered gene regulation driven by the NAD⁺ dependent deacetylase sirtuin 1 (Sirt1), a nuclear enzyme (Araki et al., 2004) now appears unlikely and a role for Sirt1 was already hard to reconcile with axon protection in Sirt1 null neurons (Wang et al., 2005) (M. Avery, S. Sheehan, K. Kerr, J. Wang, and M. Freeman, unpublished work). A non-nuclear site of action for Wld⁵ now casts further doubt on a mechanism involving nuclear Sirt1. Instead, our data are consistent with local axonal protection mechanisms, proposed previously based on in vitro data (Wang et al., 2005). Although we demonstrate localization of Wld⁵ variants to axons in vivo additional targeting studies will be needed to address whether the critical site is within the axon itself or in the cell body cytoplasm.

Once Wld⁵ is targeted to a specific non-nuclear site, the associated, essential Nmnat activity (Araki et al., 2004) is likely to produce a high local NAD⁺ concentration. The existence of multiple pathways for NAD⁺ catabolism (Berger et al., 2004) may help explain why this increase has not been detected more generally (Mack et al., 2001; Araki et al., 2004), as once generated NAD⁺ will be rapidly and locally degraded. While it persists, however, this tightly localized NAD⁺ may be used to influence downstream calcium signaling (Berger et al., 2004), bioenergetics (Di Lisa and Ziegler, 2001; Wang et al., 2005), protein modification (Berger et al., 2004) or other functions near its site of production (Berger et al., 2007). The presence of Wld⁵ in the mitochondrion fraction and the partial colocalization with a subset of mitochondria in vitro, as observed for other proteins (Kang et al., 2008), are consistent with a bioenergetics or signaling role, as mitochondria require NAD⁺ to synthesize ATP and to regulate signaling pathways necessary for cell viability (Di Lisa and Ziegler, 2001; Yang et al., 2007a). However, although Wld⁵ axons
maintain both NAD+ and ATP levels after axon lesion better than wild type (Ikegami and Koike, 2003; Wang et al., 2005), a causal role for bioenergetic metabolism in WldS mechanism is unproven. A recent in vitro study suggests an alternative mechanism based on Nmnat blocking production of reactive oxygen species (ROS) from mitochondria (Press and Milbrandt, 2008).

Other data regarding the molecular mechanism of WldS mediated axon protection suggest involvement of valosin-containing protein (VCP) that binds the N-terminal 16 aa of WldS through a VCP binding motif (Laser et al., 2006). This region is necessary but not sufficient for axon protection in mice (Conforti et al., 2007) (Conforti, Wilbrey, Morreale, Janeckova, Beirowski, Adalbert, Mazzola, Di Stefano, Hartley, Babetto, Smith, Gilley, Billington, Genazzani, Ribchester, Magni, and Coleman, unpublished work) and is necessary for full strength phenotype in Drosophila (Avery, Sheehan, Kerr, Wang, and Freeeman, unpublished work). Another recent study showed that VCP binding is required for WldS to localize to discrete subnuclear foci (Willbrey et al., 2008). These nuclear foci were not required for the protective phenotype, but may reflect a more general fine localization mechanism that is relevant also to WldS in other compartments. VCP is a ubiquitous cellular protein with high concentrations in the neuronal cytoplasm (Wang et al., 2004; Laser et al., 2006). The high cytoplasmic VCP content is likely to drive WldS-VCP binding, particularly at sites where VCP is most abundant. One such site is the endoplasmic reticulum (ER), where protein binding interactions with Hrd1, gp78, and Derlin-1 recruit VCP (Schulze et al., 2005). The presence of WldS in microsome fraction where detection of VCP has been also reported (Madeo et al., 1998) is consistent with an ER localization, although the incomplete colocalization with ER suggests either that WldS is restricted to ER subdomains and/or that it is restricted to a different microsome component. ΔNLS WldS transgenic mice should considerably enhance axon and synapse protection also in neurodegeneration models. Thus far, WldS showed significant axon protection in several disorders such as progressive motor neuronopathy (pmn) (Ferri et al., 2003), peripheral neuropathy (Samsam et al., 2003) and chronic or induced glaucoma (Howell et al., 2007; Beirowski et al., 2009), but was less effective in others, most notably in mouse models of familial ALS (Vande Velde et al., 2004; Fischer et al., 2005). The modest or even undetectable neuroprotective effect in WldS/SOD1 mutants was unexpected, given that these mice have axonal transport deficiencies (Vande Velde et al., 2004) and that axonal transport impairment appears to underlie the pmn phenotype. In fact, WldS does confer significant protection of motor nerve terminals in SOD1 (G93A) mutant mice at least up to 80 d of age but not thereafter (Fischer et al., 2005), suggesting that the age-dependent weakening of synaptic protection in WldS mice could explain its inability to alter the SOD1 phenotype strongly. It will be important to test now whether the ΔNLS WldS variant could overcome this limit of neuroprotection.

We conclude that WldS is able to exert extensive neuroprotective effects on axons and synapses through a non-nuclear action, indicating an urgent need to address the roles of NAD+ synthesis and other WldS functions such as VCP binding in these locations. We show that the efficacy of WldS can be increased by appropriate subcellular targeting, so future studies can now address whether the critical location is axonal or cytoplasmic, whether mitochondria or one of the microsome compartments are involved, and whether the enhanced protection offered by the ΔNLS WldS variant can be developed into more effective therapy for axonopathies.

References

Gillingswater TH, Thomson D, Mack TG, Soffin EM, Mattison RJ, Coleman

