Seasonally resolved growth of freshwater bivalves determined by oxygen and carbon isotope shell chemistry

Emma A. A. Versteegh, Hubert B. Vonhof, Simon R. Troelstra, and Ron J. G. Kaandorp
Institute of Earth Sciences, VU University Amsterdam, De Boelelaan 1085, NL-1081 HV Amsterdam, Netherlands (emma.versteegh@vub.ac.be)

Dick Kroon
School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK

1. Introduction

Ontogenetic growth rate patterns of unionid freshwater mussels have been described by a number of authors [Anthony et al., 2001; Morris and Corkum, 1999; Versteegh et al., 2009] and are inferred to be influenced by several factors including but not limited to: temperature [Dettman et al., 1999; Goodwin et al., 2003]; turbidity; nutrient availability and primary productivity [Arter, 1989; Kesler et al., 2007; Valdovinos and Pedreros, 2007]. With respect to intraannual growth Dunca and Mutvei [2001] and Dunca et al. [2005] found that daily growth lines have a strong positive relationship with temperature in Margaritifera margaritifera. However, information on unionid intraannual growth remains relatively sparse [Howard, 1922; Negus, 1966].

In order to understand the environmental signals influencing growth rates, it is essential to document the influence of environmental factors on intraannual growth rates in monitoring experiments. In this study, we present such a monitoring experiment investigating three unionid species that...
naturally occur in the Meuse and Rhine (The Netherlands): *Anodonta anatina*, *Unio pictorum* and *U. tumidus*.

We aim to investigate the relationship between the stable isotopic composition of shell growth increments and seasonal changes in river water composition. Using this relationship the intraannual growth rates of individual shells can be determined allowing for a better understanding of which environmental factors dominate seasonal growth rate variability.

2. Materials and Methods

2.1. Monitoring

Unionid freshwater mussels are abundant in the Dutch part of the Rhine-Meuse delta. They can reach an age of approximately 15 years and sizes up to 13 cm. [Gittenberger et al., 1998]. For this study, monitoring sites were established in fish ladders near weirs in the rivers Meuse and Lek (a Rhine distributary) in the Netherlands. These sites were selected for the relatively constant water levels and flow velocities. The Meuse weir is situated near Lith, the Lek weir at Hagestein (Figure 1).

From the River Linge at Zetten (Figure 1) seven living specimens (three adult *Unio pictorum*, three adult *U. tumidus* and one juvenile *Anodonta anatina*) were collected on 26 January 2006. The specimens were tagged using 8 × 4 mm Hallprint type FPN glue-on shellfish tags with cyanoacylate adhesive (standard ‘Superglue’, following the methodology of Lemarié et al. [2000] and Ross et al. [2001]) and were then placed in a cage at the Hagestein monitoring station. The cage design has been described by Versteegh [2009] and consists of a 22 × 40 × 60 cm PVC box with a 5 cm perforated stainless steel top. At the Lith monitoring station four living mussels of the species *U. pictorum* acquired from a pet shop were placed into a similar cage on 6 July 2006. During winter two specimens were collected at both sites (Table 1) and killed by freezing. The experiment was concluded at both sites by freezing the mussels on 12 July 2007. Specifications of the specimens are given in Table 1.
Water samples for isotope analysis were taken biweekly for a period of 18 months at Hagastein and a period of 12 months at Lith. The 100 ml samples were conserved with two drops of a solution of 15 mg of I₂ and 30 mg of KI per ml of milliQ water [Mook, 2000]. Water temperature was logged with an ATAL ATX-01E temperature data recorder in a waterproof container at hourly intervals.

Additional water oxygen isotope (\(\delta^{18}O_w\)) data of both rivers, covering the years 2006 and 2007 and measured at Eijsden and Lobith (Figure 1), were obtained from the Centre for Isotope Research (University of Groningen).

Biweekly recorded data on pH and chlorophyll \(a\) (a measure of primary productivity) in the water were obtained from Rijkswaterstaat (Dutch Directorate for Public Works and Water Management) at Eijsden (Meuse) and Lobith (Rhine) (Figure 1).

2.2. Analyses

All shells were measured with respect to their length and height (Table 1) and then embedded in epoxy resin. Sections of 300 \(\mu\)m thickness were cut perpendicular to the growth lines, along the dorso-ventral axis and through the umbo [Versteegh et al., 2009]. The nacreous layer of the shells was sampled with a Merchantek Micromill micro sampler equipped with a \(\sim 800 \mu\)m drill bit by milling along the growth lines [Versteegh, 2009]. Considering the amount of carbonate between 10 and 50 \(\mu\)g required for mass spectrometry, the highest possible sampling resolution was chosen. The sampling distance varied between 30 and 200 \(\mu\)m with a Drilling depth of \(\sim 250 \mu\)m.

Both shell and water samples were analyzed for oxygen and carbon isotope ratios (\(\delta^{18}O\) and \(\delta^{13}C\) values) using a Thermo Finnigan Delta+ mass spectrometer equipped with a GasBench-II preparation device. The long-term standard deviation of a routinely analyzed in-house \(\text{CaCO}_3\) standard is < 0.1 \(\%\) for \(\delta^{18}O\) values and < 0.09 for \(\delta^{13}C\) values. This \(\text{CaCO}_3\) standard is regularly calibrated to NBS 18, 19 and 20. The long-term standard deviation of a routinely analyzed in-house water standard is < 0.1 \(\%\) for \(\delta^{18}O_w\) and is < 0.15 \(\%\) for \(\delta^{13}C_{\text{DIC}}\) values, respectively.

2.3. Calculation of Predicted \(\delta^{18}O_{\text{ar}}\) Values and Comparison With Measured \(\delta^{18}O_{\text{ar}}\) Values

Measured temperature and \(\delta^{18}O_w\) values of ambient river water were used to calculate predicted \(\delta^{18}O\) (\(\delta^{18}O_{\text{ar}}\)) values of shell aragonite precipitated in equilibrium, using the equation of Grossman and Ku [1986] in the form suggested by Dettman et al. [1999]:

\[
1000\ln \alpha = 2.559(10^6 T^{-2}) + 0.715
\]

where \(T\) is the water temperature in degrees Kelvin and \(\alpha\) is the fractionation between water and aragonite.

2.4. Calculation of Bicarbonate \(\delta^{13}C\) Values and the Fractionation With Aragonite

All oxygen isotope values are calculated relative to Vienna Standard Mean Ocean Water (VSMOW). \(\delta^{18}O_{\text{ar}}\) values are, however, usually expressed relative to Vienna Pee Dee Belemnite (VPDB). To convert \(\delta^{18}O_{\text{ar}}\) (VSMOW) values to \(\delta^{18}O_{\text{ar}}\) (VPDB) values, the following equation has been used [Gonfiantini et al., 1995]:

\[
\delta^{18}O_{\text{ar}}(\text{VSMOW}) = 1.03091(1000 + \delta^{18}O_{\text{ar}}(\text{VPDB})) - 1000
\]

Table 1. Specifications of Shell Samples

<table>
<thead>
<tr>
<th>Species</th>
<th>Length (mm)</th>
<th>Height (mm)</th>
<th>Height Along Shell (mm)</th>
<th>Collection Site</th>
<th>Monitoring Site</th>
<th>Start Date</th>
<th>End Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>3110 Unio tumidus</td>
<td>78.8</td>
<td>38.2</td>
<td>54</td>
<td>Linge; Zetten</td>
<td>Hagastein</td>
<td>26-Jan-06</td>
<td>5-Apr-07</td>
</tr>
<tr>
<td>3114 Unio pictorum</td>
<td>63.5</td>
<td>27.2</td>
<td>39</td>
<td>Linge; Zetten</td>
<td>Hagastein</td>
<td>26-Jan-06</td>
<td>12-Jul-07</td>
</tr>
<tr>
<td>3115 Unio pictorum</td>
<td>86.6</td>
<td>36.9</td>
<td>50</td>
<td>Linge; Zetten</td>
<td>Hagastein</td>
<td>26-Jan-06</td>
<td>12-Jul-07</td>
</tr>
<tr>
<td>3117 Unio pictorum</td>
<td>61.2</td>
<td>26.7</td>
<td>39</td>
<td>Linge; Zetten</td>
<td>Hagastein</td>
<td>26-Jan-06</td>
<td>5-Apr-07</td>
</tr>
<tr>
<td>3119 Unio tumidus</td>
<td>45.0</td>
<td>24.0</td>
<td>34</td>
<td>Linge; Zetten</td>
<td>Hagastein</td>
<td>26-Jan-06</td>
<td>12-Jul-07</td>
</tr>
<tr>
<td>3129 Unio tumidus</td>
<td>64.4</td>
<td>32.4</td>
<td>43</td>
<td>Linge; Zetten</td>
<td>Hagastein</td>
<td>26-Jan-06</td>
<td>12-Jul-07</td>
</tr>
<tr>
<td>3135 Anodonta anatina</td>
<td>35.0</td>
<td>19.3</td>
<td>25</td>
<td>Linge; Zetten</td>
<td>Hagastein</td>
<td>26-Jan-06</td>
<td>12-Jul-07</td>
</tr>
<tr>
<td>3149 Unio pictorum</td>
<td>75.3</td>
<td>30.4</td>
<td>43</td>
<td>Pet shop</td>
<td>Lith</td>
<td>6-Jul-06</td>
<td>14-Dec-06</td>
</tr>
<tr>
<td>3153 Unio pictorum</td>
<td>81.8</td>
<td>33.2</td>
<td>47</td>
<td>Pet shop</td>
<td>Lith</td>
<td>6-Jul-06</td>
<td>14-Dec-06</td>
</tr>
<tr>
<td>3170 Unio pictorum</td>
<td>77.1</td>
<td>31.9</td>
<td>44</td>
<td>Pet shop</td>
<td>Lith</td>
<td>6-Jul-06</td>
<td>12-Jul-07</td>
</tr>
<tr>
<td>3172 Unio pictorum</td>
<td>69.8</td>
<td>29.9</td>
<td>44</td>
<td>Pet shop</td>
<td>Lith</td>
<td>6-Jul-06</td>
<td>12-Jul-07</td>
</tr>
</tbody>
</table>
dissolved inorganic carbon (DIC) consisted mainly of \(\text{HCO}_3^- \) (bicarbonate) and low concentrations of \(\text{H}_2\text{CO}_3 \) and \(\text{CO}_3^- \). The relative concentrations of individual carbonate species, including \(\text{H}_2\text{CO}_3 \) \(\text{HCO}_3^- \) and \(\text{CO}_3^- \) are obtained using the equations described by Clark and Fritz [1997] and Zeebe and Wolf-Gladrow [2001].

While the isotopic fractionation of dissolved \(\text{CO}_2 \) relative to \(\text{HCO}_3^- \) is given by the following equation [Mook, 2000]:

\[
eq_{\text{HCO}_3^-/\text{HCO}_3^-} = \frac{-9866}{7_k} + 24.12\%_{\text{oo}} \tag{3}
\]

Bicarbonate \(\delta^{13}C \) values (\(\delta^{13}C_{\text{HCO}_3^-} \)) are calculated using the ratio \(\text{H}_2\text{CO}_3 \)/ \(\text{HCO}_3^- \) and the fractionation between them. Isotopic enrichment factors between shell aragonite and \(\text{HCO}_3^- \) are calculated using the relation [Romanek et al., 1992]:

\[
\delta_{\text{ar}}/\text{HCO}_3^- = 1000 \left(\frac{(\delta^{13}C_{\text{ar}} + 1000)}{(\delta^{13}C_{\text{HCO}_3^-} + 1000)} - 1 \right) \tag{3}
\]

For inorganic precipitation of aragonite \(\delta_{\text{ar}}/\text{HCO}_3^- \) is \(2.7 \pm 0.6 \% \) [Romanek et al., 1992]. However, in the biogenic aragonite of Peruvian unionids, a depletion of \(4.0 \pm 0.7 \% \) has been found by certain studies [Kaandorp et al., 2003].

2.5. Construction of Seasonally Resolved Growth Models

In order to accurately predict growth rates, four seasonally resolved models based on the isotopic compositions of shells and ambient water, were generated: (1) a linear model; (2) a model based upon predicted and observed seasonal \(\delta^{18}O_{\text{ar}} \) records; (3) a model based upon the comparison of seasonal \(\delta^{13}C_{\text{HCO}_3^-} \) and aragonite \(\delta^{13}C \) (\(\delta^{13}C_{\text{ar}} \)) records, and (4) a model combining predicted and observed \(\delta^{18}O_{\text{ar}} \) records as well as \(\delta^{13}C_{\text{HCO}_3^-} \) and \(\delta^{13}C_{\text{ar}} \) records.

As a first step toward comparison of the measured and predicted \(\delta^{18}O_{\text{ar}} \) records we start by assuming linear growth between the previously determined spring and autumn dates of onset and cessation of growth (model 1).

To better understand the environmental factors driving seasonal growth rate changes we subsequently attempt to construct an improved seasonally resolved growth rate model based on peak matching (model 2). If \(\delta^{18}O_{\text{ar}} \) values are in equilibrium with the ambient water we are not limited to correlating the first and last samples of the measured \(\delta^{18}O_{\text{ar}} \) summer segments with the predicted \(\delta^{18}O_{\text{ar}} \) profiles, but too all samples of each complete summer segment. First order correlation is based upon peaks and troughs in the records and then the remaining measured \(\delta^{18}O_{\text{ar}} \) values between the peaks and troughs are shifted along the time axis to the closest values on the predicted \(\delta^{18}O_{\text{ar}} \) graph [Freitas et al., 2006]. If \(\delta^{13}C_{\text{ar}} \) values do reflect \(\delta^{13}C_{\text{HCO}_3^-} \) values a similar approach will be applied for stable carbon isotopes (model 3). The final seasonal growth model (4) attempts to simultaneously match peaks in both the \(\delta^{13}C \) and \(\delta^{18}O \) records.

3. Results

3.1. River Water

While water temperatures in both locations varied seasonally with summer temperatures rising to about 25°C and winter values as low as 2°C (Figures 2a and 2b), no discernable patterns were observed in the pH values of either river. In the Lek the pH varied between 7.5 and 8.4 and in the Meuse between 7.4 and 8.2.

During the monitoring period the \(\delta^{18}O_w \) values varied between −9.8 and −7.9‰ (VSMOW) in the Lek and between −8.1 and −6.4‰ (VSMOW) in the Meuse. The average was −8.9‰ in the Lek while in the Meuse −7.1‰ (Figures 2a and 2b). The \(\delta^{18}O_w \) data during the period of monitoring generally correspond with the data set from the Centre for Isotope Research (University of Groningen), plotted in Figures 2a and 2b.

The \(\delta^{13}C_{\text{HCO}_3^-} \) values measured (expressed in VPDB) range between −13.6 and −7.9‰ in the Lek and −15.3 and −8.6‰ in the Meuse (Figures 3a and 3b; due to the pH range of these rivers, the difference between \(\delta^{13}C_{\text{HCO}_3^-} \) and \(\delta^{13}C_{\text{DIC}} \) is negligible). Chlorophyll \(a \) concentrations exhibit seasonal patterns with ‘background’ values of 2 μg/l in both rivers with peaks occurring in late spring-early summer, up to 39 μg/l in the Lek and 56 μg/l in the Meuse, respectively (Figures 3a and 3b).

3.2. Shell Growth and Isotopic Composition

Experimental commencement can be recognized as a growth disturbance line in a transverse section of the shell (Figure 4) due to the stress of
collection or staining with calcein [Clark, 2005]. Using this as a correlative marker between co-habitating individuals estimates of the shell growth and \(\delta^{18}O_{ar} \) values could be obtained. During the period of investigation individual shell growth varied between 0.1 and 3.4 mm, while \(\delta^{18}O_{ar} \) values of the shells varied between −5.2 and −10.8 ‰ (average −8.9 ‰) in the river Lek (Figures 5a–5g), and between −6.1 and −6.8 ‰ (average −6.5 ‰) for the Meuse. Specimens from Lith grew too slowly to resolve any seasonal variations during the monitoring experiment, and these shells were therefore excluded from further analysis.

[25] With a single exception, the Hagestein shells demonstrated a seasonal pattern: a broad trough in summer and a narrow peak in winter together representing one year of growth [Versteegh et al., 2009].

[26] The range of \(\delta^{13}C_{ar} \) values for the same period is −9.1 to −14.2 ‰ in the Lek (Figures 5a–5g) and −11.2 to −13.3 ‰ in the Meuse. In the Meuse shells there are no detectable seasonal patterns in \(\delta^{13}C_{ar} \) values, however with a singular exception (shell 3135, justifiable due to the low sampling resolution) a seasonal pattern in \(\delta^{13}C_{ar} \) can be observed in the samples from the river Lek.

4. Discussion

4.1. Seasonal Isotope Variation of River Water

[27] \(\delta^{18}O_{w} \) values of the Meuse and Rhine are known to display a seasonal cycle (Data: Centre for Isotope Research, University of Groningen, published by Versteegh et al. [2009]) owing to the seasonal variation in amount and composition of different source waters. The \(\delta^{18}O_{w} \) value of the Meuse is determined by the relative contributions of groundwater and surface runoff. In winter, when evaporation is limited, \(\delta^{18}O_{w} \) values reflect those of groundwater, whereas in summer \(\delta^{18}O_{w} \) values are higher due to evaporation and enriched summer precipitation [Mook, 1968].

[28] In spring and early summer, the Rhine river system \(\delta^{18}O_{w} \) values become isotopically depleted due to the influx of meltwater from the Alps. This meltwater and the inland location of the Rhine basin...
on the European continent result in overall lower \(\delta^{18}O \) ratios than those of the Meuse with lowest values in summer and highest values in winter [Mook, 1968, 2000]. Higher values in summer were ascribed to isotopic exchange with atmospheric CO\(_2\) [Mook and Vogel, 1968].

[30] A similar seasonal pattern in \(\delta^{13}C_{\text{HCO}_3^-} \) values was observed for both rivers during the period of study. Generally low \(\delta^{13}C_{\text{HCO}_3^-} \) values occurred in winter and spring and high \(\delta^{13}C_{\text{HCO}_3^-} \) values occurred in summer. However, the shifts toward positive values occurred rather abruptly, suggesting that a mechanism other than the proposed enhancement of carbon isotopic exchange with atmospheric CO\(_2\) during summer months, is a reason for seasonality within \(\delta^{13}C_{\text{HCO}_3^-} \) values [Mook and Vogel, 1968]. For instance, metabolic effects, like those of photosynthesis and respiration, are expected to have a profound influence on both ambient water \(\delta^{13}C_{\text{HCO}_3^-} \) values and shell \(\delta^{13}C_{\text{ar}} \) values [McConnaughey et al., 1997; McConnaughey and Gillikin, 2008]. Photosynthesis by phytoplankton preferentially removes \(^{12}C \) from the DIC pool [Al-Aasm et al., 1998; Fritz and Poplawski, 1974], increasing \(\delta^{13}C_{\text{ar}} \) values of shell aragonite precipitated from DIC. At the same time, phytoplankton, having very low \(\delta^{13}C \) values, forms an important component of the unionid diet [Nichols and Garling, 2000; Raikow and Hamilton, 2001]. Algal and microbial carbon have been shown to conceivably lower shell \(\delta^{13}C_{\text{ar}} \) values, depending on the level of metabolic carbon that has been incorporated [McConnaughey and Gillikin, 2008]. In order to investigate a possible relationship between \(\delta^{13}C_{\text{HCO}_3^-} \) values and primary productivity, a time series of chlorophyll \(a \) concentrations representing phytoplankton abundance and thus primary productivity was compared with measured \(\delta^{13}C_{\text{HCO}_3^-} \) values in Figures 3a and 3b. Sharp rises in \(\delta^{13}C_{\text{HCO}_3^-} \) values can be seen to track peaks in chlorophyll \(a \) at both rivers, albeit with a less abrupt rise in the Meuse.
than in the Lek during 2007. We therefore ascribe these rises in $^{13}\text{C}_{\text{HCO}_3^{-}}$ values to preferential removal of ^{12}C by phytoplankton photosynthesis (Figures 3a and 3b).

4.2. Equilibrium Precipitation of Shell Aragonite: Oxygen Isotopes

Unionid freshwater mussels can record characteristics of ambient water chemistry in their shells. The $\delta^{18}\text{O}_{\text{ar}}$ values (solid lines and symbols) and $\delta^{13}\text{C}_{\text{ar}}$ values (dashed lines and open symbols) of the seven shells grown in Hagestein. The experiment covered the time interval January 2006–April 2007 in shells 3110 (Figure 5a) and 3117 (Figure 5d) and January 2006–July 2007 in the other shells.

Figure 5. The $\delta^{18}\text{O}_{\text{ar}}$ values (solid lines and symbols) and $\delta^{13}\text{C}_{\text{ar}}$ values (dashed lines and open symbols) of the seven shells grown in Hagestein. The experiment covered the time interval January 2006–April 2007 in shells 3110 (Figure 5a) and 3117 (Figure 5d) and January 2006–July 2007 in the other shells.
growth increments at high temporal resolution [Ricken et al., 2003; Verdegaal et al., 2005; Versteegh et al., 2009, 2010]. $\delta^{18}O_{ar}$ values are generally found to be in equilibrium with ambient water [Dettman et al., 1999; Gajurel et al., 2006; Goewert et al., 2007; Kaandorp et al., 2003]. We investigated whether the two Unio species precipitated their shell in oxygen isotopic equilibrium with ambient water during the monitoring experiments, using $\delta^{18}O_{sw}$ values and water temperature to predict $\delta^{18}O_{ar}$ values (equations (1)–(2) and Figures 2a and 2b). The sharp trough to 0°C in the Meuse water temperatures, and corresponding peak in predicted $\delta^{18}O_{ar}$ values (Figure 2b) is due to accidental exposure of the top of the cage, containing the temperature logger, caused by low water level in the fish ladder. However, since the mussels do not grow in winter, this is of no consequence for this study [Anthony et al., 2001; Goewert et al., 2007; Kesler et al., 2007; Versteegh et al., 2009].

[32] The measured $\delta^{18}O_{ar}$ values of the ventral margin of those specimens that both survived and continued to precipitate aragonite until the end of the experiment (shells 3114; 3115 and 3129; Figures 7b, 7c, and 7f, respectively) match the predicted values for the experimental end-date (Table 2). Shells 3119 and 3135 were observed to be still alive at the conclusion of the experiment, however curiously failed to precipitate any aragonite during the spring of 2007.

[33] While, the mussels were harvested on 12 July 2007 the isotopic measurements of the water from that date were unable to be retrieved and therefore samples taken on 27 June 2007 were used. This poses no problem for analytical reliability since the amount of time averaging within one ventral margin sample is about one week in shell 3114, but many weeks in shell 3115 and 3129. This latter fact is also the most likely cause for the deviations of up to 0.32‰ from predictions. These deviations are, however, small and not in a specific direction, confirming that aragonite is precipitated in oxygen isotopic equilibrium with ambient water.

4.3. Seasonal Shell Oxygen Isotope Records

[34] The measured $\delta^{18}O_{ar}$ records typically show a truncated sinusoidal pattern (e.g., Figure 5b), caused by a combination of temperature fractionation and seasonal growth cessation [Dettman et al., 1999; Goodwin et al., 2003; Grossman and Ku, 1986]. Since the shells did not grow in winter, $\delta^{18}O_{ar}$ records contain (invisible) gaps resulting in juxtaposed increments of (summer) shell growth.

4.4. Shell Carbon Isotope Records

[35] The fact that aragonite is precipitated in oxygen isotopic equilibrium with ambient water enables us to compare predicted and measured $\delta^{18}O_{ar}$ records and subsequently determine the temperature of seasonal growth initiation and cessation. Alignment of measured $\delta^{18}O_{ar}$ summer segments with the predicted $\delta^{18}O_{ar}$ record documented that shell growth initiated above 13.5 ± 2.8°C and ceased below 13.5 ± 4.2°C. This corresponds to values previously observed [Negus, 1966].

[36] While $\delta^{13}C$ values of mollusk shells have yielded a plethora of practical environmental information, many questions relating to the processes behind trends in seasonal shell $\delta^{13}C$ records remain unanswered. Despite the fact that several authors have reported covariation between $\delta^{13}C$ values in bivalves and those of DIC [Aucour et al., 2003; Buhl et al., 1991; Fritz and Poplawski, 1974; Kaandorp et al., 2003], others have failed to reproduce these results. This failure to detect any relationship between shell $\delta^{13}C$ and $\delta^{13}C_{DIC}$ is usually ascribed to the incorporation of metabolic carbon into the shell [Fastovsky et al., 1993; Gajurel et al., 2006; Geist et al., 2005; Ricken et al., 2003; Veinott and Cornett, 1998; Verdegaal et al., 2005]. However, Gillikin et al. [2009] suggest that an ontogenetic increase in metabolic carbon does not exclude $\delta^{13}C$ data of unionid freshwater mussels from being a useful environmental proxy. Detection of a relationship between $\delta^{13}C_{ar}$ and $\delta^{13}C_{DIC}$ in previous studies may have been hampered by uncertainties in time correlation of isotope records in water with those in shells [Dettman et al., 1999].

[37] The observed shifts in the $\delta^{13}C_{HCO_{3}^{-}}$ records are sufficiently large (> 2‰) to be recorded in bivalve shells [Gillikin et al., 2006]. This indeed appears to be the case: with the exceptions of shells with low sampling resolution, shell 3135 from
Hagestein and three shells from Lith (Figure 5g), both amplitude and values of δ^{13}C for the other Hagestein shells correspond well with measured δ^{13}C$_{\text{HCO}_3^-}$ (Figures 5a–5f).

4.5. Seasonally Resolved Growth Models

The pattern of growth in unionids, like many bivalves, is recorded in the layering in the shell.

| Table 2. Predicted and Measured δ^{18}O$_{\text{ar}}$ Values for Ventral Margin Samples |
|---------------------------------|-----------------|-----------------|-----------------|
| δ^{18}O$_{\text{w}}$ (°C) | Predicted δ^{18}O$_{\text{ar}}$ | Measured δ^{18}O$_{\text{ar}}$ |
| 3114 | -8.60 | 20.5 | -8.64 | -8.90 |
| 3115 | -8.60 | 20.5 | -8.64 | -8.32 |
| 3129 | -8.60 | 20.5 | -8.64 | -8.49 |
Discreet growth increments across the transverse sections of the shell are bracketed by distinct lines, commonly referred to as growth lines, representative of the cessation of growth (Figure 4). The origin of these growth lines is commonly inferred to represent the annual growth cessation during winter, but this is often unclear [Versteegh et al., 2009]. For instance, while the onset of the experiment can be clearly seen as a disturbance line in shell 3114 (caused by handling and/or staining with calcein; Figure 4), the presence of multiple subannual growth lines makes it difficult to locate the winter growth line. These secondary growth lines have been attributed to different factors including predative disturbance and daily periodicity. Thus, because internal growth banding cannot (yet) be used to construct annually resolved growth models, we use the seasonally
resolved isotopic composition of shells and ambient water.

[39] Given the results of the monitoring experiment both the $\delta^{18}O_{\text{ar}}$ and $\delta^{13}C_{\text{ar}}$ records appear to record seasonal variation in ambient water. These data sets, combined with the river water $\delta^{18}C_{\text{w}}$ and $\delta^{13}C_{\text{HCO}_3^-}$ records, will now be applied to document variability in intraannual growth rates. We present four seasonally resolved growth models: (1) a linear model; (2) a model based upon predicted and observed seasonal $\delta^{18}O_{\text{ar}}$ records; (3) a model based upon the comparison of seasonal $\delta^{13}C_{\text{HCO}_3^-}$ and $\delta^{13}C_{\text{ar}}$ records, and (4) a model combining predicted and observed $\delta^{18}O_{\text{ar}}$ records as well as $\delta^{13}C_{\text{HCO}_3^-}$ and $\delta^{13}C_{\text{ar}}$ records. Construction of these growth models was based upon two specimens of *Unio pictorum* exhibiting the highest growth rates: shells 3114 and 3117.

4.5.1. Model 1: Linear Growth Model

[40] Although it is unlikely that intraannual summer growth is linear, no robust nonlinear growth model is yet available for unionids. Thus, as a first step toward comparison of the measured and predicted
\(\delta^{18}O_{\text{ar}} \) records and subsequent construction of a seasonally resolved growth model, we assumed linear growth between the previously determined spring and autumn dates of onset and cessation of growth (Figures 7a–7g). A relatively close correspondence between the predicted and measured \(\delta^{18}O_{\text{ar}} \) records is observed in most shells. However, several growth increment \(\delta^{18}O_{\text{ar}} \) values were plotted together suggesting a higher growth rate in spring than later in the season (e.g., shells 3114, 3117 and 3129; Figures 7b, 7d, and 7f).

Subsequently, \(\delta^{13}C_{\text{HCO}_3} \)- and shell \(\delta^{13}C_{\text{ar}} \) values of all Hagstein shells have been plotted using growth rates on the same linear scale as those from the previously discussed \(\delta^{18}O_{\text{ar}} \) records (Figures 8a–8g). The shapes of the \(\delta^{13}C_{\text{HCO}_3} \)- and \(\delta^{13}C_{\text{ar}} \) records, plotted using the linear growth rate method, are very similar for five of the shells (i.e., shells 3110, 3114, 3117, 3119 and shell 3115 only in the 2007 season; Figures 8a–8e). However, an offset of about 3 months is apparent between the peaks and troughs of the \(\delta^{13}C_{\text{HCO}_3} \)- and \(\delta^{13}C_{\text{ar}} \) records. There is no obvious physiological mechanism in these organisms to explain this discrepancy, therefore it is likely an artifact of imposing linearity on seasonally resolved growth.

4.5.2. Model 2: \(\delta^{18}O \) Peak Matching and Time-Axis Shifting

In order to resolve the environmental factors driving variability in the seasonal growth rate and to reduce the discrepancy between shell and water isotopic data in the linear growth model, a second model based upon peak matching and time-axis shifting of the \(\delta^{18}O_{\text{ar}} \) data points was constructed (Figure 9a). This results in a growth model with fast growth in early summer and slower growth during the rest of the season. In order to validate this model \(\delta^{13}C_{\text{HCO}_3} \)- and \(\delta^{13}C_{\text{ar}} \) values were plotted together on the same time-scale (Figure 9b), this reduces the apparent time discrepancy by one third in comparison with the linear model.

4.5.3. Model 3: \(\delta^{13}C \) Peak Matching and Time-Axis Shifting

Unlike the predicted \(\delta^{18}O_{\text{ar}} \) record, the \(\delta^{13}C_{\text{HCO}_3} \)-record exhibits several sudden leaps in values; these may serve as tie-points for the model. In this approach, first \(\delta^{13}C_{\text{ar}} \) records were fitted to the \(\delta^{13}C_{\text{HCO}_3} \)-record using a similar methodology to model 2 (Figures 9c–9d). The model was then compared to predicted and observed \(\delta^{18}O_{\text{ar}} \) values plotted on the same timescale. In model 3, the time lag between predicted and measured \(\delta^{18}O_{\text{ar}} \) is in the order of two months, which is similar to the \(\delta^{13}C \) time lag in model 2. Hence, there does not appear to be a significant improvement of the growth model when using model 3 as opposed to model 2; what is gained in the better match of \(\delta^{13}C \) data is lost in the poorer match of \(\delta^{18}O \) data.

4.5.4. Model 4: Combined \(\delta^{18}O \) and \(\delta^{13}C \) Records, Peak Matching, and Time-Axis Shifting

Both the \(\delta^{18}O_{\text{ar}} \) and the \(\delta^{13}C_{\text{ar}} \) shell profiles appear to record seasonal variation in ambient water of \(\delta^{18}O_{\text{w}} \) and \(\delta^{13}C_{\text{HCO}_3} \), respectively. Therefore, a model simultaneously matching peaks and troughs in the \(\delta^{13}C \) and \(\delta^{18}O \) records was constructed. This leads to a good match between the predicted and measured \(\delta^{18}O_{\text{ar}} \) records, as well as the \(\delta^{13}C_{\text{ar}} \) and \(\delta^{13}C_{\text{HCO}_3} \)-records, if faster growth in early summer is allowed for (Figures 9e, 9f, and 10). As such, growth model 4 appears to resolve time lag discrepancies observed in models 1, 2 and 3.
The approximate 1 month episode of fast growth suggested in growth model 4 is recorded in both shell δ¹⁸Ο and δ¹³C represented by a broad trough, during which δ¹⁸Ο and δ¹³C values remain relatively constant. Months of little or no growth are represented by only a narrow portion of the shell (Figure 11).

4.6. Comparison of the Growth Functions

Growth functions resulting from the four different models are shown in Figures 10a and 10b. Model 1 (linear) obviously has constant growth rates throughout the season. Model 2 (δ¹⁸Ο-based) shows differential growth with three (shell 3114) or two (shell 3117) peaks and low-growth intervals in between. The above-described two-month time shift is evident again when model 3 (δ¹³C-based) is compared to the model 2. Model 4 (combined δ¹⁸Ο/δ¹³C) shows a large growth peak at the same time as model 2, followed by a time interval of low growth and then a smaller peak before growth ceases during winter (Figures 10a and 10b). This model provides the best fit, because it aligns shifts in both δ¹⁸Ο and δ¹³C records. As such, model 4 supposedly yields the most accurate representation of intraannual growth (Figure 10).

[45] In summary, these species of Unio start growing when water temperatures reach 13.5°C in spring. Growth continues at a moderate rate during spring, before accelerating to up to five times the previous
growth rate during early summer (June), potentially representing an abundance of food. As time progresses growth slows down considerably, until it comes to a complete halt when temperatures fall below 13.5°C again. The growth peak in June coincides with the chlorophyll a peak in the river, suggesting that, intraannual growth is mainly influenced by phytoplankton abundance (Figure 3a; chlorophyll a). This factor was already known to have a positive effect on the ontogenetic growth of North-American Unionidae [Kesler et al., 2007] and European Anodonta [Jokela and Mutikainen, 1995], although unionids feed on bacteria and fine particulate organic matter as well [Christian et al., 2004; Nichols and Garling, 2000; Vaughn and Hakenkamp, 2001]. It has to be noted that other factors influencing growth cannot be entirely ruled out. These might include pollution with heavy metals, low oxygen content of the water and elevated salinities, especially in dry time intervals [Admiraal et al., 1993; Hartmann et al., 2007].

5. Conclusions

We have demonstrated that unionid species, living in the Rhine and Meuse rivers, precipitate skeletal aragonite in oxygen isotopic equilibrium with ambient water. Shell δ18O ar values are a result of ambient water δ18O w values and temperature. River δ13C HCO3– values exhibit a seasonal cycle with low values in winter and spring. Suddenly rising values in early summer are due to preferential removal of 12C from the DIC pool by phytoplankton photosynthesis. This seasonal δ13C HCO3– cycle is accurately recorded in δ13C ar values of growth increments in unionid shells.

Based on a correlation of intraannual δ18O and δ13C variation in ambient water and shells, a growth model was constructed which indicates nonlinear growth of these unionids. These data suggest that onset and cessation of growth of unionid freshwater mussels are dependent on water temperature, while the rate of growth is dependent on primary productivity (food availability).

This study demonstrates the potential of unionid shell chemistry for palaeoclimate studies. Freshwater bivalve δ18O ar records can serve as a proxy for past river δ18O ar values, in relation to discharge seasonality and river dynamics. Freshwater bivalve records can potentially serve as a proxy for past primary productivity, although other parameters (e.g., CO2 exchange with atmosphere) will likely affect δ13C ar as well.

Acknowledgments

This project was financed by BSIK – Climate changes Spatial Planning. We are greatly indebted to Piet Versteegh and Marie-Louise Friedrichs for their help with water sampling. Furthermore we would like to thank Willem Mook, Rijkswaterstaat (Dutch Directorate for Public Works and Water Management) and the Centre for Isotope Research (University of Groningen) for providing data sets. The constructive comments of Elena Dunca and an anonymous reviewer greatly improved the quality of this paper. This is NSG publication 20090101.

References

Clift, H. R., II (2005), Daily growth lines in some living Pectens (Mollusca: Bivalvia), and some applications in a fossil relative: Time and tide will tell, Palaeoecography, Palaeoclimatol. Palaeoecol., 220(1–2), 26–42, doi:10.1016/j.palaeo.2005.03.044.

Valdovinos, C., and P. Pedreros (2007), Geographic variations in shell growth rates of the mussel Diplodon chilenis from temperate lakes of Chile: Implications for biodiversity conservation, Limnologica, 37(1), 63–75.

Verdegaal, S., et al. (2005), Stable isotopic records in unionid shells as a paleoenvironmental tool, *Neth. J. Geosci.*, 84(4), 403–408.

